
F E B 2 7 T H , 2 0 1 2

Sequence Types

What we have not learned so far…

 How to store, organize, and access large amounts of
data?

 Examples:

 Read a sequence of million numbers and output these
in sorted order.

 Read a text, correct all spelling errors in the text, and
output the corrected text.

 Programming languages typically provide tools and
techniques to store and organize data. In Python we
can use sequence types to do this.

Strings and Lists are examples of Sequence Types

 A string is a sequence of characters enclosed in quotes.
 Examples: “hello”, “8.397”, “7”, ‘34’
 (The quotes can be single or double quotes)

 A list is a sequence of objects enclosed in square brackets.
 Examples: [0, 1, 2, 3], [“Alice”, “Bob”, “Catherine”],
 [“hello”, 4.567, -22, 87L, ‘bye’]
 (Objects of different types can be part of the same list)

 Lists are more “general” than strings; strings can be viewed as

special instances of lists.

Two simple operations on lists

 The in operator is used as x in L, where x is an
object and L is a list. This expression evaluates to
True if x is an element in L; evaluates to False
otherwise.

 Examples: 67 in [34, 12, 45] evaluates to False
 “hi” in [] evaluates to False, etc.

 Python has a built-in function len(L) that returns the

length, i.e., the number of elements, in list L.

 Examples: len([]) is 0, len([34, 12, 45]) is 3, etc.

Both of these work on strings as well

Examples:

“hi” in “history” evaluates to True

“ei” in “piece” evaluates to False

“ace” in “Wallace” evaluates to True

Examples:

len(“history”) returns 7

len(“”) returns 0

len(“piece”) returns 5

Generating lists

 Python has a built-in function called range that allows us to generate lists
using arithmetic progressions.

 It can have one, two, or three arguments, all of which must be integers.

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
 >>> range(1, 11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)
[0, 5, 10, 15, 20, 25]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(0, -10, -1)
[0, -1, -2, -3, -4, -5, -6, -7, -8, -9]
>>> range(0)
[]
>>> range(1, 0)
 []

The range function is useful in for-loops

 for i in range(1, 10, 2):

 print i*i

 Repeats the execution of the body of the for-loop for
each value of i = 1, 3, 5, 7, and 9.

 Equivalent to
 i = 1

 while i < 10:

 print i*i

 i = i + 2

 But more convenient for simple loops because no need to
initialize before loop and no need to update within loop.

More examples of for-loops

L = ["hello", "hi", "bye"]

for e in L:

 print e + e

s = "What is this sentence?"

for ch in s:

 print ch

Generating Lists: Initialization

 Here is another useful way of generating lists ,
particularly for initializing them, i.e., assign them
“initial” values at the start of a program.

Example:

 n = 25

 L = [8]*n

This assigns to L a list of length 25 consisting of the
integer 8.

Accessing lists and strings

“hi” 10 “bye” 100 -20 123 176 3.45 1 “it”

L = [“hi”, 10, “bye”, 100, -20, 123, 176, 3.45, 1, “it”]

0 1 2 3 4 5 6 7 8 9

• One of the most useful features of sequence types is that elements in a
sequence can be accessed efficiently and conveniently using their position
in the sequence.

• Example:

 L[0] is “hi”, L[1] is 10, L[2] is “bye”, …, L[9] is “it”

Example

 This program walks through the list, printing each
element.

 The program uses the positions of the elements to
index into the list.

L = ["hi", 109, "go", 111, 1.16, [122,30], "hello"]
i = 0
while i < len(L):
 print L[i]
 i = i + 1

Accessing slices of lists and strings

“hi” 10 “bye” 100 -20 123 176 3.45 1 “it”

L = [“hi”, 10, “bye”, 100, -20, 123, 176, 3.45, 1, “it”]

0 1 2 3 4 5 6 7 8 9

• L[2:5] is [“bye”, 100, -20]
• L[:2] is [“hi”, 10]
• L[4:4] is []
• L[4] = -20
• L[:len(L):2] = [“hi”, “bye”, -20, 176, 1]
• L[2:5][1] = 100
• L[1:5][:2] = [10, “bye”]

Problem

 Write a program that rolls two n-sided dice a million
times and records the number of times 2, 3, …, 2n
show up as the sum of the two dice rolls.

