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ABSTRACT

This book is written based on the lecture notes used for the course entitled

Logic in Computer Science at the University of Iowa, Iowa, U.S.A. The book focuses

on logic as a practical software tool for solving various problems in computer science

and engineering.



LOGIC IN COMPUTER SCIENCE

by

Hantao Zhang, Jian Zhang

Some people are always critical of vague statements.
I tend rather to be critical of precise statements.

They are the only ones which can
correctly be labeled wrong.

– Raymond Smullyan

May 2022

Supervisor: Benji Mo



Copyright by

HANTAO ZHANG, JIAN ZHANG

2020
All Rights Reserved



Graduate College
The University of Iowa

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Hantao Zhang, Jian Zhang

has been approved by the Examining Committee
for the thesis requirement for the Doctor of
Philosophy degree in Computer Science at the May 2022
graduation.

The committee:
Supervisor

Member

Member

Member

Member



ACKNOWLEDGMENTS

The author is grateful for selfless help of Professor Hantao Zhang.

i



ABSTRACT
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CHAPTER 1

INTRODUCTION TO LOGIC

Do you like to solve Sudoku puzzles? If you do, how long will it take on

average to solve a Sudoku puzzle appearing in a newspaper, minutes or hours? An

easy exercise in Chapter 4 of this book asks you to write a small program in your

favorite language that will solve a Sudoku puzzle, hard or easy, in less than a second

on your laptop.

Did you ever play the tower of Hanoi? This puzzle consists of three rods and

a number of disks of different sizes, which can slide onto any rod. The puzzle starts

with the disks in a neat stack in ascending order of size on one rod, the smallest at

the top, thus making a conical shape. The objective of the puzzle is to move the

entire stack to another rod, obeying the following simple rules:

• Only one disk can be moved at a time.

• Each move consists of taking the upper disk from one of the stacks and placing

it on top of another stack or on an empty rod.

• No larger disk may be placed on top of a smaller disk.

For instance, if the three rods are named by a, b, and c, and there are three disks,

each named by its size, a solution of the puzzle of moving the disks from rod a to

rod b is given as follows:

Move disk 1 from a to b

Move disk 2 from a to c

Move disk 1 from b to c

Move disk 3 from a to b

Move disk 1 from c to a

Move disk 2 from c to b

Move disk 1 from a to b

This solution was produced by a Prolog program of 3 lines and 168 characters

(including commas and periods). The same program can produce solutions for

various numbers of disks. Prolog is a programming language based on logic and is

introduced in Chapter 8 of the book.
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The above two examples just illustrate that logic is not only a theoretic foun-

dation of computer science, but also a problem-solving tool. The emphasis of the

book is on how to make this tool efficient and practical. After a rigorous intro-

duction to basic concepts, we will study various algorithms and introduce software

tools which are the implementation of these algorithms.

To solve a problem using a logic-based tool, you need to think the problem

in logic and specify the problem in logic. This is a skill that needs to be learned

like any other, and it does take a bit of training and practice to master this skill.

The same skill can be applied to abstract situations such as those encountered in

formal proofs. Logic is also innate to all of you - indeed, you probably use the laws

of logic unconsciously in your everyday speech and in your own internal reasoning.

Because logic is innate, the logic principles that you learn should make sense - if you

find yourself having to memorize one of the principles in the book, without feeling a

mental “click” or comprehending why that law should work, then you will probably

not be able to use that principle correctly and effectively in practice.

1.1 Logic is Everywhere

Logic has been called the calculus of computer science, because logic plays

a fundamental role in computer science, similar to that played by calculus in the

physical sciences and traditional engineering disciplines. Logic is used in almost

every field of computer science: the construction of computers, such as computer

architecture (digital gates, hardware verification), software engineering (specifica-

tion, verification), programming languages (semantics, type theory, abstract data

types, object-oriented programming), databases (relational algebra), artificial in-

telligence (automated theorem proving, knowledge representation), algorithms and

theory of computation (complexity, computability), etc.

Logic also plays important roles in other fields, such as mathematics and

philosophy. In mathematics, logic includes both the mathematical study of logic

and the applications of formal logic to other areas of mathematics. The unifying

themes in mathematical logic include the study of the expressive power of formal

systems and the deductive power of formal proof systems. Mathematical logic is

often divided into the fields of (a) set theory, (b) model theory, (c) proof theory,

and (d) computability theory. These areas share basic results on logic.

Symbolic logic in the late nineteenth century and mathematical logic in the

twentieth are also called formal logic. Topics traditionally treated by logic not

being part of formal logic have tended to be termed either philosophy of logic or

philosophical logic . Philosophical logic dealt with arguments in the natural language
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used by humans.

Example. Given the premises that (a) “all men are mortal” and (b)

“Socrates is a man”, we may draw the conclusion that (c) “Socrates is

mortal”, by the inference rule of Modus Ponens.

Philosophical logic is the investigation, critical analysis and intellectual reflection

on issues arising in logic and is the branch of studying questions about reference,

predication, identity, truth, quantification, existence, entailment, modality, and ne-

cessity.

1.1.1 Statement or Proposition

Logic comes from natural languages as most sentences in natural languages

are statements or propositions. A proposition is a statement or assertion that ex-

presses a judgment or opinion. We will use statement and assertion as synonyms of

proposition. Here are some examples:

• The color of the apple is green.

• Today is either Monday or Tuesday.

• He is a sophomore and twenty years old.

Every statement can be either true or false. True or false are called the truth

values of a statement. Some sentences in natural languages are not statements, such

as commands or exclamatory sentences. For example, “Run fast!” Coach shouts.

The first part of the sentence, “Run fast!”, is not a statement; the second part,

“Coach shouts”, is a statement. In fact, a sentence is a statement if and only if it

has a truth value.

In natural languages, we can combine, or relate statements with words such as

“not” (negation), “and” (conjunction), “or” (disjunction), “if-then” (implication),

etc. That is, a statement can be obtained from other statements by these words.

In logic, these words are called logical operators, or equivalently, logical connectives.

A statement is composed if it can be expressed as a composition of several simpler

statements; otherwise, it is simple. In the above three examples of statements, the

first statement is simple; the other two are composed. That is, “today is either

Monday or Tuesday” is the composition of “today is Monday” and “today is Tues-

day”, using the logical operator “or”. We often regard “the color of that apple is

not green” as a composed statement: It is the negation of a simple statement.
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Logical connectives are indispensable for expressing the relationship between

statements. For example, the following statement is a composition of several simple

statements.

(∗) Either taxes are not increased or if expenditures rise then the debt

ceiling is raised.

To see this clearly, we need to introduce symbols, such as t, e, and d, to denote

them:

1. t: “taxes are increased”,

2. e: “expenditures rise”,

3. d: “the debt ceiling is raised”.

To express that the statement (∗) is composed, let us use these symbols for

logical operators: ¬ for negation, ∨ for “either-or”, and→ for the “if-then” relation

(i.e., implication). Then (∗) becomes the following formula:

(¬t) ∨ (e→ d)

Here each of the symbols t, e and d is called propositional variable, which denotes a

statement, either simple or composed. Naturally, these propositional variables, like

statements, can take on only the truth values, i.e., true and false.

Propositional variables are also called Boolean variables after their inventor,

the nineteenth century mathematician George Boole. Boolean logic includes any

logic in which the considered truth values are true and false. The study of proposi-

tional variables with logic operators is called propositional logic, which is the sim-

plest one in the family of Boolean logics. On the other hand, probability logic is

not a Boolean logic because probability values are used to represent various degrees

of the truth values. Statements which contain subjective adjectives, such as “that

apple is delicious”, are better expressed in propositional logic, as “delicious” is sub-

jective. Questions regarding degrees of truth of subjective statements are ignored

in Boolean logic. For example, “that apple is delicious” can be true in one’s view

and false in the other. Despite this simplification, or indeed because of it, such a

method is scientifically successful. One does not even have to know exactly what

the truth values true and false actually are.
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1.1.2 A Brief History of Logic

Sophisticated theories of logic were developed in many cultures, including

China, India, Greece and the Islamic world. Greek methods, particularly Aris-

totelian logic (or term logic), found wide application and acceptance in Western

science and mathematics for millennia.

Aristotle (384 – 322 BC) was the first logician to attempt a systematic analysis

of logical syntax, of noun (or term), and of verb. He demonstrated the principles

of reasoning by employing variables to show the underlying logical form of an ar-

gument. He sought relations of dependence which characterize necessary inference,

and distinguished the validity of these relations, from the truth of the premises.

He was the first to deal with the principles of contradiction and excluded middle

in a systematic way. Aristotle has had an enormous influence in Western thought.

and he developed the theory of the syllogism, where three important principles are

applied for the first time in history: the use of symbols, a purely formal treatment,

and the use of an axiomatic system. Aristotle also developed the theory of fallacies,

as a theory of non-formal logic.

Christian and Islamic philosophers such as Boethius (died 524), Ibn Sina (Avi-

cenna, died 1037) and William of Ockham (died 1347) further developed Aristotle’s

logic in the Middle Ages, reaching a high point in the mid-fourteenth century, with

Jean Buridan (1301-1358/62 AD).

In the 18th century, attempts to treat the operations of formal logic in a sym-

bolic or algebraic way had been made by philosophical mathematicians, including

Leibniz and Lambert, but their works remained isolated and little known.

In the beginning of the 19th century, logic was studied with rhetoric, through

the syllogism, and with philosophy. Mathematical logic emerged in the mid-19th

century as a field of mathematics independent of the traditional study of logic.

The development of the modern “symbolic” or “mathematical” logic during this

period by the likes of Boole, Frege, Russell, and Peano is the most significant in the

two-thousand-year history of logic, and is arguably one of the most important and

remarkable events in human intellectual history.

1.2 Logical Fallacies in Arguments

Logical fallacies are logical errors one makes when writing or speaking. In this

section, we will give a brief introduction to logical fallacies, which are the subjects

of philosophical logic. Knowing these fallacies will help us to write logically by

avoiding them. Writing logically is somewhat related to, but not the same as,

writing clearly, or efficiently, or convincingly, or informatively; ideally one would
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want to do all of these at once, but one does not have the skill has to achieve

all, though with practice you’ll be able to achieve more of your writing objectives

concurrently. The big advantage of writing logically is that one can be absolutely

sure that your conclusion will be correct, as long as all your hypotheses were correct

and your steps were logical; using other styles of writing one can be reasonably

convinced that something is true, but there is a difference between being convinced

and being sure.

In philosophical logic, an argument has similar meaning as a proof in formal

logic, as the argument consists of premises and conclusions. A fallacy is the use

of invalid or otherwise faulty reasoning in the construction of an argument. A

fallacious argument may be deceptive by appearing to be better than it really is.

Some fallacies are committed intentionally to manipulate or persuade by deception,

while others are committed unintentionally due to carelessness or ignorance.

Fallacies are commonly divided into “formal” and “informal”. A formal fallacy

can be expressed neatly in a formal logic, such as propositional logic, while an

informal fallacy cannot be expressed in a formal logic.

1.2.1 Formal Fallacies

In philosophical logic, a formal fallacy is also called deductive fallacy, logical

fallacy, or non sequitur (Latin for “it does not follow”). This is a pattern of reasoning

rendered invalid by a flaw in its logical structure.

Example. Give the premises that (a) my car is some car, and (b) some

cars are red, we draw the conclusion that (c) my car is red.

This is a typical example of a conclusion that does not follow logically from

premises or that is based on irrelevant data. Here are some common logical fallacies:

• Affirming the consequent: Any argument with the invalid structure of: If

A then B. B, therefore A.

Example. If I get a B on the test, then I will get the degree. I got

the degree, so it follows that I must have received a B. In fact, I got

an A.

• Denying the antecedent: Any argument with the invalid structure of: If A

then B. Not A, therefore not B.

Example. If it’s a dog, then it’s a mammal. It’s not a dog, so it

must not be a mammal. In fact, it’s a cat.
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• Affirming a disjunct: Any argument with the invalid structure of: If A or

B. A, therefore, not B.

Example. I am working or I am at home. I am working, so I must

not be at home. In fact, I am working at home.

• Denying a conjunct: Any argument with the invalid structure of: It is not

the case that both A and B. Not A, therefore B.

Example. I cannot be both at work and at home. I am not at

work, so I must be at home. In fact, I am at a park.

• Undistributed middle: Any argument with the invalid structure of: Every

A has B. C has B, so C is A.

Example. Every bird has a beak. That creature has a beak, so

that creature must be a bird. In fact, the creature is a dinosaur.

A formal fallacy occurs when the structure of the argument is incorrect, despite

of the truth of the premises. A valid argument always has a correct formal structure

and if the premises are true, the conclusion must be true. A valid argument is a

formally correct argument that use true premises. When we use false premises, the

formal fallacies disappear, but the argument may be regarded as a fallacy as the

conclusion is invalid.

As an application of modus ponens, the following example contains no formal

fallacies:

If you took that course on CD player repair right out of high school, you

would be doing well and having a vacation on the moon right now.

Even though there is no logic error in the argument, the conclusion is invalid

because the premise is contrary to the fact. With a false premise, you can make

any conclusion, so that the composed statement is always true. However, an always

true statement has no value in reasoning.

By contrast, an argument with a formal fallacy could still contain all true

premises:

(a) If someone owns the world’s largest diamond, then he is rich. (b)

King Solomon was rich. Therefore, (c) King Solomn owned the world’s

largest diamond.

Although, (a) and (b) are true statements, (c) does not follow from (a) and

(b) because the argument commits the formal fallacy of “affirming the consequent”.
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1.2.2 Informal Fallacies

There are numerous kinds of informal fallacies that use an incorrect relation

between premises and conclusion. These fallacies can be grouped approximately

into four groups, and each group contains several types of fallacies:

• fallacies of improper premise;

• fallacies of faulty generalizations;

• fallacies of questionable cause; and

• relevance fallacies.

For instance, the circular reasoning, where the reasoner begins with what he

or she is trying to end up with, belongs to the group of improper premises. An

example of circular reasoning is given below.

You must obey the law, because it’s illegal to break the law.

For a complete list of informal fallacies, the reader is recommended to read

the Wikipedia’s page on the same topic for details. Some informal fallacies do not

belong to the above four groups. For example, the false dilemma fallacy and the

middle ground fallacy.

The false dilemma fallacy presents a choice between two mutually exclusive

options, implying that there are no other options. One option is clearly worse than

the other, making the choice seem obvious. Also known as the either/or fallacy,

false dilemmas are a type of informal logical fallacy in which a faulty argument is

used to persuade an audience to agree. False dilemmas are everywhere.

• Vote for me or live through four more years of higher taxes.

• America: Love it or leave it.

• Either we let every immigrant into our country, or we close the borders for

everyone.

• Subscribe to our streaming service or be stuck with cable.

The middle ground fallacy assumes that a compromise between two extreme

conflicting points is always true. Arguments of this style ignore the possibility that

one or both of the extremes could be completely true or false – rendering any form

of compromise between the two invalids as well.
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Example. Mary thinks the best way to improve sales is to redesign the

entire company website, but John is firmly against making any changes

to the website. Therefore, the best approach is to redesign some portions

of the website.

An argument could contain both an informal fallacy and a formal fallacy yet

lead to a conclusion that happens to be true. For example, again affirming the

consequent, now also from an untrue premise:

If a scientist makes a statement about science, it is correct. It is true that

quantum mechanics is deterministic. Therefore, a scientist has made a

statement about it.

Having an understanding of these basic logical fallacies can help us more

confidently parse the arguments we participate in and witness on a daily basis,

separating fact from sharply dressed fiction.

1.3 A Brief Review of Mathematical Logic

Mathematical Logic is roughly divided into four areas:

• set theory,

• model theory,

• proof theory, and

• computability theory.

Each area has a distinct focus, although many techniques and results are

shared between multiple areas. The borderlines between these areas, and the lines

between mathematical logic and other fields of mathematics, are not always sharp.

Each area contains rich materials which can be studied in graduate courses of multi-

ple levels. As an introductory book on logic, we will introduce some basic concepts,

which are closely related to this book, in these areas.

1.3.1 Set Theory

A set is a structure, representing an unordered collection of zero or more

distinct objects. All elements in a set are unequal (distinct) and unordered. Set

theory is a branch of mathematical logic that studies sets and deals with operations

between, relations among, and statements about sets. Although any type of object
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can be collected into a set, set theory is applied most often to objects that are

relevant to mathematics. The language of set theory can be used to define nearly

all mathematical objects.

1.3.1.1 Basic Concepts and Notations

Let U be the collection of all objects under consideration. U is often called

the universal set or universe of discourse. For example, U can be the set of natural

numbers or the population of the world. Any object x under consideration is a

member of U , written as x ∈ U . A set is any collection of objects from U . The

empty set is often denoted by ∅ or simply {}. Given two sets A and B, the following

are the popular set operations:

• x ∈ A: it is true iff (e.g., if and only if) x a member of A.

• A ∪B: the union of A and B. For any object x, x ∈ A ∪B iff x is in A or B

or both.

• A ∩B: the intersection of A and B. x ∈ A ∩B iff x ∈ A and x ∈ B.

• A−B: the set difference of A and B. x ∈ A−B iff x ∈ A but not x ∈ B.

• A: the complement of A (with respect to the universal set U). A = S − A.

A−B is also called the complement of B with respect to A: A−B = A∩B.

• A ⊆ B: A is a subset of B. A ⊆ B is true iff every member of A is a member

of B. Naturally, A ⊆ U and B ⊆ U for the universal set U .

• A ⊂ B: A is a proper subset of B. A ⊂ B is true iff A ⊆ B and A 6= B.

• A = B: A = B iff A ⊆ B and B ⊆ A, that is, A and B contain exactly the

same elements.

• A×B: the Cartesian product of A and B. An ordered pair (a, b) is in A×B

iff a ∈ A and b ∈ B.

• Ai: the Cartesian product of i copies of A, where i is a natural number (i.e.,

non-negative integers). When i = 0, A0 denotes the empty sequence; A1 = A;

A2 = A× A, A3 = A× A× A, etc.

• |A|: the cardinality of a set. When A is finite, |A| is the number of members

in A. |A| is called a cardinal number if A is infinite.
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• P(A): the power set of A. P(A) is the set whose members are all of the

possible subsets of A. That is, for any set X, X ∈ P(A) iff X ⊆ A. When

|A| = n, |P(A)| = 2n.

Elementary set theory can be studied informally and intuitively, and so can

be taught in primary schools using Venn diagrams. Many mathematical concepts

can be defined precisely using only set theoretic concepts, such as relations and

functions.

1.3.1.2 Relations and Functions

Given two sets A and B, a relation between A and B is a subset of A×B. If

A = B, that happens in many applications, we say the relation is over set A. For

example, the less-than relation, <, on N , is

< = {〈0, 1〉, 〈0, 2〉, 〈0, 3〉, 〈1, 2〉, 〈0, 4〉, 〈1, 3〉, ...}

which is a subset of N ×N . In general, give a relation R over set S, i.e., R ⊆ S×S,

we assume that R(a, b) is true if 〈a, b〉 ∈ R and R(a, b) is false if 〈a, b〉 6∈ R. Of

course, we are used to write < as an infix operator, such as 0 < 1, instead of a prefix

operator such as < (0, 1).

Let � be a relation over the set S. For any a, b, c ∈ S.

• � is reflexive if a � a.

• � is antisymmetry if a � b and b � a imply a = b.

• � is transitive if a � b and b � c imply a � c.

• � is connex (i.e., comparable) if either a � b or b � a is true. That is, if two

elements of S are not comparable by �, then � is not connex. If � is connex,

then a � a must be true, that is, a connex � is always reflexive.

• � is a total order if � is antisymmetry, transitive, and connex.

• � is a partial order if � is antisymmetry, transitive, and reflexive. Since the

connexity implies the reflexivity, a total order is always a partial order but

the inverse is not always true (some pair of elements may not comparable in

a partial order).

• The strict part of a partial order � is �: a � b iff a � b and a 6= b. Obviously,

� = � ∪ {〈x, x〉 | x ∈ S}. For convenience, people also call � or � (the

reverse of �) a partial order.
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• Given a partial order �, a minimal element of X ⊆ S is an element m ∈ X

such that if x ∈ X and m � x, then x = m.

