More about functions

O




Definition:
def manyRandomWalks(n, numRepititions):

return float(sum)/100

The first line of the function definition is called the function
header. The rest of the function is called the function body.

The names n and numRepititions in the function header are
called parameters of the function.

Call to this function:

print manyRandomWalks(m, 100)
The expressions m and 100 are called function arguments.



Arguments in a function call could be complicated
expressions that will be evaluated to a value first
before being sent in to the function.

Example: manyRandomWalks(80/x, y + 1)

In fact, arguments could be expressions involving
calls to other functions.

Example: manyRandomWalks(int(math.sqrt(x)),y + 1)



One way in which Python matches arguments to parameters is by
reading them left to right and matching 15t argument to 15t parameter,
ond areument to 27 parameter, etc.

This is called the positional style of parameter passing.

So
manyRandomWalks(10, 100)

and
manyRandomWalks(100, 10)

will return very different values.

In this way of parameter passing the number of arguments and the
number of parameters also have to exactly match.



You can avoid matching by position by using
keyword arguments in the function call.

Example: manyRandomWalks(numRepititions = 200, n = 20)

Here numRepititions and n are function
parameters.

Since the actual parameters are explicitly being
provided values in the function call, the matching
of arguments to parameters is no longer positional.

The above function call is identical to the call
manyRandomWalks(n = 20, numRepititions = 200)



» There is a way to define default values of parameters.
» Example: def manyRandomWalks(n, numRepititions = 100)

» This function can now be called with one or two
arguments and in different styles.

» Examples: Try these out

manyRandomWalks(10)
(The default value of 100 us used for numRepititions; 10 is used for n)

manyRandomWalks(40, 150)
(40 is used for n, 150 for numRepititions)



def test(x = 3,y = 100, z = 200):
return X -y + z

Examples of function calls:
test(10) (10 is used for x; default values 100 for y and 200 for

z)

test(10, 20) (10 is used for x, 20 for y; default value 200 for z)
test(z = 35) (default values 3 for x, 100 for y; 35 for z)
test(10, z = 35) (10 for x, default value 100 fory, 35 for z)

test(z = 50, 10, 12) (Error: positional arguments come first,
then keyword arguments)



Functions don’t have to explicitly return values. For
example:

def printGreeting(name):
print "Hello”, name, "how are you?"
How would you call such a function?
Example:
printGreeting("Michelle")
What would happen if you executed?
x = printGreeting(“"Michelle")



