22C:153 Self-Evaluation Exam
Due: Thursday, 1/23

Notes:
(A) In the following, lgn = logy n, logn = log;y n, and Inn = log, n.

(B) In the following, any mention of page numbers, section numbers, and problem numbers refer
to your textbook, Introduction to Algorithms, Second Edition, by Cormen, Leiserson, Rivest,
and Stein.

(C) Write down exactly what you have been asked for. For example, if you are asked to answer
a question with a “yes” or a “no,” just one word will suffice. It is not necessary to explain
your answer.

Determine if the following equations are true or false. In Question 2, F}, stands for the nth Fibonacci
number.

(1) 1g(n!) = ©(nlogn).
(2) F,=0(1++5)"/2").
(3) 2'8™ = Q(n).

Solve the recurrence relations in the following three questions (4-6) and express the solution as
T(n) = ©(f(n)) for appropriate f(n). You need to write the final answer only.

(4) T(n)=T(n—-1)+1/n.

(5) T(n) =T(n—1) + logn.

(6) T(n) =7-T(n/2) +n2

(7) A function for selection called SELECT is described in Section 9.3. SELECT takes an array of

size n and an integer 7, 1 < ¢ < n, and returns the ith smallest element in the array in worst
case O(n) time. SELECT, as described in the textbook, returns the ith smallest element. For
this problem, assume that instead of returning the ith smallest element, SELECT returns the
index of the ith smallest element. Answer the following question based on this assumption.

On page 146, pseudocode for the function PARTITION is given. Into this function insert the
following two lines of code before Line 1:

indexr < SELECT(A,p,r, (r — p)/2);
SWAP(A,index,);

What is the worst case running time of QUICKSORT after this change?
Assume that (r — p)/2 in the above code equals |[(r — p)/2|. Also assume that the function
call SWAP(A, 1, j) exchanges the contents of slots 7 and j in array A.



Given a set of n numbers, we wish to find ¢ largest numbers in the set in sorted order using a
comparison based algorithm. In each of the following three questions (9-11), a method to do this
is described. Write down the worst case asymptotic running time (as a function of n and %) of the
best algorithm you know that implements the given method.

(8) Sort the numbers and list the i largest.
(9) Build a max-priority queue from the numbers and call EXTRACT-MAX 4 times.

(10) Use an algorithm to find the ith largest number, partition around this number, and sort the
1 largest numbers.

(11) This question relates to the activity selection problem in Section 16.1. It is shown in this
section that a simple greedy algorithm computes a maximum size set of mutually compatible
activities. However, there are other simple greedy algorithms that do not work. Here is an
example:

Order activities in nondecreasing order of duration and process them in this order.
At each step, pick the next activity, keep it, if it is compatible with activities
already selected; throw it away if it is not compatible with any activity that has
been already selected.

Show with an example that this algorithm does not work.

The following nine questions (12-20) pertain to graph algorithms.

(12) The incidence matriz of a directed graph G = (V, E) is a |V| x |E| matrix B = (b;;) such
that
—1 if edge j leaves vertex
bijj =< 1 if edge j enters vertex ¢
0  otherwise

Describe what the entries of the matrix product B - BT represent, where BT is the transpose
of B.



(13)

(14)

(15)

Consider the directed graph shown below.
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Run DFS (described on Page 541) on this graph and write down values of d[v] and f[v] for
all vertices v. Assume that in the for-loop in Line 1 of DFS vertices of G are processed in
lexicographic order of their labels. Also assume that in Line 4 of DFS-VISIT vertices adjacent
to each vertex u are processed in lexicographic order of their labels.

Identify tree edges, back edges, forward edges, and cross edges for the depth-first search in
the previous problem.

For this question consider the undirected version of the graph in Question 13. Draw a
breadth-first search tree for this graph for a search that starts at vertex 000. As in the case
of depth-first search, assume that whenever vertices are to be processed in some arbitrary
order by breadth-first search, they are processed in lexicographic order of their labels.



(16) Here is an edge-weighted graph. Show a minimum spanning tree in this graph.

(17)
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Answer “yes” or “no”. Does the following algorithm produce a minimum spanning tree of

the given graph?

MAYBE-MST-A(G, w)

T+ FE

O WN -

return T;

then T+ T —e

sort the edges into nonincreasing order of edge weights w

for each edge e, taken in nonincreasing order by edge weight
do if T — {e} is a connected graph

Here is a divide-and-conquer algorithm that supposedly computes a minimum spanning tree
of a given graph. Answer “yes” or “no”: does this algorithm correctly compute a minimum

spanning tree?

Given a graph G = (V, E) partition V into sets V; and Vo whose sizes differ by at
most 1. Let F; and E» be edges incident only on vertices in V; and Vs respectively.
Recursively solve the minimum spanning tree problem for the graphs G; = (4, E1)
and Gy = (V,, E»). Finally, select a minimum weight edge in F that crosses the cut
(V1, V) and use this edge to unite the spanning trees of G; and G into a spanning

tree for G.

Show shortest paths from vertex 1 to all other vertices in the edge-weighted graph given in

Problem 22.

Show a small example of an edge-weighted graph for which Dijkstra’s algorithm produces
incorrect answers, but the Bellman-Ford algorithm produces correct answers. Along with the
graph, show the source of the search as well.



