Programming Problem 2: Primality testing
 JAN 272012

Our second programming problem

Primality Testing

Given a positive integer (> 1), determine whether it is a prime number or not.

Examples:

Input
31
2001
987654321

Output
prime composite composite

Algorithmic Idea

- Generate all "candidate" factors of n , namely 2, 3, ..., n-1
- For each generated "candidate" factor, check if n is evenly divisible by the factor (i.e., the remainder is o).
- If a "candidate" factor is found to be a real factor, then n is composite.
- If no "candidate" factor is found to be a real factor, then n is a prime.

Algorithm in pseudocode

1. Input n
2. For each factor $=2,3, \ldots, \mathrm{n}-1$ do the following
3. if n is evenly divisible by factor then remember that n is a composite
4. If we have detected that n is a composite
5. output that n is a composite
6. Otherwise output that n is a prime

Python code (Version 1)

number $=$ int(raw_input("Enter a positive integer: "))
factor $=2$
isPrime $=$ True
while(factor <= number -1):
if(number \% factor $==0$):
isPrime $=$ False
factor $=$ factor +1
if(isPrime):
print number, "is prime"
else:
print number, "is composite"

