
1

Grouping Data for Communication

MPI provides methods for sending messages consisting of more than one
scalar element. One can either build a derived datatype, or one can use
the two functions MPI Pack and MPI Unpack. MPI Type contigous can be
used to construct a type containing a subset of consecutive entries in an
array. MPI Type vector can be used to construct a type consisting of array
elements that are uniformly spaced in memory. MPI Type indexed can be
used to construct a type consisting of array elements that are not uniformly
spaced in memory. The most general constructor is MPI Type struct. If
there are a large number of elements that are not in contiguous memory
locations, then building a derived type will probably involve less overhead
than a large number of calls to MPI Pack/MPI Unpack.

1. MPI Type struct

int MPI_Type_struct(
int count /* in */,
int block_lengths[] /* in */,
MPI_Aint displacements[] /* in */,
MPI_Datatype typelist[] /* in */,
MPI_Datatype* new_mpi_t /* out */)

It can be used to build derived types whose elements have different
types and arbitrary locations in memory. count is the number of
blocks of elements in the derived type. The array block lengths con-
tains the number of entries in each elements type. The array displace-
ments contains the displacement of each element from the beginning
of the message, and the array typelist contains the MPI datatype of
each entry. The parameter new mpi t returns a pointer to the MPI
datatype created by the call to MPI Type struct.

2. MPI Type contiguous



Algorithms (S. Oliveira) 2

int MPI_Type_contiguous(
int count /* in */,
MPI_Datatype old_type /* in */,
MPI_Datatype* new_mpi_t /* out */)

The derived type new mpi t will consist of count contiguous ele-
ments, each of which has type old type.

3. MPI Type vector

int MPI_Type_vector(
int count /* in */,
int block_length /* in */,
int stride /* in */,
MPI_Datatype element_type /* in */,
MPI_Datatype* new_mpi_t /* out */)

It can be used to construct a type consisting of array elements that are
uniformly spaced in memory. count is the number of elements in the
type. block length is the number of entries in each element. stride
is the number of elements of type element type between successive
elements of new mpi t.

4. MPI Type indexed

int MPI_Type_indexed(
int count /* in */,
int block_lengths[] /* in */,
int displacements[] /* in */,
MPI_Datatype old_type /* in */,
MPI_Datatype* new_mpi_t /* out */)

The derived type consists of count elements of type old type. the
ith element consists of block lengths[i] entries, and it is displaced
displacement[i] units of old type from the beginning (displacement
0) of the type.



Algorithms (S. Oliveira) 3

5. MPI Type commit

int MPI_Type_commit(
MPI_Datatype* new_mpi_t /* in/out */)

Before a derived type can be used by a communication function, it
must be committed with a call to MPI Type commit.

6. MPI Type Pack

int MPI_Pack(
void* pack_data /* in */,
int in_count /* in */,
MPI_Datatype datatype /* in */,
void* buffer /* out */,
int buffer_size /* in */,
int* position /* in/out */,
MPI_Comm comm /* in */)

This allows one to explicitly store data in a user-defined buffer. pack data
references the data to be buffered. It should consist of in count ele-
ments, each having type datatype. buffer size contains the size in
bytes of the memory referenced by buffer. position keeps track of
where data is in buffer, in bytes.

7. MPI Type Unpack

int MPI_Unpack(
void* buffer /* in */,
int size /* in */,
int* position /* in/out */,
void* unpack_data /* out */,
int count /* in */,
MPI_Datatype datatype /* in */,
MPI_Comm comm /* in */)

It can be used to extract data from a buffer that was constructed using
MPI Pack. buffer references the data to be unpacked. it consists
of size bytes. MPI Unpack will copy count elements having type
datatype into unpack data.


