22C:16 Homework 8
Due via ICON on Wednesday, April 25th, 4:59 pm

What to submit: Your submission for this homework will consist of 4 files: (i) degreeDistribution.py
for Problem 1, (ii) printTriangles.py for Problem 2, (iii) playGameBetter.py for Problem 3,

and (iv) playGameFaster.py for Problem 4. Each of these Python files should start also with

your name, section number and student ID appearing at the top of the file as Python comments.

Also make sure that your Python code is appropriately commented. You will get no credit for

this homework if your files are named differently, have a different format, or if your files are
missing your information.

All four problems pertain to the program playGame3.py discussed in class.

1. Consider the program playGame3.py in which we built a “word network” in order to have
our program play the word ladder game. Let us define the degree of a 5-letter word as
the number of neighbors it has in the word network. Write a program that computes
and outputs the degree distribution of the word network. More specifically, your program
should output the number of words with degree 0, the number of words with degree 1,
the number of words with degree 2, etc. If D is the largest degree of a word in the word
network, then your program should output D + 1 lines with Line 1 showing the number of
words with degree 0, Line 2 showing the number of words with degree 1, and so on.

You are required to compute the degree distribution using a dictionary. The keys in this
dictionary will be integers in the range 0 through D and eventually the value associated
with a key d will be the number of words with degree d. You should start with the program
playGame3.py and modify it in order to obtain the solution to the current problem. You
should delete from playGame3.py any code that is not relevant to the current problem.
Your program will be evaluated not just on the basis of correctness, but also with regards
to whether you defined appropriate functions or not.

Save your program as degreeDistribution.py and submit it as part of your solution to
the homework.

2. Again consider the “word network” that was built in playGame3.py. A triangle is three
5-letter words u, v, and w such that u and v are neighbors, v and w are neighbors, and
u and w are neighbors. Write a program that outputs all word triangles to a file called
triangle.txt. Each word triangle should appear in a separate line with one or more blanks
separating consecutive words. A word triangle should appear only once in triangle.txt.
For example, be careful to ensure that a word triangle with words u, v, and w does not
appear once as u v w and another time as v u w.

If you try generate all possible triples u, v, and w and then determine if pairs of words
in this triple are neighbors, you would be doing too much work. To make your program
efficient, you should start with a word « and then ask about which pairs of neighbors of u
are also neighbors.

You should start with the program playGame3.py and modify it in order to obtain the
solution to the current problem. You should delete from playGame3.py any code that
is not relevant to the current problem. Save your program as printTriangles.py and
submit it as part of your solution to the homework.

3. The program playGame3.py does not attempt to produce a shortest valid chain of words
from the given source word to the given target word. One way to produce a shortest chain
is to find the “oldest” word in the reached set and process it before any of the others.
By “oldest” word I mean the word that entered the reached set earliest, among those



that are currently in the reached set. (It may not be clear to you that this algorithm
does indeed produce shortest word chains and if you wish, you should convince yourself
of this by executing this algorithm by hand on small networks.) Note that in the current
implementation of playGame3.py we pick an arbitrary word from the reached set and
therefore the current implementation is not guaranteed to produce a shortest word chain.
Your task for this problem is to modify playGame3.py to make the above described change
to the algorithm so that shortest word chains are produced.

We used a dictionary to implement the reached set in playGame3.py. A dictionary is not
particularly set up to be able to tell us who the oldest element in it is. So you will have
to think a little bit to figure out whether you should still use a dictionary for the reached
set, albeit modified in some manner to allow you to find the oldest word in it. Alternately,
you could use a list implementation of reached rather than a dictionary implementation.
I leave this decision to you.

Save your program as playGameBetter.py and submit as part of your solution to the
homework.

. On my machine the part of playGame3.py that reads words from words.dat and builds the
word network as a dictionary takes about half a minute. This is because words.dat con-
tains 5,757 words and playGame3.py evaluates all pairs of words and there are 16,568,646
pairs (i.e., more than 16.5 million pairs).

This problem asks you to to employ a more sophisticated algorithm to significantly speedup
playGame3.py. The main idea of the algorithm is simple: two words are neighbors if (i)
they have the same first letter, but they differ in exactly one letter in the remaining 4
letters or (ii) they have different first letters but are identical in the remaining 4 letters.
The word pair (cares, cakes) is of type (i) and the word pair (bakes, cakes) is of type
(ii).

To find word pairs of type (i), you should read the words into a 2-dimensional data struc-
ture, let us call this wordMatrix. This is a list of length 26, whose first element is the list
of all words that start with the letter “a”, whose second element is the list of all words
that start with the letter “b” and so on. To find word pairs of type (i), we simply have
to consider all pairs of words that start with the same letter and this is easy to do since
these are all sitting together in one list in wordMatrix. Since there are far fewer pairs of
words that start with the same letter, this will allow us to consider far fewer pairs than
16.5 million.

To find word pairs of type (ii), you should read the words into a 2-dimensional data
structure, let us call this suffixes. This is a list of length 5,757 in which each element is
a length-2 list. Each word w in words.dat should appear in suffixes as a list [w[1:],
w[0]]. Thus the word house will appear as ["ouse", "h"]. Once the structure suffixes
is built it can be sorted and at this point all words that are identical in their last 4 letter
will appear bunched together in suffixes. Then to find word pairs of type (ii) you only
have to compare an element in suffixes with other “nearby” elements. This will allow
your program to consider far fewer pairs than the 16.5 million pairs considered in the
original program.

Implement this idea to build the dictionary D much more efficiently than in playGame3.py.
Save your program as playGameFaster.py and submit as part of your solution.




