22C:153 Homework 2

Solutions

(1) Consider 3 matrices A1, A2 and A3 of orders 10 x 100, 100 x 5 and 5 X 2 respectively.

Using the greedy approach, the matrices should be multiplied in the order of ((Alx A2)x A3)
which results in 10 * 100 % 5 + 10 % 5 * 2 = 5100 scalar multiplications.

The optimal solution is to multiply the matrices according to (A1l x (A2 * A3)) which results
in 100 % 5 % 2 4+ 10 % 100 * 2 = 3000 scalar mutliplications. So, the professor is wrong.

(2) Let W;; denote the minimum weight of the triangulation of the subpolygon with vertices from
¢ through j in considered in counter clockwise direction and d;; denote the length of the line
segment from between ¢ and j.

We have to compute W1,. The value of W;; is given by the following formula:

W — 0 ifj—4<3
v Min;<k<jWik + Wij + dix, + di; otherwise

(3-a) Let D((m+1) x (n+ 1)) be a 2-dimensional array, where m denotes the length of the string
X and n denotes the length of the string Y. Each element in D, d[i][j], 0 <i <m, 0<j < mn,
denotes the cost of converting a string X[1...i] to YTi...j].

The value of d[7][j] depends on the following cases:

[ j * cost(insert) ifi=0
i x cost(delete) ifj=0
d[i — 1][j — 1] + cost(copy) if X[i] =Y[j]
dij = < d[i — 1][j — 1] + cost(replace)
]

d[i — 1][j] + cost(delete)
d[i][j — 1] + cost(insert)

[
[
min < d[i — 2][j — 2] + cost(twiddle) if X[i] =Y[j—1] and X[i —1] =Y[j] otherwise
[
[

\

After d[m][n] is filled, its cost should be checked with cost of kill operation (which can be
performed only after the last column of a row is filled). The following code can be added
after the table is filled:

for(i < 1 to m) do
if (d[m][n] > d[i][n] + cost(kill))
d[m][n] = d[i]n] + cost(kill)
(3-b) The operations ”Copy”, "Replace”, ”Delete” and ”Insert” can be used to align both the
DNA sequences. The cost of each of the following operations will be 1, —1, —2 respectively

and instead of finding the minimum cost of converting one sequence to the other, we have to
find the maximum cost.



(4)

For each i = 1,2, ...,n, construct a W x W table T;. Here W is the sum of all the a}s. Each
entry 7;[p][g] is a boolean that indicates if there are disjoint subsets S, S of {a1,aq,...,a;}
such that sum of elements in S; is p and sum of elements in S is ¢q. The base case is the
table T in which an element T5[p][q] is 1 if either a; = p and ag = q or a; = g and ag = p.
T;[p][q] can be filled in O(1) time by noting that element a; may be in S, may be in Sy, or
may be in neither. This means that:

1 if T afpllgl =1

1 ifT;1[p—aillg) =1
TN = Y 1 5, pllg o =1

0 otherwise

Once the table T, is filled, the optimal ratio can be found by picking the minimum ratio p/q
such that T[p][g] = 1 and p > ¢. This can be done by simply scanning the table in O(W?)
time. Once this is done, the subsets S; and S2 can also be easily constructed by calling the
function constructSets(p, q,n), where p/q is the optimal ratio.

constructSets(p, g, 1)
(* Base case *)
if i=1)
if (a1 =p)
return ({p}, 0
if (a1 =9q)
return (0, {¢})
(* Recursive case *)
if (Ti-1[pllg] =1)
return constructSets(p,q,i—1)
if (Ti—i1[p —adlq] = 1)
(S1,852)  constructSets(p,q,i — 1)
return (S; U{a;}, S2)
if (Ti—1[pllg —ai] =1)
(S1,52) < constructSets(p,q,i — 1)
return (S1,S2 U{a;})

This recursive function takes O(n) time. It takes O(nW?) time to fill all the tables. So the
running time is O(nW?2). This is a psuedopolynomial.

Let G(V, E) be the given graph. Let d[v] represent the distance of vertex v from s. We will
construct a graph G'(V, E') in the following way:

Apply BF'S to the graph G using s as the starting point, to construct distances d[v] of all
vertices v. This takes O(V + E) time. Delete all edges u,v from G for which |d[u] —d[v]| # 1.
This takes O(F) time and hence total of O(V + E). After this is completed, the graph G’
contains only the edges which are on the shortest paths from s to .

The next step is to apply a modified DF'S algorithm to G'. Modify the DFS to run only
to find one path at a time. Once a path from s to ¢ is found or if a dead end has reached,



it starts again from s. Whenever an edge is visited, remove it from the graph G and store
it in a temporary graph. If this run of DF'S finds a successful path, this temporary graph
will be one of the shortest paths in the maximal set, else just delete the temporary graph.
Each iteration of DF'S takes time proportional to the number of edges that were deleted in
this run Since each edge is deleted once visited, each edge is visited only once and hence this
algorithm takes O(FE) time. Hence the total running time is O(V + E). This modification
gives the maximal set of shortest paths.

Construct the graph G’ as described in the hint given in the text book. Assume that each
edge in the graph is of unit capacity. Apply the maximum flow algorithm to the graph G'.
For each edge (z;,y;) selected in the maximum flow, pick the edge (7,7) in G. In this method,
only one incoming edge is chosen per vertex and only one outgoing edge is choosen. Since the
graph is acyclic, we obtain a path cover. After applying maximum flow algorithm to G’, the
edges choosen will be such that the they form paths of maximum lengths possible (leaving
out very few vertices not belonging to any path of length more than 1), we get minimum
path cover.

Consider a directed 4-cycle, 1 < 2 < 3 < 4 < 1. In this case all the edges will be chosen
after applying the above algorithm, thus producing a cycle instead of a path.