• A partial order � is well-founded if there is a minimal element m ∈ X for

every nonempty X ⊆ S. Equivalently, � is well-founded iff there exists no

infinite sequence of distinct elements x1, x2, ..., xi, ..., such that

x1 � x2 � · · · � xi � · · ·

For example, the ordinary relation ≥ on integers is well-founded on the set of

natural numbers but not well-founded on the set of integers.

A function f is a relation R between A and B with the property that for every

a ∈ A, there exists a unique b ∈ B, such that 〈a, b〉 ∈ R.

• The function f is denoted by f : A −→ B, where A is the domain of f and B

is the range of f . The domain refers to the set of possible input values for f .

The range is the set of possible output values of f .

• If f(a) = b, we say b is the output of f on the input a. We also say b is the

image of a under f . Let f(A) = {f(a) | a ∈ A}, the set of images of all

elements in A under f . Obviously, f(A) ⊆ B.

• If a function g takes two values as input, say g(a, a′) = b, we denote g by

g : A × A′ −→ B, and the domain of g is A × A′. By convention, we write

g(a, a′) = b instead of g(〈a, a′〉) = b, where a ∈ A, a′ ∈ A′, and b ∈ B. This

practice can be generalized to functions with more than two inputs.

• When both A and B are finite, the set F of all functions from A to B, F =

{f | f : A −→ B}, is also finite. Let |A| = m and |B| = n, then |F | = nm,

because there are m choices for a ∈ A and there are n choices for each f(a).

For example, if B = {0, 1} and A = B × B, then |B| = 2, |A| = 4 and the

number of functions from A to B is 24 = 16.

• A function f : A −→ B is said to be total if for every x ∈ A, there exists an

element y ∈ B such that f(x) = y. For instance, the division function over

the integers is not total as the quotient is not defined when the divisor is zero.

• f : A −→ B is said to be surjective if for every y ∈ B, there exists x ∈ A such

that f(x) = y. It is easy to check that f is surjective iff B = f(A).

• f : A −→ B is said to be injective if f is total and for any x, y ∈ A, x 6= y

implies f(x) 6= f(y).
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• f is said to be bijective if f is both injective and surjective. A bijective function

is also called a one-to-one correspondence between A and B. A function f

is bijective iff the inverse of f , denoted by f−1, exists, where f−1(y) = x iff

f(x) = y.

1.3.1.3 Countable Sets

People often use N to denote the set of natural numbers, i.e.,

N = {0, 1, 2, 3, ...},

Z to denote the set of integers,

Z = {...,−3,−2,−1, 0, 1, 2, 3, ...},

and R to denote the set of rational numbers. We also use Z+ to denote the set of

all positive integers. These are naturally infinite sets.

For finite sets, the cardinality is a number in N and we can compare them.

How to compare the cardinality of infinite sets? Cantor’s idea is to use injective

functions: If f : A −→ B is injective, then |A| ≤ |B|. That is, for every x ∈ A, we

have a distinct f(x) ∈ B, so it cannot be the case that |A| > |B|.

Definition 1.3.1. A set S is countable if there exists an injective function f :

S −→ N , where N is the set of natural numbers. If S is both countable and infinite,

S is called countably infinite.

Example 1.3.2. Let E = {0, 2, 4, ...} be the set of all even natural numbers. Let

f : E −→ N with f(x) = x, then f is injective, so E is countable and we may

conclude that |E| ≤ |N . Since E is infinite, E is also countably infinite. If we

define h : N −→ E with h(x) = 2x, then h is bijective, hence |N | ≤ |E| and we end

up with |E| = |N |. This is not an exception for all countably infinite sets. 2

Proposition 1.3.3. There is a bijective function between any two countably infinite

sets.

Proof. It suffices to show that the proposition holds for the two sets A and N (the

set of natural numbers). Since A is countable, there exists an injective function

f : A −→ N . Listing the elements of A as a0, a1, a2, ..., such that i < j iff f(ai) <

f(aj). Since A is infinite, define g : N −→ A as g(i) = ai, then g is a bijection

between N and A. 2

Today, countable sets form the foundation of discrete mathematics, and we

first check what sets are countable.
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Proposition 1.3.4. The following sets are countable:

1. Any finite set;

2. Any subset of N ;

3. The set A×B, if both A and B are countable;

4. The set Z of integers;

5. The set of all binary strings of finite length;

6. Σ∗, the set of all strings of finite length built on the symbols from Σ, a finite

alphabet.

Proof. To show (1) is countable, we just need to define an injective function which

map a set of n elements to the first n natural numbers.

(2) is countable because if S ⊆ N , then f : S −→ N , where f(x) = x, is an

injective function.

(3) is countable when either A or B is finite and its proof is left as an exercise.

When both A and B are countably infinite, without loss of generality, we assume

A = B = N . Let g(k) = k(k+1)/2, which is the sum of the first k positive integers,

and f : N ×N −→ N be the function:

f(i, j) = g(i+ j) + j

The inverse of f exists: For any k ∈ N , let m be the integer such that g(m) ≤ k <

g(m + 1). Then f−1(k) = 〈i, j〉, where i = g(m) +m − k and j = k − g(m). It is

easy to check that i + j = m and f(i, j) = k. For example, if k = 12, then m = 4,

and i = j = 2. Table 1.3.1 shows the first few values of k = f(i, j). Recall that f

is bijective iff f−1 exists. Since the inverse of f exists, f is bijective.

i\j 0 1 2 3 4
0 0 2 5 9 14
1 1 4 8 13 19
2 3 7 12 18 25
3 6 11 17 24 32
4 10 16 23 31 40

Table 1.3.1: k = f(i, j) = (i+ j)(i+ j + 1)/2 + j.

To show (4) is countable, we define a bijective function f from the set of

integers to N : f(x) = if x ≥ 0 then 2x else −2x − 1. This function maps 0 to
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0; positive integers to even natural numbers, and negative integers to odd natural

numbers. f is bijective because the inverse of f exists: For any n ∈ N , f−1(n) = if

n is even then n/2 else (−n− 1)/2.

To show (5) is countable, let S = {0, 1}∗ be all the binary strings, we sort S

by the canonical order which compares the length of strings first, then the decimal

value of strings. Thus, the strings will be listed as follows:

S = {ϵ, 0, 1, 00, 01, 10, 11, 000, 001, ...},

where ϵ denotes the empty string. To find an injection h from S to N , for any string

w in S, if w = ϵ, let h(ϵ) = 0; and h(w) will replace every 0 in w by 2 and leaving

1 intact,

h(S) = {0, 2, 1, 22, 21, 12, 11, 222, 221, ...}.

It is easy to check that h : S −→ N is injective. So S is countable.

We can do better by finding a bijection between S and N . For any binary

string s, let the length of s be n, i.e., |s| = n. There are 1+2+22+...+2n−1 = 2n−1
strings shorter than s. Let v(s) be the decimal value of s: v(ϵ) = 0, v(x0) = 2v(x)

and v(x1) = 2v(x) + 1, then there are v(s) strings of length n before s when S is

listed by the canonical order. So the position of s in the sorted list is 2n + v(s).

Define f : S −→ N : f(s) = 2|s| + v(s)− 1, then f must be a bijection.

To show (6) is countable, let k = dlog2(|Σ|)e. Since |Σ| ≤ 2k, for each symbol

a ∈ Σ, let h(a) be a distinct binary string of length k. For each string w ∈ Σ∗, let

h(w) = h(a1) · · ·h(an) if w = a1 · · · an. Then h : Σ∗ −→ S, where S = {0, 1}∗, is an
injective function. It is easy to construction an injective function g : Σ∗ −→ N by

the composition of h and f : S −→ N from (5), so Σ∗ is countable. 2

The last three cases in the above proposition are examples of countably infinite

sets.

1.3.1.4 Uncountable Sets

In 1874, in his first set theory article, Georg Cantor introduced the term

“countable set” and proved that the set of real numbers is uncountable by the

famous diagonalization method, thus showing that not all infinite sets are countable.

In 1878, he used bijection to define and compare cardinalities, contrasting sets that

are countable with those that are uncountable.

Proposition 1.3.5. The following sets are uncountable:

1. B: the set of binary strings of infinite length;
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s0 = 0 0 0 0 0 0 0 0 0 0 ...
s1 = 0 0 0 0 0 0 0 0 1 0 ...
s2 = 0 0 0 0 0 1 0 0 0 0 ...
s3 = 0 0 0 1 0 0 0 0 0 0 ...
s7 = 0 0 0 1 0 1 0 0 0 0 ...
s6 = 0 0 0 0 1 0 0 0 0 0 ...
s4 = 0 0 0 1 0 1 0 1 0 0 ...
s5 = 0 0 1 0 0 0 0 1 0 0 ...
s8 = 0 1 0 0 1 0 0 1 0 0 ...
s9 = 0 1 0 0 1 1 0 1 0 1 ...

......

x = 1 1 1 0 1 1 1 0 1 0 ...

Table 1.3.2: Illustration of Cantor’s diagonalization method: If B can be enumer-
ated as s0, s1, s2, ..., then x = s00 s11 s22... is a binary string but cannot be in B.

2. R1: the set of non-negative real numbers less than 1;

3. P(N): the power set of the natural numbers;

4. F : The set of Boolean functions, f : N −→ {0, 1}, over the natural numbers.

Proof. For the first set B, we will use Cantor’s diagonalization method to show

that B is uncountable by a refutational proof. Assume that B is countable, then

there exists a one-to-one correspondence between B and N . For each i ∈ N , let the

corresponding string in B be si, and the jth symbol in si be sij. Now, we construct

a binary string x of infinite length as follows: the jth symbol of x, i.e., xj, is the

complement of sjj. That is, if sjj = 0, then xj = 1; if sjj = 1, then xj = 0. Clearly,

x ∈ B. Suppose x’s corresponding number in N is k, i.e., x = sk. However, x differs

from sk on the kth symbol, because xk is the complement of skk. The contradiction

comes from the assumption that B is countable. Table 1.3.2 illustrates the idea of

Cantor’s diagonalization method, where 0 = 1 and 1 = 0.

Once we knew B is uncountable, if we have a bijection from B to R1, then

R1 must be uncountable. The bijection f : B −→ R1 can be simply f(s) = 0.s, as

each number of R1 can be represented by a binary number, where s ∈ B.

To show P(N) is uncountable, let f : B −→ P(N) be f(s) = {j | jth symbol

of s is 1 }. Obviously f is bijective.

Similarly, to show F is uncountable, let f : B −→ F be f(s) = f if for every

j, f(j) = the jth symbol of s. Obviously f is bijective, too. 2
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The result that P(N) is uncountable while N is countable can be generalized:

for every set S, the power set of S, i.e., P(S), has a larger cardinality than S itself.

This result implies that the notion of the set of all sets is an inconsistent notion. If

S were the set of all sets then P(S) would at the same time be bigger than S and

a subset of S.

Theorem 1.3.6. (Cantor’s Theorem) |A| < |P(A)| for any set A.

Proof. Let us prove it by contradiction. If |A| = |P (A)|, there is a bijection f :

A −→ P(A). Define S = {a ∈ A | a 6∈ f(a)}, then S ⊆ A and S ∈ P(A). There

must exist b ∈ A such that f(x) = S because f is surjective. There only two

possibilities: b ∈ S or b 6∈ S.

1. If b ∈ S, by definition of S, b 6∈ f(b) = S.

2. If b 6∈ S, by definition of S, b ∈ f(b) = S.

Both cases lead to a contradiction, so f cannot exist. It cannot be the case that

|A| > |P (A)| because g(a) = {a} is an injection from A to P(A). 2

Cantor’s theorem implies that there is no such thing as the “set of all sets”.

Suppose A were the set of all sets. Since every element of P(A) is a set, so P (A) ⊆ A.

Thus |P (A)| ≤ |A|, a contradiction to Cantor’s theorem.

Cantor chose the symbol ℵ0 for the cardinality of n, |N |, a cardinal number.

ℵ0 is read as aleph-null, after the first letter of the Hebrew alphabet. The cardinality

of the reals is often denoted by ℵ1, or c for the continuum of real numbers. Cantor’s

theorem implies that there are infinitely many infinite cardinal numbers, and that

there is no largest cardinal number.

ℵ0 = |N |
ℵ1 = |P(N)| = 2ℵ0 > ℵ0
ℵ2 = |P(P(N))| = 2ℵ1 > ℵ1
ℵ3 = |P(P(P(N)))| = 2ℵ2 > ℵ2
...

The famous inconsistent example related to set theory is so-called Russell’s

paradox, discovered by Bertrand Russell in 1901:

Paradox 1.3.7. (Russell’s paradox) Let T = {S | S 6∈ S}, the set T of all sets

S that does not contain itself. What is the truth value of T ∈ T?

If “T ∈ T” is false, then T ∈ T by the condition S 6∈ S. If “T ∈ T” is true,

then T 6∈ T because every member of T satisfies S 6∈ S. This paradox showed
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that some attempted formalization of the näıve set theory created by Georg Cantor

led to a contradiction. Russell’s paradox shows that the concept of “a set contains

itself” is invalid. If “S ∈ S” is always false, then T = {S | S 6∈ S} is the “set of all

sets”, which does not exist, either.

A layman’s version of Russell’s paradox is called the Barber’s paradox.

Paradox 1.3.8. (Barber’s paradox) In a village, there is only one barber who

shaves all those, and those only, who do not shave themselves. The question is, does

the barber shave himself?

Answering this question results in a contradiction. The barber cannot shave

himself as he only shaves those who do not shave themselves. Conversely, if the

barber does not shave himself, then he fits into the group of people who would be

shaved by the barber, and thus, as the barber, he must shave himself.

The discovery of paradoxes in informal set theory caused mathematicians to

wonder whether mathematics itself is inconsistent, and to look for proofs of consis-

tency. Ernst Zermelo (1904) gave a proof that every set could be well-ordered, using

the axiom of choice, which drew heated debate and research among mathematicians

and the pioneers of set theory. In 1908, Zermelo provided the first set of axioms

for set theory. These axioms, together with the additional axiom of replacement

proposed by Abraham Fraenkel, are now called Zermelo–Fraenkel set theory (ZF).

Besides ZF, many set theories are proposed since then, to rid paradoxes from set

theory.

1.3.2 Model Theory

Model theory is the study of mathematical structures (e.g. groups, fields,

algebras, graphs, logics) in a formal language. Every formal language has its syntax

and semantics. Models are a semantic structure associated with syntactic structures

in a formal language. Theories are then introduced based on models. Following this

approach, every formal logic is defined inside of a formal language.

1.3.2.1 Syntax and Semantics

The syntax of a formal language specifies how various components of the

language, such as symbols, words, and sentences, are defined. For example, the

language for propositional logic uses only propositional variables and logic operators

as its symbols, and well-formed formulas built on these symbols as its sentences.

In model theory, a set of sentences in a formal language is one of the components

that form a theory. The language for logic often contains the two constant symbols,
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either 1 and 0, or > and ⊥, which are interpreted as true and false, respectively.

They are usually considered to be special logical operators which take no arguments,

not propositional variables.

The semantics of a language specifies the meaning of various components of

the language. For example, if we use symbol q to stands for the statement “Today

is Monday”, and r for “Today is Tuesday”, then the meaning of q is “Today is

Monday”; q can be used to denote a thousand different statements, just like a

thousand Hamlets in a thousand people’s eyes. On the other hand, a formal meaning

of the formula q ∨ r is the truth value of q ∨ r, which can be decided uniquely when

the truth values of q and r are given. In model theory, the formal meaning of a

sentence is explored: it examines semantic elements (meaning and truth) by means

of syntactical elements (formulas and proofs) of a corresponding language.

In model theory, semantics and model are synonyms. A model of a theory is

an interpretation that satisfies the sentences of that theory. Abstract algebras are

often used as models. In a summary definition, dating from 1973,

model theory = abstract algebra + logic,

Abstract algebra, also called universal algebra, is a broad field of mathematics, con-

cerned with sets of abstract objects associated various operations and properties.

1.3.2.2 Boolean Algebra

In abstract algebra, the most relevant algebra related to the logic discussed

in this book is Boolean algebra, which is approximately equivalent to propositional

logic. Many syntactic concepts of Boolean algebra carry over to propositional logic

with only minor changes in notation and terminology, while the semantics of proposi-

tional logic are defined via Boolean algebras in a way that the tautologies (theorems)

of propositional logic correspond to equational theorems of Boolean algebra.

In Boolean algebra, the values of the variables are the truth values true and

false, usually denoted 1 and 0 respectively. The main operations of Boolean algebra

are the multiplication · (conjunction), the addition + (disjunction), and the inverse

i (negation). It is thus a formalism for describing logical operations in the same

way that elementary algebra describes numerical operations, such as addition and

multiplication. In fact, a Boolean algebra is any set with binary operations + and

· and a unary operation i thereon satisfying the Boolean laws (equations), which

define the properties of the logical operations.

Boolean algebra was introduced by George Boole in his first book The Math-

ematical Analysis of Logic (1847). According to Huntington, the term “Boolean
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algebra” was first suggested by Sheffer in 1913. Sentences that can be expressed in

propositional logic have an equivalent expression in Boolean algebra. Thus, Boolean

algebra is sometimes used to denote propositional logic performed in this way. How-

ever, Boolean algebra is not sufficient to capture logic formulas using quantifiers,

like those from first order logic.

1.3.3 Proof Theory

In a similar way to model theory, proof theory is situated in an interdisci-

plinary area among mathematics, philosophy, and computer science. Proof theory

is a major branch of mathematical logic that represents proofs as formal mathemat-

ical objects, facilitating their analysis by mathematical techniques.

1.3.3.1 Axioms and Theorems

In a formal logic, the axioms are a set of sentences which are assumed to be

true. Typically, the axioms contain by default the definitions of all logical operators.

For example, the negation operator ¬ is defined by ¬(>) = ⊥ and ¬(⊥) = >.
The theorems are the formulas which can be proved to be true from the axioms.

For example, for any propositional variable p, ¬(¬(p)) = p is a theorem. Using the

case analysis method, if the truth value of p is >, then ¬(¬(>)) = ¬(⊥) = >; if the
truth value of p is ⊥, then ¬(¬(⊥)) = ¬(>) = ⊥. It is easy to see that different

sets of axioms would lead to different theorems.

There are two important properties concerning a set of axioms:

• Consistency The axiom set is consistent if every formula in the axiom can

be true at the same time.

• Independence The axiom set is independent if no axiom is a theorem of the

other axioms.

1.3.3.2 Proof Procedures

Given a set A of axioms and a formula B, we need to a procedure P that can

answer the question if B is a theorem of A: If P (A, B) returns “yes”, we say B is

proved, if P (A, B) returns “no”, we say B is disproved; if it returns “unknown”, we

do not know if B is a theorem or not. P is called a proof procedure. This procedure

can be carried out by hand, or executed on a computer.

There are two important properties concerning a proof procedure P :
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• Soundness The proof procedure P is sound iff whenever P (A, B) returns

true, B is a theorem of A; whenever P (A, B) returns false, B is not a theorem

of A.

• Completeness The proof procedure P is complete iff for any theorem B of

A, P (A, B) returns true.

If a procedure P (A, B) is sound and always halts on any input A and B with

“yes” or “no”, i.e., P is an algorithm, then P is a decision procedure for the logic.

In general, a decision procedure is usually referred to any procedure which always

halts with a correct answer to a decision question, such as “A is valid or not”.

Theorem 1.3.9. Every decision procedure is sound and complete.

Proof. Given any axiom set A and any formula B, since P always halts, P (A, B)

will return a truth value. If B is a theorem of A, P (A, B) will return true because

the answer returned by P must be correct. 2

Some proof procedures may stop with “yes”, “no”, or “unknown”; they cannot

be called a decision procedure. A sound and complete proof procedure may loop on

a formula that is not a theorem, thus cannot be a decision procedure by definition.

From the above theorem, we see that the soundness and halting properties of a proof

procedure implies the completeness. A sound and complete proof procedure is also

called a semi-decision procedure for the logic, because it will halt on any formula

which is a theorem. For any logic, we always look for its decision procedure. For

example, propositional logic has many different decision procedures. If a decision

procedure does not exist, we look for a semi-decision procedure. For some logics,

even a semi-decision procedure cannot exist. Clearly, these discussions will only

make sense once we have formally defined the logic in question.

