Sequence Types
O

» How to store, organize, and access large amounts of
data?

» Examples:

Read a sequence of million numbers and output these
in sorted order.

Read a text, correct all spelling errors in the text, and
output the corrected text.
» Programming languages typically provide tools and
techniques to store and organize data. In Python we
can use sequence types to do this.

A string is a sequence of characters enclosed in quotes.
Examples: "hello”, "8.397", 7", '34
(The quotes can be single or double quotes)

A [list is a sequence of objects enclosed in square brackets.
Examples: [0, 1, 2, 3], ["Alice”, "Bob”, "Catherine"],
[“hello”, 4567, -22, 87L, 'bye’]

(Objects of different types can be part of the same list)

Lists are more “general” than strings; strings can be viewed as
special instances of lists.

The in operator is used as x in L, where x is an
object and L is a list. This expression evaluates to
True if x is an element in L; evaluates to False
otherwise.

Examples: 67 in [34, 12, 45] evaluates to False
“hi” in [] evaluates to False, etc.

Python has a built-in function len(L) that returns the
length, i.e., the number of elements, in list L.

Examples: len([]) is O, len([34, 12, 45]) is 3, etc.

Examples:

"hi" in “history" evaluates to True
“ei" in "piece"” evaluates to False
“ace"” in "Wallace" evaluates to True

Examples:

en(“history") returns 7
en(™"
en("piece") returns 5

) returns O

Python has a built-in function called range that allows us to generate lists
using arithmetic progressions.

It can have one, two, or three arguments, all of which must be integers.

>>> range(10)
[0,1,2,3,4,5,6,7,8,9]
>>> range(1, 11)
[1,2,3,4,5,6,7,8,9,10]
>>> range(0, 30, 5)

[0, b, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3,6, 9]

>>> range(0, -10, -1)
[0,-1,-2,-3,-4,-5,-6,-7,-8,-9]
>>> range(0)

[]

>>> range(1, 0)

[]

The range function is useful in for-loops

O

» Repeats the execution of the body of the for-loop for
each valueofi=1, 3,5, 7, and 9.

» Equivalent to

» But more convenient for simple loops because no need to
initialize before loop and no need to update within loop.

More examples of for-loops

O

Here is another useful way of generating lists,
particularly for initializing them, i.e., assign them
“Initial” values at the start of a program.

Example:
n =25
L=[8]*n

This assigns to L a list of length 25 consisting of the
integer 8.

Accessing lists and strings

O

L = ["hi", 10, "bye", 100, -20, 123, 176, 3.45, 1, "it"]

"hi” |10 _|'bye” |100 |-20 123 [176 [3.45 |1 __|'it"
(A R A R SR A

0 1 2 3 4 5) 6 7 8 9

* One of the most useful features of sequence types is that elements in a
sequence can be accessed efficiently and conveniently using their position
in the sequence.

« Example:

L[o]is “hi”, L[1]is 10, L[2]is “bye”, ..., L[9]is “it”

Example

O

» This program walks through the list, printing each
element.

» The program uses the positions of the elements to
index into the list.

Accessing slices of lists and strings

O

L = ["hi", 10, "bye", 100, -20, 123, 176, 3.45, 1, "it"]

Chit 10 ["bye” [100 |20 [123 [176 [3.45 [1 __["it" _
(A R A R SR A

0 1 2 3 4 5) 6 7 8 9

«L[2:5] is ["bye", 100, -20]

« L[:2]is ["hi", 10]

«L[4:4]is []

- L[4]=-20

* L[:len(L):2] = [*hi", "bye”, -20, 176, 1]
 L[2:5][1] = 100

« L[1:5][:2] = [10, "bye"]

Write a program that rolls two n-sided dice a million
times and records the number of times 2, 3, ..., 2n
show up as the sum of the two dice rolls.

