
F E B 1 S T , 2 0 1 2

One More Version of the
Primality Testing Program

Is using break bad programming?

�  Some programming “purists” think that the use of the
break statement is bad programming practice.

�  Comment from on online discussion on programming:

�  I don’t think using the break statement is bad

programming practice, but yes it needs to be used with
caution.

Generally, breaking out of loops is considered bad form because it
tends to obfuscate your code. It's harder to follow the "flow" of a
program with continue/break thrown in everywhere. It's especially
worse if you use it in nested loops, etc.

An alternative to using break

�  We want to stay in the loop while

 n <= factorUpperBound

(there are more factors to consider)

 and

 isPrime == True

(we have not yet found a factor)

�  We can express this using the boolean operator and

in Python.

Primality testing: Version 3

Programmer: Sriram Pemmaraju
Date: Jan 30th, 2012
This program reads a positive integer, greater than 1 and
determines whether this integer is a prime or not.
Version 3

import math

n = int(raw_input("Please type a positive integer, greater than 1: "))

factor = 2 # initial value of possible factor
isPrime = True # variable to remember if n is a prime or not
factorUpperBound = math.sqrt(n) # the largest possible factor we need to test is sqrt(n)

loop to generate and test all possible factors
while (factor <= factorUpperBound) and (isPrime):
 # test if n is evenly divisible by factor
 if (n % factor == 0):
 isPrime = False

 factor = factor + 1

Output
if isPrime:
 print n, " is a prime."
else:
 print n, " is a composite."

Python boolean operators

�  and, or, and not are the three Python boolean
operators.

�  A and B is true only when both A and B are true.

A
 B
 A and B

True
 True
 True

True
 False
 False

False
 True
 False

False
 False
 False

Examples: play with these

�  (x <= 10) and (x > 4)

�  (x < 4) and (x > 10)

�  (x < 10) and True

�  (x >= 0) and False

The or operator

�  A or B is True when A is True or B is True or both.

�  In other words, A or B is False only when both A
and B are False.

A
 B
 A or B

True
 True
 True

True
 False
 True

False
 True
 True

False
 False
 False

Examples: play with these

�  (x <= 10) or (x > 4)

�  (x < 4) or (x > 10)

�  (x < 10) or True

�  (x >= 0) or False

The not operator

�  This is a unary operator, i.e., it operates on only one
operand.

�  Examples:
¡  not (x < 10)

¡  not (x == 10)

¡  not (x>=-10)

A
 not A

True
 False

False
 True

The importance of primality testing

�  From time to time you may hear in the news about
the new largest prime

�  Large primes are the basis of modern day
cryptography.

�  Cryptography is the mathematical and
computational study of how to encode a message so
that only the intended receiver can understand the
message.

�  Without cryptography online business (think
Amazon, eBay, etc.) would not be possible.

Final remarks on primality testing

�  In the worst case, the while-loop in the programs
makes √n iterations.

�  For an input with, say 100 digits, what might the
running time be?

�  n = 10100 . Therefore √n = 1050 . Even if each
iteration of the while-loop took a nanosecond (10-9
seconds), the program would take 3.17 x 1033 years!

Timing Python programs

�  The time module contains functions that allow us to
determine (within the program), how much time
different blocks of code take.

�  Try this out to determine how much difference (if any)
our improvement to the primality testing program
makes.

import time

…

start = time.time()

…

#code you want timed

…

end = time.time()

elapsedTime = end - start

So how are numbers with 300 digits tested?

�  Based on facts in number theory (an area of
mathematics), several fast primality-testing
algorithms have been developed.

�  Examples:
Miller-Rabin test:
This is a randomized algorithm – a step in the algorithm

performed by rolling dice.
The algorithm is not always correct! A composite number may be

classified a prime, with small and tune-able error probability.