1.3.3.3 Inference Rules

In structural proof theory, which is a major area of proof theory, inferences

rules are used to construct a proof. In logic, an inference rule is a pattern which

takes formulas as premises, and returns a formula as conclusion. For example, the

rule of modus ponens (MP) takes two premises, one in the form “If p then q” (i.e.,

p→ q) and another in the form p, and returns the conclusion q’. The rule is sound

if the premises are true under an interpretation, then so is the conclusion.

An inference system S consists of a set of axioms A and a set of inference

rules R. The soundness of S comes from the soundness of every inference rule in

R. A proof of formula Fn in S = (A,R) is a sequence of formulas F1, F2, ..., Fn such
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that each Fi is either in A or can be generated by an inference rule of R, using the

formulas before Fi in the sequence as the premises.

Example 1.3.10. Let S = (A,R), A = {p → (q → r), p, q}, and R = {MP}. A

proof of r from A using S is given below:

1. p→ (q → r) axiom
2. p axiom
3. q → r MP, 1, 2
4. q axiom
5. r MP, 3, 4

2

One obvious advantage of such a proof is that these proofs can be checked

either by hand or automatically by computer. Checking formal proofs is usually

simple, whereas finding proofs (automated theorem proving) is generally hard. An

informal proof in the mathematics literature, by contrast, requires weeks of peer

review to be checked, and may still contain errors. Informal proofs of everyday

mathematical practice are unlike the proofs of proof theory. They are rather like

high-level sketches that would allow an expert to reconstruct a formal proof at least

in principle, given enough time and patience. For most mathematicians, writing a

fully formal proof is too pedantic and long-winded to be in common use.

In proof theory, proofs are typically presented as recursively-defined data

structures such as lists (as shown here), or trees, which are constructed accord-

ing to the axioms and inference rules of the logical system. As such, proof theory

is syntactic in nature, in contrast to model theory, which is semantic in nature.

Every inference system can be converted to a proof procedure if a fair strategy

is adapted to control the use of inference rules. Fair strategy ensures that if an

inference rule is applicable at some point to produce a new formula, this new for-

mula will be derived eventually. If every inference rule is sound, the corresponding

proof procedure is sound. Extra effort is needed in general to show that the proof

procedure is complete, or halting.

We have defined a formal notion of proof as a sequence of formulae, starting

with axioms and continuing with theorems derived from earlier members of the

sequence by rules of inference.

Besides structural proof theory, some of the major areas of proof theory include

ordinal analysis, provability logic, reverse mathematics, proof mining, automated

theorem proving, and proof complexity.
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1.3.4 Computability Theory

Computability theory, used to be called recursion theory, is a branch of mathe-

matical logic, of computer science, and of the theory of computation that originated

in the 1930s with the study of computable functions. The field has since expanded

to include the study of generalized computability and definability. In these areas,

computability theory overlaps with proof theory and set theory.

1.3.4.1 Recursion

The main reason for the name of “recursion theory” is that recursion is used

to construct objects and functions.

Example 1.3.11. Given a constant symbol 0 of type T and a function symbol

s : T −→ T , the objects of type T can be recursively constructed as follows:

1. 0 is an object of type T ;

2. If n is an object of type T , so is s(n);

3. Nothing else will be an object of T .

If we let s0(0) = 0, s1(0) = s(0), s2(0) = s(s(0)), etc., then T can be expressed as

T = {0, s(0), s2(0), s3(0), ..., si(0), ...}.

Obviously, there exists a bijection f between T and N , the set of natural numbers.

That is, for any i ∈ N , f(i) = si(0). By giving s the meaning of successor of a

natural number, mathematicians use T as a definition of N . 2

Functions can be recursively defined in a similar way. Let pre, add, sub, mul

be the predecessor, addition, subtraction, and multiplication functions over the set

of natural numbers:

pre(0) = 0;
pre(s(x)) = x.

add(0, y) = y;
add(s(x), y) = s(add(x, y)).

sub(x, 0) = x;
sub(x, s(y)) = sub(pre(x), y)).

mul(0, y) = 0;
mul(s(x), y) = add(mul(x, y), y).
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Note that the subtraction defined above is different from the subtraction over the

integers: we have sub(si(0), sj(0)) = 0 when i ≤ j. This function holds the property

that sub(x, y) = 0 iff x ≤ y.

The above functions are examples of so-called primitive recursive functions,

which are total and computable functions. The set of general recursive functions

include all primitive recursive functions, and some functions which are not com-

putable.

1.3.4.2 Backus-Naur Form (BNF)

In computer science, Backus–Naur form (BNF) is a notation technique for

context-free grammars, often used to describe the syntax of languages used in com-

puting, such as computer programming languages, document formats, instruction

sets and communication protocols. John Backus and Peter Naur are the first to use

this notation to describe ALGOL, an early programming language. BNF is applied

wherever formal descriptions of languages are needed. We will use BNF describe

the syntax of logic as a language.

BNF can be extended to define recursively constructed objects in a succinct

style. For example, the set of natural numbers is expressed in BNF as follows:

〈N〉 ::= 0 | s(〈N〉)

The symbol ::= can be understood as “is defined by”, and “—” separates

alternative parts of a definition. The above formula can be read as follows: the

member of N is either 0, or s applying to (another) member of N ; nothing else will

be in N . From this example, we see that to define a set N , we use any member of

N is denoted by 〈N〉 and is defined by the items on the right of ::=. For a recursive

definition, we have a basic case (such as 0) and a recursive case (such as s(〈N〉)).
Items like 〈N〉 are called variables in a context-free grammar and items like 0, s, (,

and ) are called terminals. A context-free grammar specifies what set of strings of

terminals can be derived for each variable. For the above example, the set of strings

derived from 〈N〉 is
{0, s(0), s2(0), s3(0), ..., si(0), ...}

This set is the same as the objects defined in Example 1.3.11, but BNF gives us a

formal and compact definition.

Example 1.3.12. To define the set Σ∗ of all strings (of finite length) over the set

Σ of symbols, called the alphabet, we may use BNF. For instance, if Σ = {a, b, c},
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then Σ∗ is the set of all binary strings:

〈symbol〉 ::= a | b | c
〈Σ∗s〉 ::= ϵ | 〈symbol〉〈Σ∗〉

That is, the empty string ϵ ∈ Σ∗; if w ∈ Σ∗, for every symbol a ∈ Σ, aw ∈ Σ∗;

nothing else will be in Σ∗. Thus, Σ∗ contains exactly all the strings built on Σ:

Σ∗ = {ϵ, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc, aaa, ...}.

2

Since there is a one-to-one corresponding between a string and a sequence,

sequences can be also recursively defined in a similar way. In fact, all recursively

constructed objects can be defined this way.

1.3.4.3 Computable Functions

One of the basic questions addressed by computability theory is the following:

• What does it mean for a function on the natural numbers to be computable?

The answer to the question is that the function is computable if there exists an

algorithm which computes the function. Logicians and computer scientists, includ-

ing Turing and Church, gave different definitions of algorithms based on different

computing models. These computing models can be Turing machines, Church’s

λ-calculus, general recursive functions, Markov algorithms, Chomsky’s grammars,

Minski’s counter machine, or von Neumann model. One point in common is that,

by algorithm, we mean that the computing process will halt in a finite number of

steps.

In section 1.3.1.4, we saw that the set of functions, which take a natural

number and return a Boolean value, is uncountable. However, the set of algorithms

is countable, because every algorithm can be recorded by a text file of finite length

(which can be regarded as a binary string), and the set of binary strings is countable.

In other words, we have only a countable set of algorithms but the functions on

the natural numbers are uncountable. As a result, there exist massive number of

functions on the natural numbers which are not computable.

One notable non-computable problem is to decide if a Turing machine T will

halt on an input x. If we encode T and x as a single positive integer 〈T, x〉, and
define the function f(〈T,w〉) = 1 if T halts on w and 0, otherwise, then f is a

non-computable function on the natural numbers. Note that the Turing machine
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T can be replaced by any other equivalent computing model and the result still

holds. This follows from the Church–Turing thesis (also known as computability

thesis, the Church–Turing conjecture), which states that a function on the natural

numbers can be calculated by an effective method if and only if it is computable by

a Turing machine.

The concept of Turing completeness says that if a computing model has the

ability to simulate a Turing machine. A computing model that is Turing complete is

theoretically capable of doing all tasks done by computers; on the other hand, nearly

all computers are Turing complete if the limitation of finite memory is ignored.

Some logics are also Turing complete as they can also be used to simulate a Turing

machine. As a result, some problems such as the halting problem for such logics

are undecidable. Computability theory will help us to decide if there exist or not

decision procedures for some logic, and we will see some examples in Chapter 9.

One of the main aims of this book is to present algorithms invented for logic

and the software tools built up based on these algorithms. That is why we will

invest a disproportionate amount of effort (by the standards of conventional logic

textbooks) in the algorithmic aspect of logic. Set theory and model theory help us

to understand and specify the problems; proof theory helps us to create algorithms;

and computability theory helps us to know what problems have algorithms and

what problems do not have algorithms at all.

1.4 Exercise Problems

1. Decide if the following sentences are statements or not. If they are, use propo-

sitional symbols and logic connectives to express them.

(a) If I win the lottery, I’ll be poor.

(b) The man asked, “shut the door behind you.”

(c) Today is the first day of the school.

(d) Today is either sunny or cloudy.

2. Answer the questions in the following examples regarding logical fallacies.

(a) During their argument, Anthony tells Marie that he hates her and wished

that she would get hit by a car. Later that evening, Anthony receives a

call from a friend who tells him that Marie is in the hospital because she

was struck by a car. Anthony immediately blames himself and reasons

that if he hadn’t made that comment during their fight, Marie would not

have been hit. What logical fallacy has Anthony committed?
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(b) Louise is running for class president. In her campaign speech she says,

“My opponent does not deserve to win. She is a smoker and she cheated

on her boyfriend last year.” What fallacy has Louise committed?

(c) Bill: “I think capital punishment is wrong.” Adam: “No it isn’t. If it

was wrong, it wouldn’t be legal.” Of which fallacy is this an example?

(d) Ricky is watching television when he sees a commercial for foot cream.

The commercial announcer says, “This is the best foot cream on the

market because no other foot cream makers have been able to prove

otherwise!” What fallacy has the announcer committed?

(e) Maria has been working at her current job for more than 30 years at the

same wage. She desperately wants a raise so she approaches her boss to

ask for one. She says, “You are one of the kindest people I know. You

are smart and good looking and I really love your shoes.” What type of

fallacy is this?

(f) Jeff’s mom is concerned when she finds out that he skipped class one

day. She tells him that she is concerned that since he skipped one class,

he will start skipping more frequently. Then he will drop out altogether,

never graduate or get into college, and end up unemployed and living

at home for the rest of his life. What type of fallacy has Jeff’s mom

committed?

(g) Dana is trying to raise money for her university’s library. In her address

to the board of trustees, she says, “We must raise tuition to cover the

cost of new books. Otherwise the library will be forced to close.” Of

what fallacy is this an example?

(h) Jeff is preparing to create a commercial for a new energy drink. He visits

a local high school and surveys students in an English class about their

beverage preferences. The majority of the class says they prefer grape

flavored drinks, so Jeff tells his superiors that grape is the flavor favored

most by high school students. What error in reasoning has Jeff made?

3. Let A = {0, 1}. P(A) = ? P(P(A)) = ?

4. Let a, b be real numbers and a < b. Define a function f : (0, 1) −→ (a, b) by

f(x) = a + x(b − a), where (a, b) denotes the interval {x | a < x < b}. Show

that f is bijective.

5. Answer the following questions with justification.
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(a) Is the set of all odd integers countable?

(b) Is the set of real numbers in the interval (0, 0.1) countable?

(c) Is the set of angles in the interval (0o, 90o) countable?

(d) Is the set of all points in the plane with rational coordinates countable?

(e) Is the set of all Java programs countable?

(f) Is the set of all words using an English alphabet countable?

(g) Is the set of sands on the earth countable?

(h) Is the set of atoms in the solar system countable?

6. Barber’s paradox: In a village, there is only one barber who shaves all

those, and those only, who do not shave themselves. The question is, does

the barber shave himself? Let the relation s(x, y) be that “x shaves y” and b

denote the barber.

(a) Define A to be the set of the people shaved by the barber using s(x, y)

and b.

(b) Define B to be the set of the people who does not shave himself.

(c) Use A and B to show that the answer to the question “does the barber

shave himself?” leads a contradiction.

7. Prove that any subset of a countable set is countable.

8. Prove that the set of rational numbers is countable.

9. Prove that the set N × {a, b, c} is countable, where N is the set of natural

numbers. Your proof should not use the property that countable sets are

closed under Cartesian product.

10. Decide with a proof that the set Nk is countable or not, where N is the set

of natural numbers and k ∈ N .

11. Decide with a proof that the set of all functions f : {0, 1} −→ N is countable

or not.

12. Prove that if both A and B are countable, so is A ∪B.

13. Prove that if A is uncountable and B is countable, then A−B is uncountable.

14. Prove that the set {a, b, c}∗ of all strings (of finite length) on {a, b, c} is count-
able.
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15. If a language is any set of strings in Σ∗, where Σ 6= ∅, prove that the set of all
languages is uncountable.

16. Suppose the set of natural numbers is constructed by the constant 0 and

the successor function s. Provide a definition of < and ≤ over the natural

numbers. No functions are allowed to use.

17. Provide a definition of power function, pow(x, y), which computes xy, over the

natural numbers built up by 0 and the successor function s. You are allowed

to use the functions add (addition) and mul (multiplication).

18. Provide a BNF (Backus–Naur form) for the set of binary trees, where each

non-empty node contains a natural number. You may use null : Tree for the

empty tree and node : Nat, Tree, Tree −→ Tree for a node of the tree.
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CHAPTER 2

PROPOSITIONAL LOGIC

Following model theory, we will present propositional logic as a language. We

first introduce the syntax of this language and then its semantics.

2.1 Syntax

The syntax of propositional logic specifies what symbols and what sentences

are used in the logic. Propositional logic uses propositional variables and logical

operators as the only symbols. In the first chapter, we said that propositional

variables are symbols for denoting statements and take only true and false as truth

values. For convenience, we will use 1 for true and 0 for false. We will treat > and

⊥ as the two nullary logical operators such that the truth value of > is always 1

and the truth value of ⊥ is always 0. Note that > and ⊥ are syntactic symbols

while 1 and 0 are semantic symbols.

2.1.1 Logical Operators

Mathematicians use the words “not”, “and”, “or”, etc., for operators that

change or combine propositions. The meaning of these logical operators can be

specified as a function which takes Boolean values, and returns a Boolean value.

These functions are also called . For example, if p is a proposition, then so is ¬p
and the truth value of the proposition ¬p is determined by the truth value of p

according to the meaning of ¬: ¬(1) = 0 and ¬(0) = 1. That is, if the value of p is

1, then the value of ¬(p) is 0; if the value of p is 0, then the value of ¬(p) is 1.
In general, the definition of a Boolean function is displayed by a table where

the output of the Boolean function is given for each possible truth values of the

input variables. Such a table is called truth table. For example, the meanings of ∧,
∨, and → are defined by the following truth table: This table has four lines, since

there are four pairs of Boolean values for the two variables:

According to this table, the truth value of p∧ q is 1 when both p and q are 1.

The truth value of p∨ q is 1 when either p or q, or both are true. This is not always

the intended meaning of “or” in everyday dialog, but this is the standard definition

in logic. So if a logician says, “You may have cake, or you may have ice cream,” he

means that you could have both. If you want to exclude the possibility of having
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p q p ∧ q p ∨ q p→ q p⊕ q p↔ q

1 1 1 1 1 0 1
1 0 0 1 0 1 0
0 1 0 1 1 1 0
0 0 0 0 1 0 1

Table 2.1.1: Definitions of ∧, ∨, →, ⊕, and ↔

both cake and ice cream, you should combine them with the exclusive-or operator,

⊕, which is also defined in Table 2.1.1. The exclusive disjunction ⊕ corresponds to

addition modulo 2 and is therefore given the symbol + when the boolean values are

assumed to be 0 and 1.

In Table 2.1.1, we also give the definition of ↔ (if and only if). If p denotes

“Tom wears a blue jean” and q denotes “Sam wears a blue jean”, then the formula

p↔ q asserts that “Tom and Sam always wear a blue jean at the same time”. That

is, the value of p↔ q is 1 when p and q have the same truth value: either both are

1 or both are 0. Note that the p ⊕ q and p ↔ q always have opposite values, that

is, ¬(p⊕ q) and p↔ q always have the same value.

The truth table for implications is also given in Table 2.1.1. This operator

is worth remembering, because a large fraction of all mathematical statements are

of the if-then form. Now let’s figure out the truth of the following example: If

elephants fly, I’ll be on Mars. What is the truth value of this statement? Elephants

do not fly, so the truth value of p is 0 and we fall to the last two lines of Table 2.1.1:

In both lines, p→ q is 1. In section 1.2.2 on Informal Fallacies, we pointed out that

with a false premise, you can make any conclusion, so that the composed statement

is always true. However, an always true statement has no value in reasoning, and

it does not imply the causal connection between the premise and the conclusion of

an implication. In logic, it is important to accept the fact that logical implications

ignore causal connections.

Let B = {0, 1}, any logical operator is a function f : Bn −→ B. There are

two nullary operators (when n = 0): > = 1 and ⊥ = 0. There are four unary

operators (when n = 1): f1(x) = 0; f2(x) = 1; f3(x) = x; and f4(x) = ¬x. There

are 16 binary operators (when n = 2), and ∧, ∨, →, ⊕, and ↔ are some of them.

We may use operators when n > 2. For example, let ite : B3 −→ B be the if-then-

else operator, if we use a truth table for the meaning of ite(p, q, r), then the truth

table will have eight lines. In general, there are 22
n
n-ary Boolean functions, as the

number of functions f : A −→ B is |B||A|, where |A| = |Bn| = |B|n = 2n.
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2.1.2 Formulas

Not every combination of propositional variables and logic operatorsis makes

sense. For instance, p () q∨ ¬) is a meaningless string of symbols. The propositional

formulas are the set of well-formed strings built up by propositional variables and

logical operators by a rigorous set of rules.

We may add/delete operators or propositional variables at will in the above

definition. According to the definition, every member of Formulas is either the

constants > or ⊥, a propositional variable of VP , or the negation of a well-formula,

or a binary operator applying to two formulas. Here are some examples:

>, p, ¬q, (p ∧ ¬q), (r → (p ∧ ¬q)), ((p ∧ ¬q) ∨ r)

Throughout this chapter, we will use p, q, ..., for propositional variables, and

A, B, ..., for formulas.

For every binary operator, we introduce a pair of parentheses, and some of

them may be unnecessary and we will use a precedence relation over all the oper-

ators to remove them. The typical precedence is given as the following list, where

operators with higher precedence go first. Note that we assign ⊕ and ↔ the same

precedence.

¬, ∧, ∨, →, {⊕,↔}.
Thus (r → (p∧¬q)) can be simply written as r → p∧¬q, and we will not take

it as (r → p)∧¬q, because ∧ has higher precedence than→. Similarly, ((p∧¬q)∨r)
is written as p ∧ ¬q ∨ r without ambiguity.

When a well-formed expression, like the formulas defined above, is represented

by a string (a sequence of symbols), we use parentheses and commas to identify the

structures of the expression. Such a structure can be easily identified by a tree,

where we do not need parentheses and commas.

Definition 2.1.1. A tree for formula A is defined as follows:

1. If A is p, >, or ⊥, the tree is a single node with A as its label.

2. If A = ¬B, then the root node is labeled with ¬ and has one branch pointing

to the formula tree of B.

3. IF A = B op C, then the root node is labeled with op and has two branches

pointing to the formula trees of B and C, respectively.

For example, the formula tree of (¬p ∧ q) → (p ∧ (q ∨ ¬r)) is displayed in

Figure 2.1.1. The tree representation of a formula does not need parentheses.

A formula and its formula tree are the two representations of the same object.

We are free to choose one of the representations for the convenience of discussion.
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Figure 2.1.1: The formula tree for (¬p ∧ q)→ (p ∧ (q ∨ ¬r))

Definition 2.1.2. Given a formula A, we say B is a subformula A if either B = A

or A = (A1 op A2), where op is a binary operator, or A = ¬A1 and B is a subformula

of A1 or A2. If B is a subformula of A and B 6= A, then B is a proper subformula

of A.

