Solving Triangular Systems in Parallel

Summary of Forward Substitution Algorithms

e Sequential Inner Product Version

e Sequential Vector Sum

e Fine-Grain Parallel Pseudocode

ifi=7
recv sum reduction o;
Ti = (bi - Ui)/lii
broadcast x; to tasks (k,1)
(k=i+1,---,n)

else
recv .I'j
t = l@jiﬁj

send ¢ for sum reduction across tasks
(1,k) (k=1,---,(i —1)) to task (7,1)

end

Parallel Algorithms (S. Oliveira) 2

e Row Partitioning for Vector Sum Algorithm (Fan-out)

The output loop (for all the columns) is sequential.
Consequently the number of sequential steps is O(n).
Processors have to wait for information above them
before they start updating b;. Processors broadcast
the z;’s they are responsible for, as soon as they are
calculated.

for j=1ton
if 7 € myrows then
zj = b;/lj;
broadcast z; to other tasks
else
recv
end
for 1 € myrows, 1> j
bi = b; — l;jx;
end

end

Parallel Algorithms (S. Oliveira) 3

e Column Partitioning for Inner Product Algorithm (Fan-in)

The output loop (for all the rows) is sequential. Con-
sequently the number of sequential steps is O(n). For
each row a partial inner product () is calculated and
used in a reduce accross other processors. Processors
have to wait for informationl on their left before cal-
culating x;’s.

fori=1ton

t=20

for j € mycols, j <1
t=t+ljz,

end

if © € mycols then
recv sum reduction of ¢
x; = (b; — 1)/l

else
send t for sum reduction across tasks

end

end

Parallel Algorithms (S. Oliveira)

e Wavefront Vector Sum Algorithm

for ;7 € mycols
for k =1 to (# of segments)
recv segment
if k =1 then
zj = (bj — 2)/1j
segment = segment — {z;}
end
for z; € segment
2y = z; +
end
if |segment| > 0 then
send segment to task with column j + 1
end
end

end

Parallel Algorithms (S. Oliveira)

e Wavefront Scalar Product Algorithm

for j € myrows
for k =1 to (# of segments — 1)
recv segment
send segment to task owing row ¢ + 1
for x; € segment
b = b — ljjx;
end
end
recv segment
for x; € segment
bi = b — lijx;
end
z; = bi/li
segment = segment U {x;}
send segment to task owing row ¢ + 1

end

