More on Sequence Types

O

X in s, X not in s: Membership operations
s + 1, s*n, n*s: Concatenate operations.

s[i], s[i:j], sli:j:k]: Operations for accessing parts
of strings and lists.

“1"*2 in “hello"[:3]

“1"*2 in “hello"[2:]

["How", "are”, "you"][1][:1]

(range(1, 5, 3)*2)[2:3]

(range(1, 5, 3)*2)[2:3]*5

range(10) in range(20)

range(10) in [range(10), range(10)]
range(20)[3:12:2]

"w" in "Towa" and (51=4*3-7 or "k" not in "Hawk")
"easy" in ("yes we ease"*2)

Operator precedence including these new operators
O
f(...) Function call
s[...] Indexing into a sequence
** Exponentiation
-E Change sign
* /%, // Multiplication, division
+, - Addition, subtraction
<, <=, >, >=, 1=, == Comparisons
in, not in Membership
not E Logical negation
and Logical conjunction
or Logical disjunction

len(s): returns the length of sequence s

min(s), max(s): return the smallest (largest)
element in s.

sum(s): returns the sum of the elements in s.
all(s): returns True if all elements in s are True;
False otherwise.

any(s): returns True if any element in s is True;
False otherwise.

The min and max functions

O

* min(s) (max(s)) is the smallest (largest) element in s

o If s is a list of numbers (integers, longs, and floats) these
functions return the smallest (largest) number

o If sis a list of strings, these functions return the
lexicographically smallest (largest) string

o If s is a string, these functions return the lexicographically
smallest (largest) character in the string

o If sis a list that contains a mixture of numeric and non-
numeric objects, then the result is not specified by the
language and you should not rely on such a result.

max("hyperbole", "hyena", "hypotenuse")

Strings are ordered in lexicographic or “telephone
book” order.

min("charming!")
There is a standard encoding of characters used by
computers called the American Standard Code for
Information Interchange (ASCII). Characters are
ordered according to this encoding.

s.index(e) returns the index of the first occurrence of e in s
s.count(e) returns the number of occurrences of ein s

»L=[13,6]*4

>»> L

[1,3,6,1,3,6,1,3,6,1,3,6]

>>> L.index(3)

1

>»> L.count(3)

4

>>> L.index(0)

Traceback (most recent call last):
File "<string>", line 1, in <fragment>

ValueError: O is not in list

>>> L.count(0)

0)

» Notice the new syntax. This reflects the fact that
index and count are methods and not functions.

» There are some fundamental differences behind the
scenes between methods and functions.

» The differences you should focus on for now are:

A method call (e.g., L.index(3)) is always applied on to an
object (L, in this example).

The syntax of a method call is
object.methodName(argument list)

The method has access to the object it is being applied on to
and the arguments it is being sent .

Sorting is a fundamental algorithmic problem in
computer science.

The sorting problem asks that we rearrange elements
in a list so that they are in ascending or descending
order.

There are many known algorithms for sorting:
insertion sort, selection sort, bubble sort, quick sort,
merge sort, heap sort, shell sort, radix sort, etc.

Using the operations and functions we have just
learned about, let us implement selection sort.