For example, ¬p ∨ ¬(q ∨ r) contains p, q, r, ¬p, q ∨ r, and ¬(q ∨ r) as proper

subformulas. Intuitively, a subformula is just a formula represented by any subtree

in the formula tree.

Definition 2.1.3. Given a subformula B of A and another formula C, we use

A[B ↼ C] to denote the formula obtained by substituting all occurrences of B by C

in A. If B is a propositional variable, then A[B ↼ C] is called an instance of A.

For example, if A is ¬p ∨ ¬(q ∨ r), B is ¬(q ∨ r), and C is ¬q ∧ ¬r, then
A[B ↼ C] is ¬p∨ (¬q ∧¬r). A[p ↼ p∧ q] = ¬(p∧ q)∨¬(q ∨ r) is an instance of A.

2.2 Semantics

In the previous section, we talked about Boolean values, truth tables, and

meanings of logical operators, which are, strictly speaking, semantic concepts of the

logic. Now, let us talk about meaning of propositional variables and formulas.

The informal meaning of a propositional variable is the statement that sym-

bol represents. In different applications, the same symbol can represent different

statements, thus has different meanings. However, each statement can have only
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two truth values, i.e., true, or false. We will use these truth values of proposi-

tional variables, extending to the formulas which contain them, as the semantics of

propositional logic.

2.2.1 Interpretations

A propositional variable may be assigned true or false. This truth value as-

signment is considered to be the semantics of the variable. For a formula, an as-

signment of truth values to every propositional variable is said be an interpretation

of the formula. If A is a formula built on the propositional variables VP , then an

interpretation of A is the function σ : VP −→ {1, 0}. It is easy to check that there

are 2|VP | distinct interpretations.

Suppose σ is an interpretation over VP = {p, q} such that σ(p) = 1 and

σ(q) = 0. We may write σ = {p 7→ 1, q 7→ 0}. We may use (1, 0) for the same σ,

assuming VP is a list (p, q) and σ(p, q) = (1, 0).

An alternative representation of an interpretation σ is to use a subset of VP .

Given σ, let Xσ = {x ∈ VP | σ(x) = 1}. Then there is bijection between σ and

Xσ. So we may use Xσ to represent σ. For example, if VP = {p, q}, then the four

interpretations over VP is the power set of VP :

2VP = {∅, {p}, {q}, {p, q}}

Another alternative representation of σ is to use a set of literals. A literal is

either a propositional variable or the negation of a variable. Let

Yσ = Xσ ∪ {¬y ∈ VP , y 6∈ Xσ}

then Yσ is a set of literals such that every variable of VP appears in Yσ exactly once.

If VP = {p, q} and Xσ = ∅, then Yσ = {¬p,¬q}; if Xσ = {p}, Yσ = {p,¬q}, etc.
That is, by adding the negations of the missing variables in Xσ, we obtain such a

representation Yσ for σ.

Given σ, we can check the truth value of the formula under σ, denoted by

σ(A). This notation means we treat σ as a function from the formulas to {0, 1}, as
the unique extension of σ : VP −→ {0, 1}. On the other hand, the notation Aσ is

used to denote the formula obtained by substituting each propositional variable p

by σ(p).

Example 2.2.1. Given the formula A = p∧¬q∨r, and an interpretation σ = {p 7→
1, q 7→ 1, r 7→ 0}, we represent σ by σ = {p, q,¬r}. Replace p by 1, q by 1, and r

by 0 in A, we have Aσ = 1 ∧ ¬1 ∨ 0. Applying the definitions of ¬, ∧, and ∨, we
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obtain the truth value 0. In this case, we say the formula is evaluated to 0 under σ,

denoted by σ(A) = 0. Given another interpretation σ′ = {p, q, r}, the same formula

will be evaluated to 1, i.e., σ′(A) = 1. 2

Recall that we use A[B ↼ C] to denote an instance of A where every occur-

rence of B is replaced by C. An interpretation σ is a special case of the substitution

of formulas where B is a variable and C is either 1 or 0. For example, if σ = {p,¬q},
then Aσ = A[p ↼ 1][q ↼ 0]. Strictly speaking, Aσ is not a propositional formula:

it is the meaning of A under σ. To obtain σ(A), we may use the algorithm eval.

Algorithm 2.2.2. The algorithm eval will take a formula A and an interpretation

σ, and returns a Boolean value.

proc eval(A, σ)

if A = > return 1;

if A = ⊥ return 0;

if A ∈ VP return σ(A);

if A is ¬B return ¬eval(B, σ);

else A is (B op C) return eval(B, σ) op eval(C, σ);

Example 2.2.3. Let σ = {p,¬q}. Then the execution of eval(p → p ∧ ¬q, σ) will
return 1:

eval(p→ p ∧ ¬q, σ) calls
eval(p, σ), which returns 1; and

eval(p ∧ ¬q, σ), which calls

eval(p, σ), which returns 1; and

eval(¬q, σ), which calls

eval(q, σ), which returns 0; and

returns ¬0, i.e., 1;
returns 1 ∧ 1, i.e., 1;

returns 1→ 1, i.e., 1.

2

What eval does is to travel the formula tree of A bottom-up, if the node is

labeled with a variable, use σ to get the truth value; otherwise, compute the truth

value of this node under σ using the operator at that node with the truth values

from its children nodes. The process of running eval is exactly what we do when

constructing a truth table for p → p ∧ ¬q. The truth values under p and q in the
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truth table give us all the interpretations σ and the truth values of A = ¬q, p∧¬q,
or p→ p ∧ ¬q are the values of eval(A, σ).

p q ¬q p ∧ ¬q p→ p ∧ ¬q
0 0 1 0 1
0 1 0 0 1
1 0 1 1 1
1 1 0 0 0

Theorem 2.2.4. Algorithm eval(A, σ) returns 1 iff σ(A) = 1, and runs in O(|A|)
time, where |A| denotes the number of symbols, excluding parentheses, in A.

|A| is also the number of nodes in the formula tree of A. The proof is left as

an exercise.

Corollary 2.2.5. For any formulas A and B, and any interpretation σ, the follow-

ing equations hold.
σ(A ∨B) = σ(A) ∨ σ(B)
σ(A ∧B) = σ(A) ∧ σ(B)

σ(¬A) = ¬σ(A)

The truth value of a formula in propositional logic reflects the two foundational

principles of Boolean logics: the principle of bi-valence, which allows only two truth

values, and the principle of extensibility that the truth value of a general formula

depends only on the truth values of its parts, not on their informal meaning.

2.2.2 Models, Satisfiability, and Validity

Interpretations play a very important role in propositional logic and introduce

many important concepts.

Definition 2.2.6. Given a formula A and an interpretation σ, σ is said to be a

model of A if eval(A, σ) = 1. If A has a model, A is said to be satisfiable.

Given a set VP of propositional variables, we will use IVP to denote the set

of all interpretation over VP . For example, if VP = {p, q}, then IVP = {{p 7→
1, q 7→ 1}, {p 7→ 1, q 7→ 0}, {p 7→ 0, q 7→ 1)}, {p 7→ 0, q 7→ 0}, or abbreviated as

IVP = {(1, 1), (1, 0), (0, 1), (0, 0)} if p and q are understood from the context. In

general, |IVP | = 2|VP |, as each variable has two values. We may use eval to look for

a model of A by examining every interpretation in IVP .

Definition 2.2.7. Given a formula A, let M(A) be the set of all models of A. If

M(A) = ∅, A is said to be unsatisfiable; IfM(A) = IVP , i.e., every interpretation
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is a model of A, then A is said to be valid, or tautology. We write |= A if A is

valid.

Being a tautology is different from being useful or efficient. For instance, the

statement p ∨ ¬p is true but unlikely to be very useful; it is neither efficient (the

formula > is more precise).

If there is a truth table for a formula A,M(A) can be easily obtained from the

truth table, as the truth values under the variables of A are all the interpretations

and the models of A are those rows in the table where the truth value of A is 1.

Example 2.2.8. Let VP = {p, q}. IfA is ¬p→ ¬q, thenM(A) = {(1, 1), (1, 0), (0, 0)}.
If B is p ∨ (¬q → ¬p), thenM(B) = IVP . FromM(A) andM(B), we know that

both A and B are satisfiable, and B is also valid, i.e., |= B is true. 2

A valid formula is one which is always true in every interpretation, no matter

what truth values its variables may take, that is, every interpretation is its model.

The simplest example is >, or p ∨ ¬p. There are many formulas that we want to

know if they are valid, and this is done by so-called theorem proving, either by hand

or automatically.

We may think about valid formulas as capturing fundamental logical truths.

For example, the transitivity property of implication states that if one statement

implies a second one, and the second one implies a third, then the first implies the

third. In logic, the transitivity can be expressed as the formula

(p→ q) ∧ (q → r)→ (p→ r)

The validity of the above formula confirms the truth of this property of implication.

There are many properties like this for other logical operators, such as the commu-

tativity and associativity of ∧ and ∨, and they all can be stated by a tautology.

Theorem 2.2.9. (Substitution) Let A be a tautology, so is any instance of A.

That is, if p is a propositional variable in A and B is any formula, then A[p ↼ B]

is a tautology.

Proof. For any interpretation σ of A[p ↼ B], let σ(p) = σ(B). Applying σ to the

formula trees of A and A[p ↼ B], then the truth values of all the nodes of A must be

identical to those of the corresponding nodes of A[p ↼ B]. Since A is a tautology,

the root node of A must be 1 under σ, so the root node of A[p ↼ B] must the same

truth value, i.e., 1. Since σ is arbitrary, A[p ↼ B] must be a tautology. 2

The significance of the above theorem is that if we have a tautology for one

variable, the tautology holds when the variable is substituted by any formula. For
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example, from p ∨ ¬p, we have A ∨ ¬A for any A. On the other hand, when we

try to prove a tautology involving symbols A, B, ..., we may treat each of these

symbols as a propositional variable. For example, to prove (A ∧B)↔ (B ∧A), we

may prove instead (p ∧ q)↔ (q ∧ p).

An unsatisfiable formula is one which does not have any model, that is, no

interpretation is its model. The simplest example is 0, or p ∧ ¬p. Validity and

unsatisfiability are dual concepts, as stated by the following proposition.

Proposition 2.2.10. A formula A is valid iff ¬A is unsatisfiable.

From the view of theorem proving, proving the validity of a formula is as hard

(or as easy) as proving its unsatisfiability.

The following theorem shows the relationship between logic and set theory.

Theorem 2.2.11. For any formulas A and B,

(a) M(A ∨B) = M(A) ∪M(B);
(b) M(A ∧B) = M(A) ∩M(B);
(c) M(¬A) = IVP −M(A).

Proof. To showM(A ∨ B) =M(A) ∪M(B), we need to show that, for any inter-

pretation σ, σ ∈ M(A ∨ B) iff σ ∈ M(A) ∪M(B). By definition, σ ∈ M(A ∨ B)

iff σ(A∨B) = 1. By Corollary 2.2.5, σ(A∨B) = σ(A)∨ σ(B). So σ(A∨B) = 1 iff

σ(A) = 1 or σ(B) = 1. σ(A) = 1 or σ(B) = 1 iff σ(A)∨σ(B) = 1. σ(A)∨σ(B) = 1

iff σ ∈M(A) ∪M(B).

The proof of the other two is left as exercise. 2

Example 2.2.12. Let VP = {p, q}. M(p) = {(1, 1), (1, 0)},M(q) = {(1, 1), (0, 1)};
M(¬p) = IVP − M(p) = {(0, 1), (0, 0)}, and M(¬p ∨ q) = M(¬p) ∪ M(q) =

{(1, 1), (0, 1), (0, 0)}. 2

2.2.3 Equivalence

In natural language, one statement can be stated in different forms with the

same meaning. For example, “if I won the lottery, I must be rich now.” This

meaning can be also expressed “I am not rich, because I didn’t win the lottery.”

Introducing p for “I won the lottery” and q for “I’m rich”, the first statement is p→ q

and the second statement is ¬q → ¬p. It happens thatM(p→ q) =M(¬q → ¬p),
as Table 2.2.1 shows that both formulas have the same set of models. Each line of

the truth table defines an interpretation; if a formula is true in the same line, that
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p q ¬p ¬q p→ q ¬p ∨ q ¬q → ¬p q → p

1 1 0 0 1 1 1 1
1 0 0 1 0 0 0 1
0 1 1 0 1 1 1 0
0 0 1 1 1 1 1 1

Table 2.2.1: The equivalence of the implication p→ q and its contrapositive ¬q →
¬p.

interpretation is a model. The table also reveals thatM(p→ q) =M(¬p ∨ p). In

logic, these formulas are equivalent.

The formula ¬q → ¬p is called the contrapositive of the implication p → q.

The truth table shows that an implication and its contrapositive are equivalent:

they are just different ways of saying the same thing. In contrast, the converse of

p → q is the formula q → p, which has a different set of models (as shown by the

second and third lines in Table 2.2.1).

Definition 2.2.13. Given two formulas A and B, A and B are said to be logically

equivalent ifM(A) =M(B), denoted by A ≡ B.

A ≡ B means that, for every interpretation σ, σ(A) = σ(B), so σ ∈M(A) iff

σ ∈M(B). The relation ≡ over formulas is an equivalence relation as ≡ is reflexive,

symmetric, and transitive. The relation ≡ is also a congruence relation as A ≡ C

and B ≡ D imply that ¬A ≡ ¬C and A o B ≡ C o D for any binary operator o.

This property allows us to obtain an equivalent formula by replacing a part of the

formula by an equivalent one. The relation ≡ plays a very important role in logic

as it is used to simplify formulas, to convert formulas into equivalent normal forms,

or to provide alternative definitions for logical operators.

In arithmetic one writes simply s = t to express that the terms s, t represent

the same function. For example, (x+ y)2 = x2 + 2xy + y2 expresses the equality of

values of the left-and right-hand terms for all x, y. In propositional logic, however,

we use the equality sign like A = B only for the syntactic identity of the formulas

A and B. Therefore, the equivalence of formulas must be denoted differently, such

as A ≡ B.

Theorem 2.2.14. For any formulas A, B, and C, where B is a subformula of A,

and B ≡ C, then A ≡ A[B ↼ C].

Proof. For any interpretation σ, σ(B) = σ(C), since B ≡ C. Apply σ to the formula

trees of A and A[B ↼ C] and compare the truth values of all corresponding nodes
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of the two trees, ignoring the proper subtrees of B and C. Since σ(B) = σ(C), they

must have the same truth values, that is, σ(A) = σ(A[B ↼ C]). 2

The equivalence relation is widely used to simplify formulas and has real prac-

tical importance in computer science. Formula simplification in software can make

a program easier to read and understand. Simplified programs may also run faster,

since they require fewer operators. In hardware, simplifying formulas can decrease

the number of logic gates on a chip because digital circuits can be described by log-

ical formulas. Minimizing the logical formulas corresponds to reducing the number

of gates in the circuit. The payoff of gate minimization is potentially enormous: a

chip with fewer gates is smaller, consumes less power, has a lower defect rate, and

is cheaper to manufacture.

Suppose a formula A contains k propositional variable, then A can be reviewed

as one of Boolean function f : {1, 0}k −→ {1, 0}. For example, ¬p ∨ q contains

two variables and can be regarded as a Boolean function f(p, q). The truth table

(Table 2.2.1) reveals that f(p, q), i.e., ¬p ∨ q, always has the same truth value as

p → q, so f and → are the same function. As a result, we may use ¬p ∨ q as the

definition of →. As another example, the if-then-else function, ite : {1, 0}3 −→
{1, 0}, can be defined by ite(1, B, C) = B and ite(0, B, C) = C, instead of using a

truth table of eight lines.

The following proposition lists many equivalent pairs of the formulas.

Proposition 2.2.15. Assume A, B, and C are any formulas.

A ∨ A ≡ A; A ∧ A ≡ A;
A ∨B ≡ B ∨ A; A ∧B ≡ B ∧ A;
(A ∨B) ∨ C ≡ A ∨ (B ∨ C); (A ∧B) ∧ C ≡ A ∧ (B ∧ C);
A ∨ ⊥ ≡ A; A ∧ > ≡ A;
A ∨ ¬A ≡ >; A ∧ ¬A ≡ ⊥;
A ∨ > ≡ >; A ∧ ⊥ ≡ ⊥;
A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C); A ∧ (B ∨ C) ≡ (A ∧B) ∨ (A ∧ C);
¬> ≡ ⊥; ¬⊥ ≡ >; ¬¬A ≡ A;
¬(A ∨B) ≡ ¬A ∧ ¬B; ¬(A ∧B) ≡ ¬A ∨ ¬B;
A→ B ≡ ¬A ∨B; A→ B ≡ ¬B → ¬A;
A⊕B ≡ (A ∨B) ∧ (¬A ∨ ¬B); A↔ B ≡ (A ∨ ¬B) ∧ (¬A ∨B).

One way to show that two formulas are equivalent if we can prove the validity

of a formula, as given by the following proposition:

Proposition 2.2.16. For any formulas A and B, A ≡ B iff |= A ↔ B; |= A iff

A ≡ >.
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Proof. A ≡ B means, for any interpretation σ, σ(A) = σ(B), which means σ(A ↔
B) = 1, i.e., any σ is a model of A ↔ B. The proof of the second part is omitted.

2

The above proposition shows the relationship between ≡, which is a semantic

notation, and ↔, which is a syntactical symbol. Moreover, Theorem 2.2.9 allows

us to prove the equivalences using the truth table method, treating A, B, and C as

propositional variables. For example, from (p→ q) ≡ (¬p∨ q), we know (p→ q)↔
(¬p ∨ q) is tautology; from (p→ q)↔ (¬p ∨ q), we know (A→ B)↔ (¬A ∨ B) is

a tautology for any formulas A and B, thus (A→ B) ≡ (¬A ∨B).

2.2.4 Entailment

In natural languages, given a set of premises, we like to know what conclusions

can be drawn from the premises. If we represent these premises by a single formula,

it will be the conjunction of the premises. Since ∧ is commutative and associative,

a conjunction of formulas can be conveniently written as a set S of formulas. That

is, we assume that A1 ∧ A2 ∧ · · · ∧ An is equivalent to S = {A1, A2, · · · , An}. For

example, {A,B} ≡ A ∧B.

To catch the relation between the premises and the conclusion in logic, we

have the notion of entailment.

Definition 2.2.17. Given two formulas A and B, we say A entails B, or B is a

logical consequence of A, denoted by A |= B, ifM(A) ⊆M(B).

Thus, |= A and > |= A have the same meaning, i.e., A is valid.

The above definition allows many irrelevant formulas to be logical conse-

quences of A, including all tautologies and logically equivalent formulas. Despite

of this irrelevant relationship between A and B, the concept of entailment is indis-

pensable in logic. For instance, an inference rule is a pattern which takes formulas

as premises, and returns a formula as conclusion. To check the soundness of the

inference rule, we let the premises be represented by formula A and the conclusion

represented by B, and check if A |= B, i.e., B is a logical consequence of A. If the

number of variables is small, we may use the truth table method to check that if

every model of A remains to be a model for B.

Example 2.2.18. The modus ponens rule says that given the premises p→ q and

p, then we draw the conclusion q. Let A be (p→ q)∧p, thenM(A) = {(1, 1)}, and
M(q) = {(1, 1), (0, 1)}. SinceM(A) ⊆M(q), so q is a logical consequence of A, or

A |= B. 2



42

Proposition 2.2.19. The relation |= is transitive, that is, if A |= B and B |= C,

then A |= C.

The proof is left as an exercise.

Definition 2.2.20. Given a formula A, the set {B | A |= B} is called the theory

of A and is denoted by T (A). Every member of T (A) is called a theorem of A.

In the above definition, A can be a set of formulas to represent the conjunction

of its members.

Proposition 2.2.21. The following three statements are equivalent: (a) A |= B;

(b)M(A) ⊆M(B); and (c) T (B) ⊆ T (A).

Proof. By definition, A |= B iffM(A) ⊆M(B). Also by definition, B |= C for any

C ∈ T (B). If A |= B, then A |= C because of the transitivity of |=, so C ∈ T (A).
If T (B) ⊆ T (A), since B ∈ T (B), so B ∈ T (A), thus A |= B. 2

Corollary 2.2.22. For any formula A, T (>) ⊆ T (A) ⊆ T (⊥).