Increasing capacity of an edge by 1 effects the value of maximum flow only if the flow along
that edge is equal to the capacity of the edge (before increasing). In this case, the following
method updates the maximum flow:

1. Construct a residual graph of the given graph with respect to the original max flow. This
step takes O(V + E) time.

2. Find a path from s to ¢ in the residual graph (if there is one). This step takes O(V + E)
time.

3. Update the flow along this path, i.e, increase the flow on each edge of this path. This
increases the maximum flow value by 1. This step takes O(F) time.

This produces a maximum flow. The reason is, since the capacity is increased by only 1, the
maximum value will increase by atmost 1.

If we decrease the capacity of an edge along which the flow is less than its capacity (before
decreasing), the maximum flow value is not effected. Let f(u,v) denote the flow along the
edge (u,v) and let ¢(u,v) denote the capacity of the edge (u,v). Let (u,v) be the edge along
which the capacity is decreased. Assume that f(u,v) = c(u,v) (before decreasing c(u,v)). In
this case, the following method updates the value of the maximum flow:

1. Find a path from s to u in the graph (after the capacity has been decreased), with edges
containing only positive flows, and decrease the flow on each edge of this path by 1. Decrease
the flow on the edge (u,v) by 1. Find a path from v to ¢, with edges containing only positive
flows, and decrease the flow on each edge of this path by 1. Since f(u,v) > 0, an s — u path
and a v — ¢ exists. Decrease the maximum flow by 1. This step can be done in O(V + E).

2. Construct a residual graph of the original graph. This can be done in O(V + E) time.

3. Find a path from s to ¢ (if there is one) and increase the value of the flow on each edge
of this path by 1. Then increment the maximum flow by 1. Since, the maximum flow was



(8-d)

(9-b)

decreased only by 1, executing this step only once will be sufficinet as the maximum flow can
be increased by atmost 1.

Since, the maximum capacity of an edge is C, any mincut of the graph can have atmost C|E|
capacity.

Apply either DF'S or BF'S to the given graph, considering only those edges whose capacity
is atleast k. The paths we obtain by this method have capacity atleast k. This step takes
O(V + E) time.

The given algorithm functions just as the normal maximum flow algorithm. The reason is,
in this algorithm, at each step of the outer while loop, all the paths of capacity atleast k
are autmented and the outer loop runs till £ > 1. This means that all the paths of capacity
atleast 1 are selected, which is what happens in the origina maximum flow algorithm.

For the first time the algorithm enters the outer loop, maximum capacity of an edge in the
graph is C. We have,

2k = 2 x 2l18C] = 2llgCl+1 > 9lgC — (7,
Hence, the maximum capacity of a mincut in the first step is < 2k|E|. In the successive
steps, the maximum capacity of the remaining paths is less than & which means the maximum

capacity of an edge in the graph is also reduced by half. Hence, the maximum capacity of a
mincut is atmost 2k|E|.

Since, in the inner loop, the capacity of a path is atleast &k and the maximum capacity is
atmost 2k|E|, the inner while loop runs atmost O(|E|) times.

The outer most while loop runs atmost 1g C times. The inner while loop runs O|E| times and
each execution of the inner while loop takes O|E| time. Hence the algorithm takes O(lg CE?)
times.

ag = R® = 1. Hence the given statement is true for 0.

Assume that the statement is true for n — 1. To prove for n.

ap = Qp_9 —ap_1 = R"2 — Rn—1

— R"2(1- R)
= R"’Qag
— R"2R? = R™.

After the first augmentation (given in the problem), augment the following four paths in
order:

s—a—>b—c—d—t Send a flow of R along this path.

s > c—b—a—t Send a flow of R along this path.
s—a—>b—c—d—t Send aflow of 1 — R along this path.
s —=>d—c— b—t. Send a flow of 1 — R along this path.

After the above four augmentations, we get the desired residual capacities.



(9-c)

(10)

Consider the above sequence of four augmentation paths as a round. Repeat augmenting
the paths in this round. After n rounds i.e, after augmenting the four paths in the above
sequence for n times, the residual capacities on edges (c,d), (a,b), (b,c) are agy,, az,+1 and 1
respectively.

The value of flow at this point is:

2(a1 +a2+as+ ...+ a1 +ag,) +1
=2(R*+R*+ ...+ R 1+ R?") +1

— o RUZR") | 4

As n — oo the value of the flow is %+1=2+\/5

In a round, of the edges with original capacity M, edges s — a and d — t are used twice and
other edges are used only once. Let us consider the flow along the edge s — a. In the first
round, flows of R and 1 — R are sent through this edge. So, through all the rounds, the flow
along this edge is half the total flow which is:

1+ \/g = 3 (rounded off to the next higher integer).

There is a flow of 1 along this edge at the beginning. Hence, the augmentation along the
paths in a round can be continued infinitely many times without worrying about saturarting
the edges with original capacity of M.

The following algorithm finds the edge connectivity of a graph. Before using the algorithm
below, replace each edge (u,v) € E in the given graph with two directed edges (u,v) and

(v,u).
s=ueV
foreachv eV —u
t=w
maximum-flow(G,s,t)
return the minimum cut of all the above maximum flow function calls.

This algorithm finds the edge-connectivity for the following reason. Let C be a min-cut of
G and let ¢t be a vertex that is not in the same connected component as s in G — C. THen
when the above algorithm considers this (s,¢) pair, the max flow it finds will be |C|. It is
also immediate that if in some iteration the algorithm finds a max-flow with value less than
|C|, then there is a cut of size less than |C|, contradiction. Hence, the algorithm correctly
identifies |C| as the edge connectivity of G.



