22C:153 Homework 1

Solutions

(1) In solving this problem we make two assumptions:

(a) The prize is placed behind each curtain with equal probability.

(b) If the emcee has a choice of revealing one of two curtains, then he is equally likely to
choose either.

Let A denote the event that contestant chooses curtain 1, let B denote the event that emcee
reveals curtain 2, and let P; denote the event that prize is behind i’ curtain (for i = 1,2, 3).

Since P; and Pj are disjoint and since P, is impossible, we have

Pr[B] = Pr[BN Pi| + Pr[BnN P3] = Pr[Pi| *x Pr[B|P] + Pr[Ps] « Pr[B|Ps].
“iedrieing

Pr{p|B] = O]

*

jcol—
o] =

]

_1
L3
2

Pr{py|B] = ZBLE R

*1
_ —1 =

2

jcol—
winy

So, it is a good idea to switch the choice once the emcee reveals a curtain. This is true for
any initial choice of the contestant and any choice (if he has any) of the emcee.

(2) txPriX >t]=t+» Pr[X =i]=> txPr[X =1
i>t i>t
<) ix PriX =]
i>t
< Zz * Pr[X = 1]
i>0
< E[X].

(3) Let X;; be an indicator variable for the event that the pair (4, j) is an inversion. By definition,
if (4,7) is an inversion we have i < j and A[i] > A[j]. Given that A[i] = k, the probability
that A[j] < A[é] is (k —1)/(n — 1). Since A[i] = k with probability 1/n, the probability that
(,7) is an inversion is:

n

PriX;=1=1/n) (k—1)/(n—1) =1/2.

k=1

Let X denote the total number of inversions.

(5-¢)

n—1 n
X=> > Xy
i=1 j=i+1
E[X] denotes the expected number of inversions which is given as:

E[X] = 2 Z] (by linearity of expectation)
i=1 j=i+1
n-1 n_ 4
= i1 2
=30
Prioffset = 4] = 1, for all 1 < i < n. Each element of A[i] can be in any of the position

depending on the value of offset. So, with a probability of %, each element can wind up in
any position in B.

Now, using this algorithm, only the circular permutations of A will be obtained, which form
n of the n! permutations and others cannot be obtained from this. Hence it is not uniform.

1 if i*" smallest element is picked as a pivot
X; = .
0 otherwise
E[X;] = = as each element is equally likely to be picked as a pivot.
If the qth element is picked as a pivot, the running time of the algorithm is

Tn)=T(q—1)+T(n—q)+ O(n).
This can be rewritten as:

ZX —1)+T(n —q) +©(n)) from (5-a). Thus,

E[T(n (ZX (g—1)+T(n—)+®(n))>.
By linearity of expectation we have:
E[T(n (ﬁj T(qg—1) +T(n —)+@(n))]>.
Now note that E[X,(T(¢—1)+T(n—q)+0O(n))] = 1x L« E[T(¢—1)+T(n—q)+O(n)]+0 =

1/n(E[T(q — 1)] + E[T(n — q)] + 6(n)).

By expanding the equation in (5-c) and using the above equation we get:
E[T(n)] = % «[(T(0) +T(n—1)) + (T(1) + T(n - 2))+
-+ (T(n-2)+T1))+ (T'(n—-1)+T(0)) + B(n)]

n—1
=2 Z E[T(q)] + O(n).
q=0

n—1 n/2—1 n—1
(-d) Y klgk) < 3 klg(k)+ > klg(h)
k=1 k=1 k=n/2
n/2-1
< Z klg(n/2) + Z klgn
k=n/2
n/2—1

<(lgn—-1) Z k+l1lgn Z k

k=n/2

1
n’lgn — g” because Y7~} k = n(n — 1)/2 < n?/2 and similarly Z"/Q 'k <
1/2 % (n/2) = (n/2 — 1) < n?/8.

(5-e) Substituting ¢lgq in place of E[T(q)] int (5-c) we get:
n—1

E[T(n)] = 2 Z: qlgq+ O(n)

N | =

n—1

<Zxc) qlgq+cn for some ¢ >0
q=0

< Z2xcx(3n’lgn —zn?) +dn

<

cnlgn — Zn+cn

only if $n > 'n => ¢ > 4¢
So, if we choose ¢ such that ¢ > 4¢’ we have E[T'(n)] = ©(nlgn).

(6-a) The statement after the call for Quicksort’, does nothing but the second call for Quicksort
in the actual algorithm.

(6-b) When the input array is in the increasing order then the worst case happens.

(6-c) The change we should make in the code is to send the smaller of both the partitions to the
recursive call of Quicksort’. The modified algorithm is:
QUICKSORT'(A,p,r)
while p < r
g+ PARTITION(A,p,r)
if (r —q>q—p) then
QUICKSORT'(A,p,q — 1)
p—qg+1

else

QUICKSORT'(A,q +1,r)

r<gqg-—1
k—2 k-1 k—2
2 —71—1
222 (: ¢)
z:U:Hl(k—z+1) ~ (k—i+1)
k—2
< 2
=1
:O(n)
k+2 k+1 9
i=k+1j= z—|—1 k—l_l jnzylj_k+1
_’“fz*u—k—l)
k+2
<> 2
j=n

j — 1+ 1 is nothing but the size of the block from ¢ to j, inclusive. So, the third double
summation can be written as:
n—1 2
z Z < Z — % (Number of blocks of size s)
—i+1)

i=1j= Ic
When ¢ = k and j = k, we have a block of size 1 and there is only one block of size 1.
When ¢ = k and j = k + 1 we have a block of size 2. When i = kK — 1 and j7 = k we have a
block of size 2. So, we have 2 blocks of size 2. Similarly, number of blocks of size s < s. This
is an equality if the size we are looking for is < k, otherwise it is an inequality. So,

n _
=ik (j—i+ 1 vy
= O(n).

Hence, the give equation is of order O(n).

In the case of graphs whose mincut is only one edge and the vertices are divided into two
groups of around n/2 vertices, (each group can be of the form K, /;), then the new algorithm
gives exponentially bad result.

Let the two groups be A and B. At any step, a good choice means both the vertices are
from A or from B. Let E; denote such an event ie., there is a good choice in the i** step.
Probability that we get a min-cut at the end of the algorithm is:

Pr|n?=2] = Pr[E;] * Pr[Es|E1] * Pr[Es|Es N Ey]...
=1

Let after ¢ steps the first group contains a vertices and the second group contains b vertices
and assume that a < b. At this step, the probability of making a good choice is:

PriB;| {2} Bj] = #5710 + 5 etlgio=)
< 25(b—1)/(4b(b ~ 1))

IA

1

2

So, when considered for n — 1 steps the probability of making a good choice is exponentially
small.

AP <id5=>p=5

We label each edge with both the end points. Each element in the adjacency matrix contains
the number of edges between the corresponding vertices in the graph and also the labels of the
edges. Whenever there is a contraction, all the edge labels of the 2nd vertex is copied into the
matrix element of the first vertex, other than those between the two vertices in consideration

and make the other vertex invalid in the adjacency matrix. This operation takes only O(n)
time.

To get back the edge from the contracted graph H, just see the label on the edge and it will
give the edge in the original graph.

