
22C:16 Homework 9
Due via ICON on Friday, May 4th, 4:59 pm

What to submit: Your submission for this homework will consist of 5 files: (i) sumDigits.py
for Problem 1, (ii) recursiveReverse.py for Problem 2, (iii) line.py for Problem 4, (iv)
fraction.py for Problem 5, and (v) homework9.pdf for Problem 3. Each of these Python files
should start also with your name, section number and student ID appearing at the top of the
file as Python comments. Also make sure that your Python code is appropriately commented.
Similarly, your pdf file should also start with your name, section number, and student ID apearing
at the top of the file. You will get no credit for this homework if your files are named differently,
have a different format, or if your files are missing your information.

1. Write a function called sumDigits that takes as a parameter a non-negative integer n and
returns the sum of the digits of n. For example, if n were 8971, then the function would
return 25 (which is 8 + 9 + 7 + 1). The function should be recursive and should not
contain any loops.

A simple way to solve this problem recursively is to pull out the right most digit (i.e., the
one in the one’s place), find the sum of the digits in the rest of the number, and then add
the digit that was pulled out to the sum.

Make sure that your solution is well-commented, with the base case(s) and recursive case(s)
clearly identified. Submit your solution in a file called sumDigits.py.

2. Write a function called recursiveReverse that takes a list L as a parameter and returns
the reversed version of L. The function should contain no loops and should do what it is
supposed to do by using recursion. The algorithm you should use in this solution is simple:
pull out the first element of L (i.e., L[0]), reverse the rest of the list, and stick the pulled
out element at the back of the reversed sub-list.

Make sure that your solution is well-commented, with the base case(s) and recursive case(s)
clearly identified. Submit your solution in a file called recursiveReverse.py.

3. This problem asks you to compare the running times of selection sort and merge sort. Use
the Python code posted one the course website for both of these algorithms.

To perform this experiment, let us start with a positive integer n that will be the size of
the list you want sorted. Randomly generate m lists, each of size n, and sort each of these
lists first using selection sort and then using merge sort. Compute the average running
time of selection sort, with the average taken over m runs. Similarly, compute the average
running time of merge sort. My suggestion is to use m = 20; but depending on how slow
your selection sort function is running, you may have to reduce this down to m = 10. For
n, my suggestion is to use values 50,000 to 140,000 in increments of 10,000.

An easy way to generate random (unsorted) sequences of numbers is to use the shuffle
function from the random module.

After you have finished your experiment, make two plots, one showing the running time
of selection sort and the other showing the running time of merge sort. Write a paragraph
discussing your results. Make sure your write-up address the following issues: (i) which of
the algorithms is faster and how do the relative times change with increasing n, and (ii) do
the plots of the running times you see in your experiments correspond to what you have
learned about the running times of these algorithms in class.

4. Add a method to the line class called intersect. This method would be called as
L1.intersect(L2), where L1 and L2 are instances of the line class. If L1 and L2 do

1



intersect, then this method should return an instance of the point class representing the
point of intersection of the two lines. If L1 and L2 do not intersection, then this method
should return None.

The problem of finding the intersection of two line segments is a basic operation that
graphics programs need to perform extremely fast and accurately. On the course page I
have posted a link to a solution on the web that is elegant and fast. You should consider
using this, though you should also feel free to come up with your own solutions to the
problem.

You should save the updated line class in a file called line.py and submit this as your
solution.

5. Implement a class called fraction that we can use to represent fractions such as 2/3,
-11/98, 73/17, etc. For example, I would like create an instance x of the fraction class
as follows:

x = fraction(10, 21)

This would create an instance x of the fraction class representing the fraction 10/21. I
would like you to implement the following methods for the fraction class:

(a) The add method that could be called as:
x.add(y)

Here x and y are instances of the fraction class and after the call to add the fraction
x takes on the value of x + y.

(b) The subtract method that could be called as:
x.subtract(y)

and it would behave similarly to the add method.

(c) The multiply method that could be called as:
x.multiply(y)

and it would behave similarly to the add method.

(d) The divide method that could be called as:
x.divide(y)

and it would behave similarly to the add method.

(e) The numerator method that returns the numerator of the fraction instance.

(f) The denominator method that returns the denominator of the fraction instance.

I want you to take care to ensure that fractions are maintained in their reduced form (e.g.,
1/2 rather than 50/100) by the fraction class. For example, even if the fraction instance
y is constructed as follows:

y = fraction(50, 100)

internally y should be represented as 1/2. Similarly, after each arithmetic operation, you
should ensure that the instance that was operated upon is still in its reduced form.

One way to ensure that fraction instances remain in their reduced form is to compute
the greatest common divisor (gcd) of the numerator and the denominator and to divide
both the numerator and the denominator by this gcd. For this purpose, I want you to
implement a function called gcd that takes two non-negative integers and returns their
greatest common divisor. You will recall that we have studied Euclid’s algorithm for
computing the gcd of two numbers and this is the algorithm you should implement for the
gcd function.

Suggestion: Each instance of the fraction class should have two integer attributes to
keep track of the numerator and denominator of the fraction.

2



You will have to submit the fraction class, consisting of the constructor, methods for the
four arithmetic operations mentioned above, the numerator and denominator methods,
and the gcd function. The class should be saved in a file called fraction.py.

3