Proof. This holds because ⊥ |= A and A |= >. Note that T (>) contains every

tautologies and T (⊥) contains every formula. 2

Corollary 2.2.23. For any formulas A and B, the following statements are equiv-

alent: (a) A ≡ B; (b)M(A) =M(B); and (c) T (A) = T (B).

Proof. Since A ≡ B iff A |= B and B |= A, this corollary holds by applying

Proposition 2.2.21 twice. 2

Intuitively, we may regard a formula A as a constraint to mark some interpre-

tations as “no-model” andM(A) records those interpretations which are models of

A. The stronger the constraint, the less the set of models. The strongest constraint

is ⊥ (no interpretations left) and the weakest constraint is > (no constraints). On

the other hand, T (A) collects all constraints which do not mark any model inM(A)

as “no-model”.

Proposition 2.2.24. Let A and B be sets of formulas. If A ⊆ B ⊆ T (A), then
M(A) =M(B).

Proof. Let C = B − A. Since B ⊆ T (A), so C ⊆ T (A), or A |= C, which implies

M(A) ⊆M(C). ThusM(B) =M(A∪C) =M(A∧C) =M(A)∩M(C) =M(A),

becauseM(A) ⊆M(C). 2
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Corollary 2.2.25. If C ∈ T (A), then T (A) = T (A ∧ C).

Proof. Let B = A ∪ {C}, then A ⊆ B ⊆ T (A), so M(A) =M(B) =M(A ∧ C).

Hence T (A) = T (A ∧ C) by Corollary 2.2.23. 2

Corollary 2.2.26. If ⊥ ∈ T (A), then A is unsatisfiable.

Proof. Let B = A ∪ {⊥}, then A ⊆ B ⊆ T (A), soM(A) =M(B) =M(A ∧ ⊥) =
M(⊥) = ∅. 2

One task of theorem proving is to show that, given a set A of axioms, B is a

theorem of A, that is, B ∈ T (A). If we use the operator →, to show that B is a

logical consequence of A by showing (A → B) ∈ T (>), as given by the following

proposition.

Proposition 2.2.27. For any formulas A and B, A |= B iff |= A→ B.

Proof. A |= B means, for any interpretation σ, if σ(A) = >, then σ(B) must be

>; if σ(A) = ⊥, we do not care about the value of σ(B). The two cases can be

combined as σ(A) → σ(B) = 1, or σ(A → B) = 1, which means A → B is valid,

because σ is any interpretation. 2

The above proposition shows the relationship between |= (a semantic nota-

tion) and → (a syntactical symbol). The closure of the entailment relation under

substitution generalizes the fact that from p ∧ q |= p, all entailment of the form

A ∧ B |= A arise from substituting A for p and B for q, just like the closure of the

equivalence relation under substitution.

2.2.5 Theorem Proving and the SAT Problem

The concepts of validity, unsatisfiability, or entailment give rise difficult prob-

lems of computation. These three problems have the same degree of difficulty and

can be represented by theorem proving, which asks to check if a formula A ∈ T (>)
(A is valid), or ⊥ ∈ T (A) (A is unsatisfiable), or A is in T (B) (B entails A). The-

orem proving by truth table runs out of steam pretty quickly: a formula with n

variables has a truth table of 2n interpretations, so the effort grows exponentially

with the number of variables. For a formula with just 30 variables, that is already

over a billion interpretations to check!

The general problem of deciding whether a formula is A satisfiable is called

the SAT problem. One approach to SAT is to construct a truth table and check

whether or not a > ever appears, but as with testing validity, this approach quickly
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bogs down for formulas with many variables because truth tables grow exponentially

with the number of variables.

The good news is that SAT belongs to the class of NP problems, where

the solutions of these problems can be efficiently checked. For example, given an

interpretation σ, we can check in linear time (in terms of the size of A) if σ is a

model of A, thus showing A is satisfiable. This can be done using eval(A, σ)). If

a problem can be solved in polynomial time (with respect to the size of inputs), it

belongs to the class P . SAT is not known to be in P , and theorem proving is not

known to be in NP .

The bad news is that SAT is known to be the hardest problem in NP . That is,

if there exists a polynomial-time algorithm to solve SAT, then every problem in NP

can be solved in polynomial-time. These problems include many other important

problems involving scheduling, routing, resource allocation, and circuit verification

across multiple disciplines including programming, algebra, finance, and political

theory. This is the famous result of Cook and Levin who proved that SAT is the

first NP-complete problem. Does this mean that we cannot find an algorithm which

takes O(n100) time, where n is the size of A, to decide A is satisfiable? No one

knows. This is the most famous open problem in computer science: P = NP? It

is also one of the seven Millennium Problems: the Clay Institute will award you

$1,000,000 if you solve the P = NP problem. If P = NP , then SAT will be in P ;

theorem proving will be also in P . If P 6= NP , then theorem proving won’t be in

NP : it belongs the complement of the NP-complete problems. An awful lot hangs

on the answer and the general consensus is P 6= NP .

In the last twenty years, there have been exciting progress on SAT-solvers for

practical applications like digital circuit verification. These programs find satisfying

assignments with amazing efficiency even for formulas with thousands of variables.

In the next two chapters, we will study the methods for theorem proving and SAT-

solvers.

2.3 Normal Forms

By “normal form”, we mean every formula can be converted into an equiva-

lent formula with certain syntactical restriction on the use and position of Boolean

operators. If all equivalent formulas has a unique normal form, that normal form is

also called “canonical form”.

Since it is expensive to use truth table to prove the equivalence relation when

the number of variables is big, an alternative approach is to use algebra to prove

equivalence. A lot of different operators may appear in a propositional formula, so

a useful first step is to get rid of all but three: ∧,∨ and ¬. This is easy because
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each of the operators is equivalent to a simple formula using only these three. For

example, A→ B is equivalent to ¬A ∨B.

Using the equivalence relations discussed in the previous section, any propo-

sitional formula can be proved equivalent to a canonical form. What has this got

to do with equivalence? That’s easy: to prove that two formulas are equivalent,

convert them both to canonical forms over the set of variables that appear in any

formula. Now if two formulas are equivalent to the same canonical form, then the

formula are certainly equivalent. Conversely, if two formulas are equivalent, they

will have the same canonical form. We can also use canonical form to show a for-

mula is valid or unsatisfiable: it is valid if its canonical form is >; it is unsatisfiable
if its canonical form is ⊥.

In this section, we present four normal forms:

• negation normal form (NNF);

• conjunctive normal form (CNF);

• disjunctive normal form (DNF); and

• ITE normal form (INF).

Of the four normal forms, there exist canonical forms for the last three. How-

ever, the canonical forms derived from DNF or CNF are essentially copies of truth

tables, thus not effective enough for showing the equivalence relation. Only the

last one, INF, may have a compact size so that equivalence of two formulas can be

conveniently established in this canonical form.

We will define a normal form by giving a set of transformation rules, that is

a set of pairs of formulas, one is the left hand side and the other is the right hand

side of the rule. Most importantly, the left side of each rule is logically equivalent

to its right side. Each rule deals with a formula which is not in normal form and

the application of the rule on the formula will result in a new formula closer to

normal form. To convert any formula into a formula in normal form, we pick a rule,

matching the left side of the rule to a subformula and replacing the subformula by

the right side of the rule.

A general procedure for obtaining normal forms goes as follows:

1. If the formula is already in normal form then stop with success.

2. Otherwise it contains a subformula violating the normal form criteria.

3. Pick such a subformula and find the left hand side of a rule that matches.
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4. Replace the subformula by the right hand side of the rule and continue.

2.3.1 Negation Normal Form (NNF)

A formula A is said to be a literal if A is a variable (positive literal) or A is

¬p (negative literal), where p is a variable.

Definition 2.3.1. A propositional formula A is a negation norm form (NNF) if the

negation symbol ¬ appears in literals (as subformulas of A).

In a NNF, if we replace negative literals by a variable, there will be no ¬ in

the resulting formula.

Proposition 2.3.2. Every propositional formula can be transformed into an equiv-

alent NNF.

The proof is done by the following algorithm, which uses only equivalence

relations in the transformation.

Equivalence rules for obtaining NNF

Algorithm 2.3.3. The algorithm to convert a formula into NNF takes the following

three groups of rules:

1. Use the following equivalences to remove →, ⊕, and ↔ from the formula.

A→ B ≡ ¬A ∨B;
A⊕B ≡ (A ∨B) ∧ (¬A ∨ ¬B);
A↔ B ≡ (A ∨ ¬B) ∧ (¬A ∨B).

2. Use the de Morgan laws to push ¬ down to variables:

¬¬A ≡ A;
¬(A ∨B) ≡ ¬A ∧ ¬B;
¬(A ∧B) ≡ ¬A ∨ ¬B.

3. Use A ∨ ⊥ ≡ A, A ∨ > ≡ >, A ∧ ⊥ ≡ ⊥, and A ∧ > ≡ A, to simplify the

formula.

For example, > and ¬p∨ q are NNF. ¬(¬p∨ q) is not NNF; we may transform

it into p ∧ ¬q, which is NNF. If the input formula contains only ¬, ∨, ∧, and →,

it takes only linear time to obtain NNF by working recursively top-down. If ↔
or ⊕ are present, the computing time and the size of the output formula may be

exponential in terms of the original size, because the arguments of ↔ and ⊕ are

duplicated during the transformation.
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Definition 2.3.4. Given a NNF A, if we replace every occurrence of ∧ by ∨, ∨ by

∧, positive literal by its negation, and negative literal ¬p by its counterpart p, we

obtain a formula B, which is called the dual of A, denoted by B = dual(A).

For example, if A is p ∧ (q ∨ (¬p ∧ ¬r)), then dual(A) = ¬p ∨ (¬q ∧ (p ∨ r)).

Both A and dual(A) are NNF.

Proposition 2.3.5. If A is in NNF, then dual(A) is also in NNF and dual(A) ≡
¬A.

The proposition can be easily proved by DeMorgan’s law.

2.3.2 Conjunctive Normal Form (CNF)

Definition 2.3.6. In propositional logic, a clause is either ⊥ (the empty clause), a

literal (unit clause) or a disjunction of literals.

A clause is also called maxterm in the community of circuit designs. Since ∨
is commutative and associative, we may represent a clause by a list of literals. We

may use A ∨ A ≡ A to remove duplicate literals in a clause.

Definition 2.3.7. A formula is said to be a conjunctive normal form (CNF) if it

is a conjunction of clauses.

A CNF is also called a product of sums (POS) expression. The idea of con-

junctive normal form is that each type of connective appears at a distinct height

in the formula. The negation signs, ¬, are lowest, with only propositions as their

arguments. The disjunction signs, ∨, are in the middle, with only literals as their

arguments. And the conjunction signs, ∧, are at the top, taking the disjunctions as

their arguments. Of course, some operators may be missing in CNF. For example,

p ∧ q is a CNF, which contains two unit clauses: p and q.

Equivalence rules for obtaining CNF

• stage 1: The equivalence rules for obtaining NNF.

• stage 2: A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C), where the arguments of ∧ and ∨
can be switched.

Proposition 2.3.8. Every propositional formula can be transformed into an equiv-

alent CNF.
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To show the proposition is true, we first convert the formula into NNF, and

then apply the distribution law to move ∨ under ∧. This process will terminate

because we have only a finite number of ∨ and ∧.

Example 2.3.9. To convert p1 ↔ (p2 ↔ p3) into CNF, we first use A ↔ B ≡
(¬A ∨B) ∧ (A ∨ ¬B) to remove the second ↔:

p1 ↔ ((¬p2 ∨ p3) ∧ (p2 ∨ ¬p3)),

and then remove the first ↔:

(¬p1 ∨ ((¬p2 ∨ p3) ∧ (p2 ∨ ¬p3))) ∧ (p1 ∨ ¬((¬p2 ∨ p3) ∧ (p2 ∨ ¬p3))).

Its NNF is

(¬p1 ∨ ((¬p2 ∨ p3) ∧ (p2 ∨ ¬p3))) ∧ (p1 ∨ ((p2 ∧ ¬p3) ∨ (¬p2 ∧ p3))).

We then obtain the following non-tautology clauses:

¬p1 ∨ ¬p2 ∨ p3, ¬p1 ∨ p2 ∨ ¬p3, p1 ∨ p2 ∨ p3, p1 ∨ ¬p2 ∨ ¬p3.

2

Since ∨ is commutative and associative and X ∨ X ≡ X, a clause can be

represented by a set of literals. In this case, we use | for ∨ and p for ¬p in a clause.

For example, the above clauses will be displayed as

(p1 | p2 | p3), (p1 | p2 | p3), (p1 | p2 | p3), (p1 | p2 | p3).

Definition 2.3.10. If a clause includes every variable exactly once, the clause is

said to be full. A CNF is called a full CNF if every clause of the CNF is full.

If a clause C misses a variable r, we may replace C by two clauses: {(C |
r), (C | r)}. Repeating this process for every missing variable, we will obtain an

equivalent full CNF. Transforming a set of clauses into an equivalent full CNF is

sound because for any formula A and B, the following relation is true:

A ≡ (A ∨B) ∧ (A ∨ ¬B),

which can be proved by truth table.
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Equivalence rules for obtaining full CNF

• stage 1: The equivalence rules for NNF.

• stage 2: A ∨ (B ∧ C) ≡ (A ∨ B) ∧ (A ∨ C), where the arguments of ∧ and ∨
can be switched.

• stage 3: A ≡ (A ∨ p) ∧ (A ∨ ¬p), if A is a clause and p does not appear in A.

Proposition 2.3.11. Every propositional formula can be transformed into an equiv-

alent and unique full CNF (up to the commutativity and associativity of ∧ and ∨).
That is, full CNF is a canonical form.

Given a CNF A, each clause can be regarded as a constrain on what interpre-

tations cannot be a model of A. For example, if A contains the unit clause (¬p),
then all the interpretations where p 7→ 1 cannot be a model of A and these are half

of all interpretations. If A contains a binary clause (p | q), then all interpretations

where p 7→ 0, q 7→ 0 (there are a quarter of such interpretations) cannot be a model

of A. If A has a clause C containing every variable exactly once, then this clause

removes only interpretation, i.e., ¬C, as a model of A. If A has m models over VP ,

i.e., |M(A)| = m, then a full CNF of A contains 2|VP | −m clauses, as each clause

removes exactly one interpretation as a model of A. That is exactly the idea for a

proof of the above proposition.

The concept of full CNF is useful for theoretic proofs. Unfortunately, the size

of a full CNF is exponential in terms of number of variables, too big for any practical

application. CNFs are useful to specify many problems in practice, because practical

problems are often specified by a set of constraints. Each constraint can be specified

by a set of clauses, and the conjunction of all clauses from each constraint gives us

a complete specification of the problem.

2.3.3 Disjunctive Normal Form (DNF)

If we regard ∧ as multiplication, and ∨ as addition, then a CNF is a “product of

sums. On the other hand, a “sum of products” is a disjunctive normal form (DNF).

A formula A is said to be a minterm if A is either >, a literal, or a conjunction of

literals. Product is also called product or product term in the community of circuit

designs.

Like clauses, we remove duplicates in a minterm and represent them by a set

of literals.

Definition 2.3.12. A formula A is a disjunctive normal form (DNF) if A is a

disjunction of products.
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A DNF is also called a sum of products (SOP) expression. A formula like

p ∧ ¬q or p ∨ ¬q can be both a CNF and a DNF.

Equivalence rules for obtaining DNF

• stage 1: The equivalence rules for NNF.

• stage 2: A ∧ (B ∨ C) ≡ (A ∧ B) ∨ (A ∧ C), where the arguments of ∧ and ∨
can be switched.

Proposition 2.3.13. Every propositional formula can be transformed into an equiv-

alent DNF.

To show the proposition is true, we first convert the formula into NNF in the

first stage, and then apply the distribution law in the second stage to move ∧ under

∨.
Once a formula A is transformed into DNF, it is very easy to check if A is

satisfiable: If DNF contains a product in which each variable appears at most once,

then A is satisfiable, because we can simply assign 1 to each literal of this product

and the product becomes true. Since it is a hard problem to decide if a formula is

satisfiable, it is also hard to obtain DNF, due to its large size.

Like CNF, DNF is not a canonical form. For example, the following equiva-

lence is true:

p ∧ ¬q ∨ ¬p ∧ ¬r ∨ q ∧ r ≡ ¬p ∧ q ∨ p ∧ r ∨ ¬q ∧ ¬r
However, we cannot convert the both sides to the same formula.

Definition 2.3.14. A product is full if it contains every variable exactly once. A

DNF is full if every product in the DNF is full.

A full minterm in a DNF A is equivalent to a model of A. For example, if

VP = {p, q, r}, then the product p∧q∧¬r specifies the model {p 7→ 1, q 7→ 1, r 7→ 0}.
Obviously, a full DNF A has m full products iff A has m models. Like full CNF,

every propositional formula is equivalent to a unique full DNF, that is, full DNF is

a canonical form.

Equivalence Rules for obtaining full DNF

• stage 1: The equivalence rules for NNF.

• stage 2: A ∧ (B ∨ C) ≡ (A ∧ B) ∨ (A ∧ C), where the arguments of ∧ and ∨
can be switched.
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• stage 3: A ≡ (A∧ p)∨ (A∧¬p), if A is a product and p does not appear in A.

Proposition 2.3.15. Every propositional formula can be transformed into an equiv-

alent and unique full DNF (up to the commutativity and associativity of ∧ and ∨).

2.3.4 Full DNF and Full CNF from Truth Table

A truth table is often used to define a Boolean function. In the truth table,

the truth value of the function is given for every interpretation of the function.

Each interpretation corresponds to a full minterm and the function can be defined

as a sum (disjunction) of all the minterms for which the function is true in the

corresponding interpretation.

Example 2.3.16. Suppose we want to define a Boolean function f : B3 −→ B,

where B = {0, 1} and the truth value of f(a, b, c) is given in the following truth

table. Following the convention of EDA, we will use + for ∨, · for ∧, and A for ¬A.

a b c f minterms clauses

0 0 0 0 m0 = abc M0 = a+ b+ c

0 0 1 1 m1 = abc M1 = a+ b+ c

0 1 0 0 m2 = abc M2 = a+ b+ c

0 1 1 1 m3 = abc M3 = a+ b+ c

1 0 0 0 m4 = abc M4 = a+ b+ c

1 0 1 1 m5 = abc M5 = a+ b+ c

1 1 0 0 m6 = abc M6 = a+ b+ c

1 1 1 0 m7 = abc M7 = a+ b+ c

For each interpretation σ of (a, b, c), we define a minterm mi, where i is the

decimal value of σ, when σ is viewed as a binary number. For each mi, we also

define a clause Mi and the relation between mi and Mi is that ¬mi ≡ Mi. For the

function f defined in the truth table, f = m1 +m3 +m5, or f = abc + abc + abc.

2

In the above example, for each model of f , we create a minterm (product

term) in its full DNF: If the variable is true in the model, the positive literal of this

variable is in the product; if a variable is false, the negative literal of the variable

is in the product. f is then defined by a full DNF consisting of these minterms. In

other words, every Boolean function can be defined by a DNF. We can also define

the same function by a full CNF. This can be processed as follows: At first, we

define the negation of f by a full DNF from the truth table:

f = m0 +m2 +m4 +m6 +m7
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Apply the negation on the both sides of the above equation, we have

f = M0 ·M2 ·M4 ·M6 ·M7

where · stands for ∧ and mi ≡Mi. In other words, f can be defined by a full CNF.

Note that M0 ·M2 ·M4 ·M6 ·M7 is the dual of m0+m2+m4+m6+m7. In general,

the dual of DNF is CNF and the dual of CNF is DNF.

Once we know the principle, we can construct a full CNF directly from the

truth table of a formula. That is, for each non-model interpretation in the truth

table, we create one full clause: If a variable is true in the interpretation, the

negative literal of this variable is in the clause; if a variable is false, the positive

literal of the variable is in the clause.

Example 2.3.17. The truth table of (p ∨ q) → ¬r has eight lines and three in-

terpretations of 〈p, q, r〉 are non-models: 〈1, 1, 1〉, 〈1, 0, 1〉, and 〈0, 1, 1〉. From these

three interpretations, we obtain three full clauses:

(¬p ∨ ¬q ∨ ¬r) ∧ (¬p ∨ q ∨ ¬r) ∧ (p ∨ ¬q ∨ ¬r)

2

2.3.5 Binary Decision Diagram (BDD)

Let ite : {1, 0}3 −→ {1, 0} be the ”if-then-else” operator such that, for any

formula A and B, ite(1, A,B) ≡ A and ite(0, A,B) ≡ B. In fact, ite, 1 and 0 can be

used to represent any logical operator. For example, ¬y ≡ ite(y, 0, 1). The following

table shows that every binary logical operator can be represented by ite. Following

the convention on BDD, we will use 1 for > and 0 for ⊥ in every propositional

formula.

