
22C:16 Homework 4
Due via ICON on Thursday, March 1st, 4:59 pm

What to submit: Your submission for this homework will consist of four files. One of these
will be a pdf file called homework4.pdf. This will contain the answers to Problems 3 and 5.
This pdf file should start with your name, section number and student ID. The remaining files
should be called fastTwoDRandomWalk1.py (solution to Problem 1), manyFastRandomWalks.py
(solution to Problem 2), and fastTwoDRandomWalk2.py (solution to Problem 4). Each of these
Python files should start also with your name, section number and student ID appearing at the
top of the file as Python comments. Also make sure that your Python code is appropriately
commented. You will get no credit for this homework if your files are named differently, have a
different format (e.g., docx), or if your files are missing your information.

1. Take a look at Problem 3 on Homework 5 in my spring 2011 offering of this course. This is
the problem in which students are asked to write a function called twoDRandomWalk. The
solution to this problem is also available on my 22C:16, Spring 2011 course website.

For the current problem, define a function called fastTwoDRandomWalk1 that is a “faster”
version of the 2-dimensional random walk being simulated by twoDRandomWalk. In partic-
ular, fastTwoDRandomWalk1 takes an additional parameter called jump and at every step
of the random walk, the “robot” moves a distance that is at most jump in any one of the 4
directions. For example, if jump is 2, then the “robot” could, in one step, move a distance
of 1 or 2 in any one of the 4 directions. Note that whether the “robot” moves one or two
steps is also to be determined randomly. More generally, in order to figure out where the
“robot” should go next, your function should first pick a direction at random and then pick
at random an integer distance between 1 and jump (inclusive of 1 and jump). The “robot”
should then move the chosen distance in the chosen direction. The function should have
the following header:

def fastTwoDRandomWalk1(n = 100, printOn = False, jump = 1)

The first two parameters have exactly the same meaning as they did in Problem 3, Home-
work 5, Spring 2011. Note that since jump can be larger than 1, your “robot” might end
up moving outside the “barrier” in a certain step of the random walk. The random walk
ends when this happens.

Save your function in a file called fastTwoDRandomWalk1.py for submission.

2. Now define a function called manyFastRandomWalks with the following header:
def manyFastRandomWalks(n = 100, jump = 1, numRepititions = 1000)

This function simulates as many “fast” random walks as specified by numRepititions and
returns the average length of the random walk, where the average is taken over the all of
the simulations. Note that the function also takes n and jump as arguments and simulates
random walks with these parameters.

Save this function in a file called manyFastRandomWalks.py.

3. Use the function manyFastRandomWalks defined above to find out the average length of
a random walk (averaged over 1000 simulations) for (i) n = 100, jump = 2, (ii) n =
200, jump = 5, and (iii) n = 500, jump = 10.

4. Now let us modify our notion of when a random walk ends. We say that a random walk
ends when it reaches the barrier in the positive quadrant (i.e., quadrant I). More precisely,
the random walk ends as soon as it reaches a point (x, y) with x ≥ n and 0 ≤ y ≤ n or
y ≥ n and 0 ≤ x ≤ n.
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There is one situation that might arise in this random walk that is worth clarifying. Suppose
the “robot” is at a location (x, y) and then in one step moves outside the barrier in quadrant
II, III, or IV. For example, consider the situation where n = 100 and (x, y) = (−99, 90)
and the next step requires the “robot” to move a distance of 3 units further to the left.
In this case, if we do move the “robot” will it end up going beyond the barrier. But note
that the random walk should not be terminated at this point. The easiest way to deal
with such a situation is to not move the “robot” in the current step and just leave it at
(x, y) = (−99, 90).

Define a new function called fastTwoDRandomWalk2.py. This function does the same thing
as fastTwoDRandomWalk1, except that it uses the new definition of when a random walk
terminates. Save this function in a file called fastTwoDRandomWalk2.py.

5. Use the function manyFastRandomWalks defined above to find out the average length (aver-
aged over 1000 simulations) of the new type of random walk (defined in the above problem)
for (i) n = 100, jump = 2, (ii) n = 200, jump = 5, and (iii) n = 500, jump = 10.
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