
M A R C H 7 T H

More on Sequence Types

Operations that work on strings and lists

1. x in s, x not in s: Membership operations

2. s + t, s*n, n*s: Concatenate operations.

3. s[i], s[i:j], s[i:j:k]: Operations for accessing parts
of strings and lists.

Examples: evaluate these expressions

1. “l”*2 in “hello”[:3]
2. “l”*2 in “hello”[2:]
3. [“How”, “are”, “you”][1][:1]
4. (range(1, 5, 3)*2)[2:3]
5. (range(1, 5, 3)*2)[2:3]*5
6. range(10) in range(20)
7. range(10) in [range(10), range(10)]
8. range(20)[3:12:2]
9. "w" in "Iowa" and (5!=4*3-7 or "k" not in "Hawk")
10. "easy" in ("yes we ease"*2)

Operator precedence including these new operators

Operator Meaning

f(…) Function call

s[…] Indexing into a sequence

** Exponentiation

-E Change sign

*, /, %, // Multiplication, division

+, - Addition, subtraction

<, <=, >, >=, !=, == Comparisons

in, not in Membership

not E Logical negation

and Logical conjunction

or Logical disjunction

Built-in Functions on lists and strings

1. len(s): returns the length of sequence s

2. min(s), max(s): return the smallest (largest)

element in s.

3. sum(s): returns the sum of the elements in s.

4. all(s): returns True if all elements in s are True;

False otherwise.

5. any(s): returns True if any element in s is True;

False otherwise.

The min and max functions

 min(s) (max(s)) is the smallest (largest) element in s
 If s is a list of numbers (integers, longs, and floats) these

functions return the smallest (largest) number

 If s is a list of strings, these functions return the
lexicographically smallest (largest) string

 If s is a string, these functions return the lexicographically
smallest (largest) character in the string

 If s is a list that contains a mixture of numeric and non-
numeric objects, then the result is not specified by the
language and you should not rely on such a result.

Examples

 max("hyperbole", "hyena", "hypotenuse")

Strings are ordered in lexicographic or “telephone
book” order.

 min(“charming!")

There is a standard encoding of characters used by
computers called the American Standard Code for
Information Interchange (ASCII). Characters are
ordered according to this encoding.

The “search”methods

 s.index(e) returns the index of the first occurrence of e in s
 s.count(e) returns the number of occurrences of e in s

>>> L = [1, 3, 6] * 4
>>> L
[1, 3, 6, 1, 3, 6, 1, 3, 6, 1, 3, 6]
>>> L.index(3)
1
>>> L.count(3)
4
>>> L.index(0)
Traceback (most recent call last):
 File "<string>", line 1, in <fragment>
ValueError: 0 is not in list
>>> L.count(0)
0

Methods versus Functions

 Notice the new syntax. This reflects the fact that
index and count are methods and not functions.

 There are some fundamental differences behind the
scenes between methods and functions.

 The differences you should focus on for now are:
 A method call (e.g., L.index(3)) is always applied on to an

object (L, in this example).

 The syntax of a method call is

object.methodName(argument list)
 The method has access to the object it is being applied on to

and the arguments it is being sent .

Problem: Selection Sort

 Sorting is a fundamental algorithmic problem in
computer science.

 The sorting problem asks that we rearrange elements
in a list so that they are in ascending or descending
order.

 There are many known algorithms for sorting:
insertion sort, selection sort, bubble sort, quick sort,
merge sort, heap sort, shell sort, radix sort, etc.

 Using the operations and functions we have just
learned about, let us implement selection sort.