Definition 2.3.18. A formula is said be an ite normal form (INF) if the for-

mula uses logical operators no more than ite, 1, and 0, and, for each occurrence of

ite(C,A,B) in the formula, C is a propositional variable, and A and B are INFs.

By definition, 1 and 0 are INFs, but p is not; ite(p, 1, 0) is.

Proposition 2.3.19. Every propositional formula can be transformed into an equiv-

alent INF.

For example, letA be ¬p∨q∧¬r, its equivalent INF is ite(p, ite(q, ite(r, 0, 1), 0), 1).

To prove the above proposition, we provide the algorithm below to do the transfor-

mation.
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output formula ite formula
0000 0 0
0001 x ∧ y ite(x, y, 0)
0010 x ∧ ¬y (x > y) ite(x,¬y, 0)
0011 x ite(x, 1, 0)
0100 ¬x ∧ y (x < y) ite(x, 0, y)
0101 y ite(y, 1, 0)
0110 x⊕ y ite(x,¬y, y)
0111 x ∨ y ite(x, 1, y)
1000 x ↓ y ite(x, 0,¬y)
1001 x↔ y ite(x, y,¬y)
1010 ¬y ite(y, 0, 1)
1011 x ∨ ¬y (x ≥ y) ite(x, 1,¬y)
1100 ¬x ite(x, 0, 1)
1101 ¬x ∨ y (x ≤ y) ite(x, y, 1)
1110 x ↑ y ite(x,¬y, 1)
1111 1 1

Table 2.3.1: Binary logical operator by ite. The first column shows the output of
the function on the input pairs (x, y) = (0, 0), (0, 1), (1, 0), and (1, 1). The second
column shows its conventional form and the last column gives the equivalent of ite
form. In column 3, y stands for ite(y, 1, 0) and ¬y for ite(y, 0, 1).
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Algorithm 2.3.20. The algorithm to convert a formula into INF is a recursive

procedure convertINF:

proc convertINF(A)

if A = 1 return 1;

if A = 0 return 0;

else if A contains p ∈ VP

return ite(p, convertINF(A[p ↼ 1]), convertINF(A[p ↼ 0]));

else return simplify(A).

Note that A[p ↼ 1] (or A[p ↼ 0]) stands for the formula resulting from

replacing every occurrence of p by 1 (or 0) in A. The subroutine simplify(A) will

return the truth value of formula A which has no propositional variables. The

formula returned by convertINF contains only ite, 0, and 1 as the logical operators.

All the propositional variables appear as the first argument of ite.

Example 2.3.21. let A be ¬p ∨ q ∧ ¬r, then A[p ↼ 1] = ¬1 ∨ q ∧ ¬r ≡ q ∧ ¬r;
A[p ↼ 0] = ¬0 ∨ q ∧ ¬r ≡ 1. So convertINF(A) = ite(p, convertINF(q ∧ ¬r), 1).
convertINF(q ∧ ¬r) = ite(q, convertINF(¬r), 0), and convertINF(¬r) = ite(r, 0, 1).

Combining all, we have convertINF(A) = ite(p, ite(q, ite(r, 0, 1), 0), 1). 2

A binary decision diagram (BDD) is a directed acyclic graph (DAG) G, which

represents an INF by maximally sharing common subformulas. G has exactly two

leaf nodes (no outgoing edges) with labels 1 and 0, respectively, and a set of internal

nodes (with out-going edges); each internal node represents INF ite(p,A,B), that is,

the node is labeled with p and has the two out-going edges to the nodes representing

A and B, respectively.

Given an order on the propositional variables, if we use this order to choose

each variable in the procedure convertINF, the resulting INF is an ordered BDD

(OBDD). For the above example, the order p > q > r is used. If we use r > q > p,

then for A = ¬p ∨ q ∧ ¬r, convertINF(A) = ite(r, ite(p, 0, 1), ite(q, 1, ite(p, 1, 0))).

The choice of orders has a big impact on the sizes of OBDD, as one order gives you

the linear size (in terms of number of variables); another order may give you an

exponential size. The example in Figure 2.3.2 shows the two OBDDs for (a1 ∧ b1)∨
(a2 ∧ b2) ∨ (a3 ∧ b3) using two orders. If we generalize this example to (a1 ∧ b1) ∨
(a2 ∧ b2) ∨ ... ∨ (an ∧ bn), the size of the first OBDD will be O(n), while the second

OBDD will have an exponential size.

Since ite(C,A,A) ≡ A, we may use this equivalence repeatedly to simplify an

INF, until no more simplification can be done. The resulting INF is called reduced.

The corresponding BDD is called reduced if, additionally, identical subformulas of

an INF are represented by a unique node.
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Figure 2.3.1: The BDD of INF ite(x1, ite(x2, 1, 0), ite(x2, ite(x3, 1, 0), ite(x3, 0, 1)))
derived from x1x2x3 ∨ x1x2 ∨ x2x3.

Figure 2.3.2: The first BDD uses a1 > b1 > a2 > b2 > a3 > b3 and the second BDD
uses a1 > a2 > a3 > b1 > b2 > b3 for the same formula (a1∧ b1)∨ (a2∧ b2)∨ (a3∧ b3).
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Proposition 2.3.22. All logical equivalent INFs, using the same order on proposi-

tional variables, have a unique reduced OBDD (ROBDD).

Proof. Since a ROBDD is a graph representing an INF A, we may do an induction

proof on the number of variables in A. If A contains no variables, then 1 or 0 are

represented by the unique nodes. Let pn > pn−1 > · · · > p2 > p1 be the order on the

n variables in A. Then A ≡ ite(pn, B, C) for INFs B, C, and B 6≡ C. If n = 1, then

{B,C} = {0, 1}, and A is represented by a unique node. If n > 1, because B and C

are INFs without variable pn, by induction hypothesis, B and C are represented by

the unique ROBDDs, respectively. Thus, A = ite(pn, B, C) has a unique ROBDD

representation. 2

It is easy to apply ite(p,A,A) ≡ A as a reduction rule on INF. To implement

the sharing of common subformulas, we may use a hash table which contains the

triple 〈v, x, y〉 for each node ite(v, x, y) in a ROBDD, where v is a propositional

variable and both x and y, x 6= y, are nodes in the ROBDD. The hash table provides

two operations: lookupHashTable(v, x, y) checks if 〈v, x, y〉 exists in the hash table:

if yes, the node is returned; otherwise, null is returned. The other operation is

saveCreateNode(v, x, y), which creates a new node for the triple 〈v, x, y〉 and saves

the node in the hash table. The pseudo-code of the algorithm for creating ROBDD

is given below.

Algorithm 2.3.23. The algorithm ROBDD takes a formulaA and returns a ROBDD

node for A. vars(A) returns the set of propositional variables of A, topVariable(S)

returns the maximal variable of S by the given variable order. simplify(A) returns

the truth value of a formula without variables.

proc ROBDD(A)

if vars(A) = ∅ return simplify(A);

v := topVariable(vars(A));

x := ROBDD(A[v ↼ 1]);

y := ROBDD(A[v ↼ 0]);

if (x = y) return x; // reduction

p := lookupHashTable(v, x, y);

if (p 6= null) return p; // sharing

return saveCreateNode(v, x, y); // a new node is created

The input A to ROBDD can contain the nodes of a ROBDD, so that we can

perform various logical operations on ROBDDs.
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Example 2.3.24. Assume a > b > c, and let A be ite(F,G,H), where F =

ite(a, 1, b), G = ite(a, c, 0), and H = ite(b, 1, d). Then ROBDD(A) will call

ROBDD(A[a ↼ 1]) and ROBDD(A[a ↼ 0]), which returns c and J = ite(b, 0, H),

respectively. Finally, ROBDD(A) returns ite(a, c, J). 2

ROBDDs have used for presenting Boolean functions, symbolic simulation of

combinational circuits, equivalence checking and verification of Boolean functions,

and finding and counting models of propositional formulas.

2.4 Optimization Problems

There exist many optimization problems in propositional logic. For example,

one of them is to find a variable order for a formula, so that the resulting ROBDD

is minimal. In this section, we introduce three optimization problems.

2.4.1 Minimum Set of Operators

To represent the sentences like A provided B, which represent the converse

implication, we do not need a formula like A ⇐ B, because we may use simply

B → A. This and similar reasons explain why only a few of the sixteen binary

Boolean functions require notation. In CNF or DNF, we need only three Boolean

operators: ¬, ∨, and ∧; all other Boolean operators can be defined in terms of them.

Definition 2.4.1. A set S of Boolean operators is said to be sufficient if every

other Boolean operators can be defined using only the operators in S. S is said to

be minimally sufficient if S is sufficient and no proper subset of S is a sufficient set

of operators.

Obviously, {¬,∨,∧} is a sufficient set of operators. For example, A ⊕ B ≡
(A ∨ ¬B) ∧ (¬A ∨ B) and ite(A,B,C) ≡ (A ∧ B) ∨ (¬A ∧ C). Is the set {¬,∨,∧}
minimally sufficient? The answer is no, because A ∨ B ≡ ¬(¬A ∧ ¬B). Thus,

{¬,∧} is a sufficient set of operators. {¬,∨} is another sufficient set, because

A∧B ≡ ¬(¬A∧¬B). To show that {¬,∧} is minimally sufficient, we need to show

that neither {¬} nor {∧} is sufficient. Since ¬ takes only one argument and cannot

be used alone to define ∧, {¬} cannot be sufficient. We will see later that {∧} is
not sufficient.

From IND (ITE normal form), we might think {ite} is minimally sufficient.

That is not true, because we also use 1 and 0 (stand for > and ⊥) which are nullary

operators. For the set {¬,∧}, ⊥ ≡ p ∧ ¬p for any propositional variable p.
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Do we have a minimally sufficient set of Boolean operators which contains a

single operator? The answer is yes and there are two binary operators as candidates.

They are ↑ (nand, the negation of and) and ↓ (nor, the negation of or):

A ↑ B ≡ ¬(A ∧B) A ↓ B ≡ ¬(A ∨B)

Proposition 2.4.2. Both {↑} and {↓} are minimally sufficient.

Proof. To show {↑} is sufficient, we just need to define ¬ and ∧ using ↑: ¬(A) ≡
A ↑ A and A∧B ≡ ¬(A ↑ B). The proof that {↓} is sufficient is left as an exercise.

2

In fact, among all the sixteen binary operators, only ↑ and ↓ have such prop-

erty.

Theorem 2.4.3. For any binary operator which can be used to define both ¬ and

∧, that operator must be either ↑ or ↓.

Proof. Let o be any binary operator. If ¬ can be defined by o, then ¬A ≡ t(o, A),

where t(o, A) is the formula represented by a binary tree t whose leaf nodes are

labeled with A and whose internal nodes are labeled with o. Furthermore, we

assume that t is such a binary tree with the least number of nodes. If we replace

A by 1, then t(o, 1) should have the truth value 0, because ¬1 = t(o, 1) = 0. If

any internal node of t(o, 1) has the truth value 1, we may replace that node by

a leaf node 1; if any internal node other than the root of t has truth value 0, we

may use the subtree at this internal node as t. In both cases, this is a violation

to the assumption that t is such a tree with the least of nodes. As a result, t

should have only one internal node, i.e., 1 o 1 = ¬1 = 0. Similarly, we should have

0 o 0 = ¬0 = 1.

There are four cases regarding the truth values of 1 o 0 and 0 o 1.

• case 1: 1 o 0 = 0 and 0 o 1 = 1. Then A o B = ¬A and we cannot use this o

to define A ∧ B, as the output from o on A and B will be one of A, ¬A, B,

or ¬B.

• case 2: 1 o 0 = 1 and 0 o 1 = 0. Then A o B = ¬B, and we still cannot use

this o to define A ∧B for the same reason as in Case 1.

• case 3: 1 o 0 = 0 o 1 = 1. o is ↑.

• case 4: 1 o 0 = 0 o 1 = 0. o is ↓.
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p q p o1 q p o2 q p o3 q p o4 q

1 1 0 0 0 0
0 1 1 0 1 0
1 0 0 1 1 0
0 0 1 1 1 1

Table 2.4.1: p o1 q ≡ ¬p (the negation of projection on the first argument); p o2 q ≡
¬q (the negation of projection on the second argument); p o3 q ≡ p ↑ q (NAND);
and p o4 q ≡ p ↓ q (NOR).

The last two cases give us the definitions of ↑ and ↓, as shown in Table 2.4.1. 2

Corollary 2.4.4. Both {¬,∧} and {¬,∨} are minimally sufficient.

In Boolean algebra, the property of any sufficient set of operators can be

specified using equations with variables and the operator. To specify the property

of ↑, we may use three equations: 0 ↑ Y = 1, X ↑ 0 = 1, and 1 ↑ 1 = 0. For ↑, what
is the minimal number of equations needed? And what is the minimal number of

symbols in the equations? These questions have been answered firmly: only one

equation is needed and only three variables (for a total of either occurrences) and

six uses of ↑ are needed. We state below the result without proof.

Proposition 2.4.5. The Boolean algebra can be generated by the following equation:

((x ↑ y) ↑ z) ↑ (x ↑ ((x ↑ z) ↑ x)) = z

The above equation contains three variables and 14 symbols (excluding paren-

theses). For the set {¬,∨}, a single axiom also exists to specify the Boolean algebra:

Proposition 2.4.6. The Boolean algebra can be generated by the following equation:

¬(¬(¬(x ∨ y) ∨ z) ∨ ¬(x ∨ ¬(¬z ∨ ¬(z ∨ u)))) = z.

The above equation contains four variables and 21 symbols (excluding paren-

theses).

2.4.2 Logic Minimization

Logic minimization, also called logic optimization, is a part of circuit design

process and its goal is to obtain the smallest combinational circuit that is represented

by a Boolean formula. Logic minimization seeks to find an equivalent representation
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of the specified logic circuit under one or more specified constraints. Generally the

circuit is constrained to minimum chip area meeting a pre-specified delay. Decreas-

ing the number of gates will reduce the power consumption of the circuit. Choosing

gates with less transistors will reduce the circuit area. Decreasing the number of

nested levels of gates will reduce the delay of the circuit. Logic minimization will

reduce substantially the cost of circuits and improve its quality.

2.4.2.1 Karnaugh Maps for Minimizing DNF and CNF

In the early days of electronic design automation (EDA), a Boolean function is

often defined by a truth table and we can derive full DNF (sum of products) or full

CNF (product of sums) directly from the truth table, as shown in Example 2.3.16.

The obtained DNF or CNF need to be minimized, in order to use the least number

of gates to implement this function.

Following the convention of EDA, we will use + for ∨, · for ∧, and A for ¬A.

Example 2.4.7. Let f : {0, 1}2 −→ {0, 1} be defined by f(A,B) = AB+AB+AB.

We need three AND gates and one OR gate of 3-input. However, f(A,B) ≡ A+B.

Using A+B, we need only one OR gate. 2

The equivalence relations used in the above simplification process are AB +

AB ≡ A and A + AB ≡ A + B (or A + AB ≡ A + B. For the above example,

AB + AB ≡ B and B + AB ≡ B + A.

We want to find an equivalent circuit of minimum size possible, and this is

a difficult computation problem. There are many tools such as Karnaugh maps

available to achieve this goal.

The Karnaugh map (K-map) is a popular method of simplifying DNF or CNF

formulas, originally proposed by Maurice Karnaugh in 1953. The Karnaugh map

reduces the need for extensive calculations by displaying the output of the function

graphically and taking advantage of humans’ pattern-recognition capability. It is

suitable for Boolean functions with 2 to 4 variables. When the number of variables

is greater than 4, it is better to use an automated tool.

The Karnaugh map uses a two-dimensional grid where each cell represents an

interpretation (or equivalently, a full minterm) and the cell contains the truth value

of the function for that interpretation. The position of each cell contains all the

information of an interpretation and the cells are arranged such that adjacent cells

differ by exactly one truth value in the interpretation. Adjacent 1s in the Karnaugh

map represent opportunities to simplify the formula. The minterms for the final

formula are found by encircling groups of 1s in the map. Minterm groups must

be rectangular and must have an area that is a power of two (i.e., 1, 2, 4, 8, ...).
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Figure 2.4.1: K-map for f(x, y) = xy + xy + xy.

Minterm rectangles should be as large as possible without containing any 0s (it may

contain don’t-care cells). Groups may overlap in order to make each one larger. A

least number of groups that cover all 1s will represent the minterms of a DNF of

the function. These minterms can be used to write a minimal DNF representing

the required function and thus implemented by the least number of AND gates

feeding into an OR gate. The map can also be used to obtain a minimal CNF that

is implemented by OR gates feeding into an AND gate.

Let f(x, y) = xy + xy + xy. There are four minterms of x and y, the K-map

has four cells, that is, four minterms corresponding to the four interpretations on x

and y. As the output of f , three cells have value 1 and one cell (i.e., xy) has value

0. Initially, each cell belongs to a distinct group of one member (Figure 2.4.1).

The merge operation on K-map: Merge two adjacent and disjoint

groups of the same size and of the same truth value into one larger group.

This operation creates groups of size 2, 4, 8, etc., and cells are allowed to

appear in different groups at the same time. For example, cells xy and xy in

Figure 2.4.1 are adjacent, they are merged into one group {xy, xy}, which can be

represented by y as a shorthand of the group. Similarly, cells xy and xy can be

merged into {xy, xy}, which can be represented by x. Note that xy is used twice

in the two merge operations. No more merge operations can be performed, and

the final result is f = x + y (f is the NAND function). This result can be proved

logically as follows:

f = xy + xy + xy
= (xy + xy) + (xy + xy)
= (x+ x)y + x(y + y)
= y + x
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Figure 2.4.2: The K-map for obtaining f(A,B,C) = AB + AC.

Example 2.4.8. Consider the function f defined by the truth table in Figure 2.4.2.

The corresponding K-map has four cells with truth value 1 as f has four models

shown in the truth table. There are three possible merge operations: (i) ABC and

ABC merge into AC; (ii) ABC and ABC merge into AB; and (iii) ABC and ABC

merge into BC. Since all the cells with value 1 are in the groups represented by AC

and AB, BC is redundant. So the simplified function is f = AC + AB, instead of

f = AC +AB +BC. On the other hand, if g = AB +AC +BC, then none of the

three minterms in g is redundant, because if you delete one, you will miss some 1s,

even though the full minterm ABC is covered by all the three minterms. 2

From the above examples, it is clear that after each merge operation, two

minterms are merged into one with one less variable. That is, the larger the group,

the less the number of variables in the minterm to represent the group. This is

possible because adjacent cells represent interpretations which differ by exactly one

truth value.

Because K-maps are two-dimensional, some adjacent relations of cells are not

shown on K-maps. For example, in Figure 2.4.2, m0 = ABC and m4 = ABC are

adjacent, m1 = ABC and m5 = ABC are adjacent. Strictly speaking, K-maps

are toroidally connected, which means that rectangular groups can wrap across the

edges. Cells on the extreme right are actually “adjacent” to those on the far left, in

the sense that the corresponding interpretations only differ by one truth value. We

need a 3-dimensional graph to completely show the adjacent relation of 3 variables;

a 4-dimensional graph to completely show the adjacent relation of 4 variables; etc.

Based on the idea of K-maps, an automated tool will create a graph of 2n

nodes for n variables, each node represents one interpretation, and two nodes have

an edge iff their interpretations differ by one truth value. The merge operation is

then implemented on this graph to generate minterms for a least size DNF. The

same graph is also used for generating Gray code (by finding a Hamiltonian path
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Figure 2.4.3: The K-map for f(P,Q,R, S) = m0 + m2 + m5 + m7 + m8 + m10 +
m13 +m15. The simplified formula is f = QS +QS.

in the graph).

Example 2.4.9. The K-map for f(P,Q,R, S) = m0+m2+m5+m7+m8+m10+

m13+m15, is given in Figure 2.4.3, where m0 = PQRS, m2 = PQRS, m5 = PQRS,

m7 = PQRS, m8 = PQRS, m10 = PQRS, m13 = PQRS, and m15 = PQRS (i in

mi is the decimal value of PQRS in the corresponding interpretation). At first, m0

and m2 are adjacent and can be merged into PQS; m8 and m10 are also adjacent

and can be merged into PQS. Then PQS and PQS can be further merged into

QS. Similarly, m5 and m7 merge into PQS; m13 and m15 merge into PQS. Then

PQS and PQS merge into QS. The final result is f = QS + QS. It would also

have been possible to derive this simplification by carefully applying the equivalence

relations, but the time it takes to do that grows exponentially with the number of

minterms. 2

Note that the formula obtained from a K-map is not unique in general. For

example, g(P,Q,R, S) = PQ+RS +PQS or g(P,Q,R, S) = PQ+RS +QRS are

possible outputs for g from K-maps. This means the outputs of K-maps are not

canonical.

K-maps can be used to generate simplified CNF for a function. In Exam-

ple 2.3.16, we have shown how to obtain a full CNF from a full DNF. Using the

same idea, if we simplify the full DNF first, the CNF obtained by negating the

simplified DNF will a simplified one.

Example 2.4.10. Let f(A,B,C) = ABC + ABC + ABC + ABC and its K-map
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Figure 2.4.4: The K-map for f(A,B,C) = ABC + ABC + ABC + ABC. The
simplified CNF is f = (A+B + C)(A+B)(B + C).

is given in Figure 2.4.4. The negation of f is

f = ABC + ABC + ABC + ABC

Since ABC and ABC can merge into BC (shown in the figure), ABC and ABC

can merge into AB, the simplified f is f = ABC +AB +BC. The simplified CNF

for f is thus f = (A+B + C)(A+B)(B + C). 2

Karnaugh maps can also be used to handle “don’t care” values and can simplify

logic expressions in software design. Boolean conditions, as used for example in

conditional statements, can get very complicated, which makes the code difficult to

read and to maintain. Once minimized, canonical sum-of-products and product-of-

sums expressions can be implemented directly using AND and OR logic operators.

2.4.2.2 Other Issues in Logic Minimalization

Simplified Boolean functions obtained from K-maps are DNFs or CNFs. To

implement them in a circuit using CMOS (complementary metal–oxide–semiconductor),

we need further optimization. One of the most important characteristics of CMOS

devices is low static power consumption. CMOS devices draw significant power only

momentarily during switching between on and off states. Consequently, CMOS

devices do not produce as much waste heat as other forms of logic, like transis-

tor–transistor logic (TTL), which normally has some standing current even when

not changing state. These characteristics allow CMOS to integrate a high density

of logic functions on a chip. It was primarily for this reason that CMOS became

the most widely used technology to be implemented in VLSI (very large scale inte-

gration) chips.

Using CMOS, the NAND/NOR/NOT gates are cheaper to implement than

the AND/OR gates. For a basic unbuffered NAND/NOR/NOT gate, we need only
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two transistors per input. It works when that gate is one among many others,

driving a few similar gates. Many practical discrete gates, however, will be buffered

and they will need additional transistors to improve the output strength and prevent

the output strength from depending on active inputs. Typically, AND/OR gates

will be implemented using the NAND/NOR/NOT gates and need more transistors

than NAND/NOR gates.

Example 2.4.11. If we directly implement f(A,B,C) = AC + B in CMOS, we

need two inverters (for negation), one OR gate (as the negation of ↓) and one

AND gate (as the negation of ↑). That is, we need four inverters (each uses two

transistors), one NOR gate and one NAND gate (each uses four transistors), for a

total of 16 transistors. We may convert f(A,B,C) = AC + B into the simplified

and equivalent formula using only ↑ and ¬: f(A,B,C) = (A ↑ C) ↑ B, which uses

a total of 10 transistors (two for the inverter; four each for the two NAND gates).

2

To convert DNF or CNF into a formula using only NAND/NOR/NOT, we

may use the algorithm NNF2NOR.

Algorithm 2.4.12. The algorithm NNF2NOR takes a formula A in NNF as input

and returns a formula B which is equivalent to A and uses only NOR/NAND/NOT

operators. It calls a mutually recursive algorithm neg2NOR, which takes a formula

A in NNF as input and returns a formula B which is equivalent to ¬A and uses

only NOR/NAND/NOT operators.

proc NNF2NOR(A)

if A ∈ VP or A = ¬B return A;

if A = B ∨ C return neg2NOR(B) ↑ neg2NOR(C);

if A = B ∧ C return neg2NOR(B) ↓ neg2NOR(C);

proc neg2NOR(A)

if A ∈ VP return ¬A;
if A = ¬B return B;

if A = B ∨ C return NNF2NOR(B) ↓ NNF2NOR(C);

if A = B ∧ C return NNF2NOR(B) ↑ NNF2NOR(C);

For input A = (p ∨ q) ∨ r, NNF2NOR(A) returns (p ↓ q) ↑ r, which needs

12 transistors to implement. However, this result is not optimal, because another

equivalent formula, i.e., p ↑ (q ↓ r), needs eight transistors to implement in CMOS.

Relatively speaking, finding optimal formulas from DNF/CNF is an easy task. The
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trick is to get rid of as many negation in literals as possible, by switching between

↑ and ↓, using the relation

(¬A ↑ B) ↓ ¬C ≡ A ↓ (B ↑ C);
(¬A ↓ B) ↑ ¬C ≡ A ↑ (B ↓ C).

If a 3-input NAND gate is available, the same A can be represented by ↑ (p, q, r),
which needs 10 transistors to implement. Note that ↑ (A,B,C), (A ↑ B) ↑ C, and

A ↑ (B ↑ C) are all logically different.

DNFs (sum of products) and CNFs (product of sums) are called 2-level for-

mulas. A 3-level formula is a product of DNFs or a sum of CNFs. A 4-level formula

is a product of 3-level formulas or a sum of 3-level formulas, and so on. Finding

equivalent formulas of high levels can possibly reduce the size of formulas.

Example 2.4.13. Let f(a, b, c, d, f, g) = adf + aef + bdf + bef + cdf + cef + g.

f is a DNF and we need 6 AND gates of 3-input and 3 OR gates of 3-input (to

implement the 7 input OR) for a total of 9 gates. If we allow 3-level formulas, then

f(a, b, c, d, f, g) ≡ (a + b + c)(d + e)f + g, which needs one OR gate of 3 input, 2

OR gates of 3 input, one AND gate of 3 input, for a total of 4 gates. 2

Besides using higher level formulas, CMOS technology allows to use other

types of gates besides OR, AND, and inverters (for negation). For example, if we

want to implement a function f(a, b) = ab+ab, since f(a, b) ≡ a ⊕ b, one XOR gate

will suffice. Many circuit design systems provide a complex of libraries with a large

number of gates. For example, the EE271 library allows the use of the following

gates for combinational circuits:

inv, nand2, nand3, nand4, nor2, nor3, xor, xnor, aoi2, aoi22, oai2, oai22,
xnor

where “xnor” is the negation of “xor”, i.e., the logical equal (↔), “aoi” stands

for “AND-OR-Invert”, “oai” stands for “OR-AND-Invert”, and they define the

following functions:

aoi2: F = (A ∧B) ∨ C

aoi22: F = (A ∧B) ∨ (C ∧D)

oai2: F = (A ∨B) ∧ C

oai22: F = (A ∨B) ∧ (C ∨D)

AOI and OAI gates can be readily implemented in CMOS circuitry. AOI gates

are particularly advantaged in that the total number of transistors is less than
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if the AND, NOT, and OR functions were implemented separately. This results

in increased speed, reduced power, smaller area, and potentially lower fabrication

cost. For example, an AOI2 gate can be constructed with 6 transistors in CMOS

compared to 10 transistors using a 2-input NAND gate (4 transistors), an inverter

(2 transistors), and a 2-input NOR gate (4 transistors), because F = (A ∧B) ∨ C ≡
A ↑ B ↓ C.

Finding an equivalent and minimal circuit with high-level formulas of a rich

set of gates becomes even more challenging and is an on-going research area in EDA.

2.4.3 Maximum Satisfiability

When a CNF is unsatisfiable, we are still interested in finding an interpretation

which makes most clauses to be true. This is so-called the maximum satisfiability

problem, which is the problem of determining the maximum number of clauses, of a

given Boolean formula in CNF, that can be made true by an interpretation (an as-

signment of truth values to the variables of the formula). It is a generalization of the

Boolean satisfiability problem, which asks whether there exists a truth assignment

that makes all clauses true.

Example 2.4.14. Let A be a set of unsatisfiable clauses {(p), (p ∨ q), (p ∨ q), (p ∨
r), (p ∨ r)}. If we assign 0 to p, two clauses will be false no matter what values are

assigned to q and r. On the other hand, if p is assigned 1, only clause (p) will be

false. Therefore, if A is given as an instance of the MAX-SAT problem, the solution

to the problem is 4 (four clauses are true in one interpretation). 2

More generally, one can define a weighted version of MAX-SAT as follows:

given a conjunctive normal form formula with non-negative weights assigned to

each clause, find truth values for its variables that maximize the combined weight

of the satisfied clauses. The MAX-SAT problem is an instance of weighted MAX-

SAT where all weights are 1.

Find the final exam schedule for a big university is a challenging job. There

are hard constraints such as no students can take two exams at the same, and

no classrooms can be hold two exams at the same time. There are also software

constraints such that one student is preferred to take at most two exams in one day,

or two exams are separated by two hours. To specify such a problem as an instance

of weighted MAX-SAT is easy: We just give a very large weight to hard constraints

and a small weight to soft constraints.

Various methods have developed to solve MAX-SAT or weighted MAX-SAT

problems. These methods are related to solving SAT problems and we will present
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them later in the book.

2.5 Using Propositional Logic

Propositions and logical operators arise all the time in computer programs.

All programming languages such as C, C++, and Java use symbols like “&&”, “||”,
and “!” in place of ∧, ∨, and ¬. Consider the Boolean expression appearing in an

if-statement

if ( x > 0 || (x <= 0 && y > 100 )) ...

If we let p denote x > 0 and q be y > 100, then the Boolean expression is abstracted

as p ∨ ¬p ∧ q. Since (p ∨ ¬p ∧ q) ≡ (p ∨ q), the original code can be rewritten as

follows:

if ( x > 0 || y > 100 ) ...

In other words, the knowledge about the logic may help us to write neater codes.

Consider another piece of the code:

if ( x >= 0 && A[x] == 0 ) ...

Let p be x >= 0 and q be A[x] == 0, then the Boolean expression is p ∧ q. Since

p∧ q ≡ q∧p, it is natural to think that ( x >= 0 && A[x] == 0 ) can be replaced

by ( A[x] == 0 && x >= 0 ) and the program will be the same. Unfortunately,

this is not the case: the execution of ( A[x] == 0 && x >= 0 ) will be aborted

when x < 0. This example shows that “&&” in programming languages are not

commutative in general. Neither is “||” as ( x < 0 || A[x] == 0 ) is different

from ( A[x] == 0 || x < 0 ). These abnormalities of the logic not only appear

in array indices, but also when assignments are allowed in Boolean expressions. For

example, x > 0 || (x = c) > 10 is different from (x = c) > 10 || x > 0 in C,

where x = c is an assignment command. As a programmer we need to be careful

about these abnormalities.

2.5.1 Bitwise Operators

In programming languages like C, C++, and Java, an integer is represented

by a list of 16-, 32-, or 64-bits (for C, a char is regarded as an 8-bit integer or a

byte). A bitwise operation operates on one or two integers at the level of their

individual bits and several of them are logical operations on bits. It is a fast and

simple action, directly supported by the processor, and should be used whenever

possible.
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(a)2 = (0, 1, 0, 0, 0, 0, 1, 1)
(b)2 = (0, 0, 0, 1, 0, 0, 1, 0)

name symbol example
NOT ∼ (∼a)2 = (1, 0, 1, 1, 1, 1, 0, 0)
OR | (a | b)2 = (0, 1, 0, 1, 0, 0, 1, 1)

AND & (a & b)2 = (0, 0, 0, 0, 0, 0, 1, 0)
XOR ∧ (a ∧ b)2 = (0, 1, 0, 1, 0, 0, 0, 1)

shift right >> (a >> 2)2 = (0, 0, 0, 1, 0, 0, 0, 0)
shift left << (b << 2)2 = (0, 1, 0, 0, 1, 0, 0, 0)

Table 2.5.1: Examples of bitwise operators.

For illustration purpose, we will use 8-bit integers as examples. In general,

for any 8-bit integer x, the binary representation of x is a 8-bit vector (x)2 =

(b7, b6, b5, b4, b3, b2, b1, b0), where bi ∈ {0, 1} and x =
∑7

i=0 bi ∗ 2i. For example, for

a = 67, its bit vector is (a)2 = (0, 1, 0, 0, 0, 0, 1, 1), because 67 = 64 + 2 + 1 =

26 + 21 + 20, and for b = 18, (b)2 = (0, 0, 0, 1, 0, 0, 1, 0), since 18 = 16 + 2 = 24 + 21.

In fact, (a)2 and (b)2 are internal representation of a and b in computer.

The following bitwise operators are provided, treating each bit as a Boolean

value and performing on them simultaneously. We will use the bit vectors of a = 67,

and b = 18 as examples.

If necessary, other bitwise operations can be implemented using the above four

operations. For example a bitwise implication on a and b can be implemented as
∼a | b.

The bit shifts are also considered bitwise operations, because they treat an

integer as a bit vector rather than as a numerical value. In these operations the bits

are moved, or shifted, to the left or right. Registers in a computer processor have a

fixed width, so some bits will be “shifted out” of the register at one end, while the

same number of bits are “shifted in” from the other end. Typically, the “shifted

out” bits are discarded and the “shifted in” bits are all 0’s. When the leading bit

is the sign of an integer, the left shift operation becomes more complicated and

its discussion is out of the scope of this book. In the table, we see that the shift

operators take two integers: x << y will shift (x)2 left by y bits; x >> y will shift

(x)2 right by y bits.

The value of the bit vector x << y is equal to x ∗ 2y, provided that this

multiplication does not cause an overflow. E.g., for b = 18, b << 2 = 18 ∗ 4 = 72.

Similarly, the value of x >> y is equal to the integer division x/2y. E.g., for a = 67,
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a >> 2 = b67/4c = 16. Shifting provides an efficient way of multiplication and

division when the second operand is a power of two. Typically, bitwise operations

are substantially faster than division, several times faster than multiplication.

Suppose you are the manager for a social club of 64 members. For each

gathering, you need to record the attendance. If each member has a unique member

id ∈ {0, 1, ..., 63}, you may use a set of member ids to record the attendance. Instead

of a list of integers, you may use a single 64-bit integer, say s, to store the set. That

is, if a member id is i, then the ith bit of s is 1. For this purpose, we need a way to

set a bit in s to be 1. Suppose s = 0 initially, we may use

s = s | (1 << i)

to set the ith bit of s to be 1. To set the value of the ith bit of s to be 0, use

s = s & ∼(1 << i).

To get the value of the ith bit of s, use s & (1 << i). For another gathering, we use

another integer t. Now it is easy to compute the union or intersection of these sets:

s | t is the union and s & t is the intersection. For example, if you want to check

that nobody attended both gatherings, you can check if s & t = 0, which is more

efficient than using lists for sets.

2.5.2 Specify Problems in Propositional Logic

Propositional logic is a very simple language but rich enough to specify most

decision problems in computer science, because these problems belong to the class

of NP problems and SAT is NP-complete. In fact, propositional logic is a formal

language much more rigorous than natural languages. Since natural languages are

ambiguous, expressing a sentence in logic helps us to understand the exact meaning

of the sentence. For example, the two sentences

1. Students and seniors pay half price,

2. Students or seniors pay half price

evidently have the same meaning.

How to explain this? Let “being student” and “being senior” be abbreviated

by p and q, and “pay half price” by r. Let A be (p→ r)∧(q → r), B be (p∨q)→ r,

then A and B express somewhat more precisely the factual content of sentences 1

and 2, respectively. It is easy to show that the formulas A and B are logically

equivalent. The everyday-language statements of A and B obscure the structural
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difference of A and B through an apparently synonymous use of the words “and”

and “or”.

We will show to use specify various problems in propositional logic through

examples.

Example 2.5.1. The so-called n-queen example is stated as follows: Given a chess-

board of size n × n, where n > 0, how to place n queens on the board such that

no two queens attack each other? For n = 2, 3, there is no solution; for other n,

there exists a solution. To specify this problem in logic, we need n2 propositional

variables. Let the variables be pi,j, where 1 ≤ i, j ≤ n, and the meaning of pi,j is

that pi,j is true iff there is a queen at row i and column j. The following properties

ensure that there are n queens on the board such that no two queens attack each

other:

1. There is at least one queen in each row.

∧1≤i≤n(pi,1 ∨ pi,2 ∨ · · · ∨ pi,n)

2. No more than one queen in each row.

∧1≤i≤n(∧1≤j<k≤n(¬pi,j ∨ ¬pi,k))

3. No more than one queen in each column.

∧1≤i≤n(∧1≤j<k≤n(¬pj,i ∨ ¬pk,i))

4. No more than one queen on each diagonal.

∧1≤i<k≤n(∧1≤j,l≤n,k−i=|l−j|(¬pi,j ∨ ¬pk,l))

The formula following each property expresses the property formally, and can be

easily converted into clauses. When n = 2, 3, the formulas are unsatisfiable. For

n ≥ 4, the formulas are satisfiable and each model gives us a solution. For example,

when n = 4, we have two solutions: {p1,2, p2,4, p3,1, p4,3} and {p1,3, p2,1, p3,4, p4,2}. If
we assign the four variables in a solution to be true and the other variables false, we

obtain a model. Note that we ignore the property that “there is at least one queen

in each row,” because it is redundant. 2

The next example is a logical puzzle.
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Example 2.5.2. Three people are going to the beach, each using a different mode of

transportation (car, motorcycle, and boat) in a different color (blue, orange, green).

Who’s using what? The following clues are given:

1. Abel loves orange, but she hates travel on water.

2. Bob did not use the green vehicle.

3. Carol drove the car.

2

The first step to solve a puzzle using propositional logic is to make sure what

properties are assumed and what conditions are provided by clues. For this puzzle,

the first assumed property is that “everyone uses a unique transportation tool”.

To specify this property in logic, there are several ways of doing it. One way

is to use a set of propositional variables to specify the relation of “who uses what

transportation”: Let px,y denote a set of nine variables, where x ∈ {a, b, c} (a for

Abel, b for Bob, and c for Carol), and y ∈ {c,m, b} (c for car, m for motorcycle, and

b for boat). Now the property that “everyone uses a unique transportation tool”

can be specified formally as the following clauses:

(1) (pa,c | pa,m | pa,b) Abel uses c, m, or b;
(2) (pb,c | pb,m | pb,b) Bob uses c, m, or b;
(3) (pc,c | pc,m | pc,b) Carol uses c, m, or b;

(4) (pa,c | pb,c) Abel and Bob cannot both use c;
(5) (pa,m | pb,m) Abel and Bob cannot both use m;
(6) (pa,b | pb,b) Abel and Bob cannot both use b;
(7) (pa,c | pc,c) Abel and Carol cannot both use c;

(8) (pa,m | pc,m) Abel and Carol cannot both use m;
(9) (pa,b | pc,b) Abel and Carol cannot both use b;
(10) (pb,c | pc,c) Bob and Carol cannot both use c;

(11) (pb,m | pc,m) Bob and Carol cannot both use m;
(12) (pb,b | pc,b) Bob and Carol cannot both use b.

It appears quite cumbersome that 12 clauses are needed to specify one property.

Note that the goal of using logic is to find a solution automatically. For computers,

12 million clauses are not too many.

From the clues of the puzzle, we have the following two unit clauses:

(13) (pc,c) Carol drove the car;
(14) (pa,b) Abel hates travel on water.
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These two unit clauses forces pc,c to be assigned 1 and pa,b to be 0. Then we can

decide the truth values of the rest seven variables:

pa,c 7→ 0 from pc,c 7→ 1, (7);
pb,c 7→ 0 from pc,c 7→ 1, (11);
pa,m 7→ 1 from pa,c 7→ 0, pa,b 7→ 0, (1);
pb,m 7→ 0 from pa,m 7→ 1, (5);
pc,m 7→ 0 from pa,m 7→ 1, (8);
pb,b 7→ 1 from pb,c 7→ 0, pb,m 7→ 0, (2);
pc,b 7→ 0 from pb,b 7→ 1, (12).

The second assumed property is that “every transportation tool has a unique

color”. If we read the puzzle carefully, the clues involve the relation that “who will

use what color of the transportation”. So it is better to use qx,z to represent this

relation that person x uses color y, where x ∈ {a, b, c} and z ∈ {b, o, g} (b for blue,
o for orange, and g for green). We may specify the property that “everyone uses a

unique color” in a similar way as we specify “everyone uses a unique transportation

tool”. The clues give us the following unit clauses: (qa,o), and (qb,g). From these

two unit clauses, we can derive the truth values of 12 qx,y variables.

The next puzzle looks quite different from the previous one, but its specifica-

tion is similar.

Example 2.5.3. Four people sit on a bench of four seats for a group photo: two

Americans (A), a Briton (B), and a Canadian (C). They asked that (i) two Amer-

icans do not want to sit next to each other; (ii) the Briton likes to sit next to the

Canadian. Suppose we use propositional variables Xy, where X ∈ {A,B,C} and

1 ≤ y ≤ 4, with the meaning that “Xy is true iff the people of nationality X sits at

seat y of the bench”. How do you specify the problem in CNF over Xy such that the

models of the CNF matches exactly all the sitting solutions of the four gentlemen?

The CNF will specify the following conditions:

1. Every seat takes at least one person: (A1 | B1 | C1), (A2 | B2 | C2), (A3 | B3 |
C3), (A4 | B4 | C4). The truth of these clauses implies that there are at least

four people using these seats.

2. Each seat can take at most one person: (¬A1 | ¬B1), (¬A1 | ¬C1), (¬B1 |
¬C1), (¬A2 | ¬B2), (¬A2 | ¬C2), (¬B2 | ¬C2), (¬A3 | ¬B3), (¬A3 | ¬C3),

(¬B3 | ¬C3), (¬A4 | ¬B4), (¬A4 | ¬C4), (¬B4 | ¬C4). Combining with

the first condition, this condition implies that there are exactly four persons

sitting on the bench.
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3. At most two Americans on the bench: (¬A1 | ¬A2 | ¬A3), (¬A1 | ¬A2 | ¬A4),

(¬A1 | ¬A3 | ¬A4), (¬A2 | ¬A3 | ¬A4). These clauses say that for every three

seats, one of them must not be taken by an American.

4. At most one Briton on the bench: (¬B1 | ¬B2), (¬B1 | ¬B3), (¬B1 | ¬B4),

(¬B2 | ¬B3), (¬B2 | ¬B4), (¬B3 | ¬B4). These clauses say that for every two

seats, one of them must not be taken by the Canadian.

5. At most one Canadian on the bench: (¬C1 | ¬C2), (¬C1 | ¬C3), (¬C1 | ¬C4),

(¬C2 | ¬C3), (¬C2 | ¬C4), (¬C3 | ¬C4).

6. The Americans do not want to sit next to each other: (¬A1 | ¬A2), (¬A2 |
¬A3), (¬A3 | ¬A4).

7. The Briton likes to sit next to a Canadian: (¬C1 | B2), (¬C2 | B1 | B3),

(¬C3 | B2 | B4), (¬C4 | B3), (¬B1 | C2), (¬B2 | C1 | C3), (¬B3 | C2 | C4),

(¬B4 | C3). If we read (¬C2 | B1 | B3) as C2 → B1 ∨ B3, then it means that

if the Canadian takes the second seat, then the Briton must sit at either seat

1 or seat 3.

Some conditions such as there are at least two Americans, and at least one Briton

and one Canadian, can also be easily specified by clauses. However, these clauses

are logical consequence of the other clauses, as conditions 1 and 2 ensure that

there are four persons sitting on the bench. If there are at most one Briton and

one Canadian, then condition 2 is also redundant, and we may remove them safely.

Note that the input clauses serve as a set of axioms. This set is minimal if no clauses

are logical consequence of other clauses. Of course, without a through search, we

cannot identify all the clauses that are logical consequences of the other clauses.

2

The next problem is called Knights and Knaves, which was coined by Ray-

mond Smullyan in his 1978 work What Is the Name of This Book? The problem is

actually a collection of similar logic puzzles where some characters can only answer

questions truthfully, and others only falsely. The puzzles are set on a fictional island

where all inhabitants are either knights, who always tell the truth, or knaves, who

always lie. The puzzles involve a visitor to the island who meets small groups of

inhabitants. Usually the aim is for the visitor to deduce the inhabitants’ type from

their statements, but some puzzles of this type ask for other facts to be deduced.

The puzzles may also be to determine a yes-no question which the visitor can ask

in order to discover a particular piece of information.



75

Example 2.5.4. You meet two inhabitants: Zoey and Mel. Zoey tells you that

“Mel is a knave”. Mel says, “Neither Zoey nor I are knaves.” Can you determine

who is a knight and who is a knave? 2

Let p stands for “Zoey is knight”, with the understanding that if p is true,

then Zoey is a knight; if p is false, then Zoey is a knave. Similarly, define q as “Mel

is knight”. Using a function says, what they said can be expressed as

(1) says(Zoey,¬q); (2) says(Mel, p ∧ q),

together with the two axioms:

says(knight,X) ≡ X; says(knave,X) ≡ ¬X;

Now using a truth table to check all the truth values of p and q, only when p 7→ 1

and q 7→ 0, both (1) and (2) are true. That is, we replace Zoey by knight and Mel by

knave in (1) and (2), to obtain ¬q and ¬(p∧ q), respectively. Then {p 7→ 1, q 7→ 0}
is a model of ¬q ∧ ¬(p ∧ q). Thus the solution is “Zoey is a knight and Mel is a

knave.”

Example 2.5.5. You meet two inhabitants: Peggy and Zippy. Peggy tells you that

“of Zippy and I, exactly one is a knight”. Zippy tells you that only a knave would

say that Peggy is a knave. Can you determine who is a knight and who is a knave?

2

Let p be “Peggy is knight” and q be “Zippy is knight”. Then what they said

can be expressed as

(1) says(Peggy, p⊕ q); (2) says(Zippy, says(knave,¬p)).

The only solution is p 7→ 0 and q 7→ 0, i.e., both Peggy and Zippy are knaves.

2.6 Exercise Problems

1. How many logical operators which take five arguments? That is, how many

functions of type f : B5 −→ B, where B = {0, 1}?

2. Suppose VP = {p, q, r}. ThenM((p→ q) ∧ r) =? andM((p→ q) ∧ ¬q) =?

3. Prove Theorem 2.2.11, for any formulas A and B,M(A∧B) =M(A)∩M(B)

andM(¬A) = IVP −M(A).

4. Answer the following questions with explanation:
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(a) Suppose that you have shown that whenever X is true, then Y is true,

and whenever X is false, then Y is false. Have you now demonstrated

that X and Y are logically equivalent?

(b) Suppose that you have shown that whenever X is true, then Y is true,

and whenever Y is false, then X is false. Have you now demonstrated

that X and Y are logically equivalent?

(c) Suppose you know that X is true iff Y is true, and you know that Y is

true iff Z is true. Is this enough to show that X, Y , Z are all logically

equivalent?

(d) Suppose you know that wheneverX is true, then Y is true; that whenever

Y is true, then Z is true; and whenever Z is true, then X is true. Is this

enough to show that X, Y , Z are all logically equivalent?

5. Provide the truth table for defining ite : B3 −→ B, the if-then-else operator.

6. Provide a BNF grammar which defines the well-formed formulas without un-

necessary parentheses, assuming the precedence relation from the highest to

the lowest: ¬, ∧, ∨, →, {⊕,↔}.

7. Prove by the truth table method that the following formulas are valid.

(a) (A ∧ (A→ B))→ B
(b) (¬B → ¬A)→ (A→ B)
(c) (A⊕B)↔ ((A ∨B) ∧ (¬A ∨ ¬B))
(d) (A↔ B)↔ ((A ∨ ¬B) ∧ (¬A ∨B))

8. Prove by the truth table method that the following entailments hold.

(a) (A ∧ (A→ B)) |= B
(b) (A→ (B → C)) |= (A→ B)→ (A→ C)
(c) (¬B → ¬A) |= (A→ B)
(d) ((A ∨B) ∧ (¬A ∨ C)) |= (B ∨ C)

9. Prove by the truth table method that the following logical equivalences hold.

(a) ¬(A ∨B) ≡ ¬A ∧ ¬B
(b) (A ∨B) ∧ (A ∨ ¬B) ≡ A
(c) (A↔ B) ≡ ((A ∧B) ∨ (¬A ∧ ¬B))
(d) (A⊕B) ≡ ((A ∧ ¬B) ∨ (¬A ∧B))
(e) (A ↓ B) ↑ C ≡ A ↑ (B ↓ C)
(f) (A ↑ B) ↓ C ≡ A ↓ (B ↑ C)
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10. Prove the equivalence of the following formulas by using other equivalence

relations:

(a) A⊕B ≡ ¬(A↔ B) ≡ ¬A↔ B ≡ A↔ ¬B
(b) (A→ B) ∧ (A→ C) ≡ ¬A ∨ (A ∧B ∧ C)
(c) A→ (B → (C ∨D)) ≡ (A→ C) ∨ (B → D).

11. Prove Theorem 2.2.4. Hint: Induction on the structure of A.

12. Prove that for any formulas A, B, and C, if A |= B, then A ∧ C |= B ∧ C.

13. Define all the sixteen binary Boolean functions by formulas using only >,⊥,
¬, and ∧.

14. Prove that the nor operator ↓, where x ↓ y = ¬(x∨y), can serve as a minimally

sufficient set of Boolean operators.

15. Convert the following formulas into equivalent CNFs:

(a) p→ (q ∧ r);

(b) (p→ q)→ r;

(c) ¬(¬p ∨ q) ∨ (r → ¬s);

(d) p ∨ (¬q ∧ (r → ¬p));

(e) ¬(((p→ q)→ p)→ q);

(f) (p→ q)↔ (p→ r);

16. Convert the following formulas into equivalent DNFs:

(a) p→ (q ∧ r);

(b) (p→ q)→ r;

(c) ¬(¬p ∨ q) ∨ (r → ¬s);

(d) p ∨ (¬q ∧ (r → ¬p));

(e) ¬(((p→ q)→ p)→ q);

(f) (p→ q)↔ (p→ r);

17. Construct full CNF for the following formulas, where a is ¬a, + is ∨ and ∧ is

omitted as production.

(a) F = abc+ abc+ abc+ abc;
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(b) G = abc+ abc+ abc+ abc;

(c) H = a⊕ b⊕ c;

(d) I = (a ∧ b)→ (b→ c).

18. Construct full DNF for the following formulas, where a is ¬a, + is ∨ and ∧ is

omitted as production.

(a) F = (a+ b+ c)(a+ b+ c)(a+ b+ c)(a+ b+ c);

(b) G = (a+ b+ c)(a+ b+ c)(a+ b+ c)(a+ b+ c);

(c) H = a⊕ b⊕ c;

(d) I = (a ∧ b)→ (b→ c).

19. Assume a > b > c, construct ROBDDs for the following formulas, where ′ is

¬, + is ∨ and ∧ is omitted as production.

(a) F = abc+ abc+ abc;

(b) G = abc+ abc+ abc;

(c) H = a⊕ b⊕ c;

(d) I = (a ∧ b)→ (b→ c).

20. Let F be the set of all formulas built on the set of n propositional variables.

Prove that there are exactly 22
n
classes of equivalent formulas among F .

21. (a) Prove that {→,¬} is a minimally sufficient set of Boolean operators.

(b) Prove that {→,⊥} is a minimally sufficient set of Boolean operators.

22. Prove that {∧,∨,→,>} is not a sufficient set of Boolean operators.

23. Prove that (a) {∧,∨,>,⊥} is not a sufficient set of Boolean operators; (b) if

we add any function o which cannot be expressed in terms of ∧, ∨, >, and ⊥,
then {∧,∨,>,⊥, o} is sufficient.

24. Identify the pairs of equivalent formulas from the following candidates:

(a) p ↑ (q ↑ r), (b) (p ↑ q) ↑ r, (c) ↑ (p, q, r), (d) p ↓ (q ↓ r), (e) (p ↓ q) ↓ r,
(f) ↓ (p, q, r), (g) p ↑ (q ↓ r), (h) (p ↑ q) ↓ r, (i) p ↓ (q ↑ r), (j) (p ↓ q) ↑ r

25. Try to find an equivalent DNF of the minimal size for the following DNF

formulas using K-maps:
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(a) f(A,B,C) = AB C + AB + AB C + AC;

(b) f(A,B,C) = AB +B C +B C + AB C;

(c) f(A,B,C,D) = AB CD + ABC +B C D +B C D;

(d) f(A,B,C,D) = m0+m1+m5+m7+m8+m10+m14+m15, where mi is

a full minterm of A,B,C and D, and i is the decimal value of the binary

string ABCD.

26. Using the K-map method and the procedure NNF2NOR(A), to find an equiv-

alent formula, which uses only NAND/NOR/NOT operators, for each of the

formulas in the previous question.

27. Try to find an equivalent CNF of the minimal size for the following Boolean

functions using K-maps:

(a) f(A,B,C) = AB + AB + AB C + AC;

(b) f(A,B,C) = AB C + AB C + AB C + AB C;

(c) f(A,B,C,D) = m0 +m1 +m3 +m4 +m5 +m7 +m12 +m13 +m15;

(d) f(A,B,C,D) = m0+m1+m2+m4+m5+m6+m8+m9+m12+m13+m14.

28. Try to find a minimal and equivalent formula, which uses only NAND/NOR/NOT

operators, for each of the formulas in the previous question.

29. A function f : Bn −→ B, where B = {0, 1}, is called linear if f(x1, x2, ..., xn)

= a0+a1x1+ · · ·+anxn for suitable coefficients a0, ..., an ∈ B. Here + denotes

the addition modulo 2, and the not written multiplication is the multiplication

over integers.

(a) Show that the above representation of a linear function f is unique.

(b) Determine the number of n-ary linear functions.

30. Suppose x is a 32-bit positive integer. Provide a java program for each of the

following programming tasks, using as much bit-wise operations as possible:

(a) Check whether x is even or odd.

(b) Get the position of the highest bit of 1 in x.

(c) Get the position of the lowest bit of 1 in x.

(d) Count trailing zeros in x as a binary number.
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(e) Shift x right by 3 bits and put the last three bits of x at the beginning of

the result from the shifting. The whole process is called “rotate x right”

by 3 bits.

(f) Convert a string of decimal digits into a binary number without using

multiplication by 10.

31. Suppose a formula A contains 15 variables, each variable is represented by

an integer from 0 to 14. We use the last 15 bits of an integer variable x

to represent an interpretation of A, such that ith bit is 1 iff we assign 1 to

variable i. Modify the algorithm eval(A, σ), where σ is replaced by x using

bit-wise operations. Design an algorithm which lists all the interpretations of

A and apply each interpretation to A using eval(A, x). The pseudo-code of

the algorithm should be like a java program.

32. The meaning of the following propositional variables is given below:

t: “taxes are increased”,

e: “expenditures rise”,

d: “the debt ceiling is raised”,

c: “the cost of collecting taxes rises”,

g: “the government borrows more money”,

i: “interest rates increase”.

(a) express the following statements as propositional formulas; (b) convert the

formulas into CNF.

Either taxes are increased or if expenditures rise then the debt ceil-

ing is raised. If taxes are increased, then the cost of collecting taxes

rises. If a rise in expenditures implies that the government borrows

more money, then if the debt ceiling is raised, then interest rates

increase. If taxes are not increased and the cost of collecting taxes

does not increase then if the debt ceiling is raised, then the govern-

ment borrows more money. The cost of collecting taxes does not

increase. Either interest rates do not increase or the government

does not borrow more money.

33. Specify the following puzzle in propositional logic and convert the specification

into CNF. Find the model of your CNF and use this model to construct a

solution of the puzzle.
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Four kids, Abel, Bob, Carol, and David, are eating lunch on a hot

summer day. Each has a big glass of water, a sandwich, and a

different type of fruit (apple, banana, orange, and grapes). Which

fruit did each child have? The given clues are:

(a) Abel and Bob have to peel their fruit before eating.

(b) Carol doesn’t like grapes.

(c) Abel has a napkin to wipe the juice from his fingers.

34. Specify the following puzzle in propositional logic and convert the specification

into CNF. Find the model of your CNF and use this model to construct a

solution of the puzzle.

Four electric cars are parked at a charge station and their mileages

are 10K, 20K, 30K, and 40K, respectively. Their charge costs are

$15, $30, $45, and $60, respectively. Figure out how the charge cost

for each car from the following hints:

(a) The German car has 30K miles.

(b) The Japanese car has 20K miles and it charged $15.
(c) The French car has less miles than the Italian car.

(d) The vehicle that charged $30 has 10K more mileages than the

Italian car.

(e) The car that charged $45 has 20K less mileage than the German

car.

35. Specify the following puzzle in propositional logic and convert the specification

into CNF. Find the model of your CNF and use this model to construct a

solution of the puzzle.

Four boys are waiting for Thanksgiving dinner and each of them has

a unique favorite food. Their names are Larry, Nick, Philip, and

Tom. Their ages are all different and fall in the set of {8, 9, 10, 11}.
Find out which food they are expecting to eat and how old they

are.

(a) Larry is looking forward to eating turkey.

(b) The boy who likes pumpkin pie is one year younger than Philip.

(c) Tom is younger than the boy that loves mashed potato.

(d) The boy who likes ham is two years older than Philip.
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36. Six people sit on a long bench for a group photo. Two of them are Americans

(A), two are Canadians (C), one Italian (I), and one Spaniard (S). Suppose

we use propositional variables Xy, where x ∈ {A,C, I, S} and 1 ≤ y ≤ 6, and

Xy is true iff the people of nationality X sits at seat y of the bench. Please

specify the problem formally in a propositional formula using Xy, and convert

the formula into CNF such that each model of the CNF gives us one solution

for all the six people to sit on the bench, enforcing the rules that (a) the people

from the same country will not sit beside one another; (b) the Italian must

be surrounded by Americans; and (c) each American sits next to a Canadian.

Please list all the models of your CNF.

37. A very special island is inhabited only by knights and knaves. Knights always

tell the truth, and knaves always lie. You meet two inhabitants: Sally and

Zippy. Sally claims, “I and Zippy are not the same.” Zippy says, “Of I and

Sally, exactly one is a knight.” Can you determine who is a knight and who

is a knave?

38. A very special island is inhabited only by knights and knaves. Knights always

tell the truth, and knaves always lie. You meet two inhabitants: Homer and

Bozo. Homer tells you, “At least one of the following is true: that I am a

knight or that Bozo is a knight.” Bozo claims, “Homer could say that I am a

knave.” Can you determine who is a knight and who is a knave?

39. A very special island is inhabited only by knights and knaves. Knights always

tell the truth, and knaves always lie. You meet two inhabitants: Bart and

Ted. Bart claims, “I and Ted are both knights or both knaves.” Ted tells you,

“Bart would tell you that I am a knave.” Can you determine who is a knight

and who is a knave?
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CHAPTER 3

PROOF PROCEDURES FOR PROPOSITIONAL LOGIC

In Chapter 1, we introduced the concept of “proof procedure”: Given a set A

of axioms (i.e., the formulas assumed to be true) and a formula B, a proof procedure

P (A,B) will answer the question whether B is a theorem of A: If P (A,B) returns

true, we say B is proved, if P (A,B) returns false, we say B is disproved. For

propositional logic, the axiom set A is regarded to be equivalent to the conjunction

of formulas and a theorem is any formula B such that A |= B, i.e., B ∈ T (A).
That is, a proof procedure is also called a theorem prover. The same procedure P

can be used to show B is valid (i.e., B is a tautology) by calling P (>, B), or that

C is unsatisfiable by calling P (C,⊥). That is, proving the entailment relation is

no harder than proving validity or proving unsatisfiability, as the following theorem

shows. The three problems are equivalent and belong to the class of co-NP-complete

problems. In practice, a proof procedure is designed to solve one of the three

problems as its direct goal. A proof procedure is called

• theorem prover P (X,Y ) if it is to show that formula Y is a theorem (an

entailment) of X (assuming a set of formulas is equivalent to the conjunction

of all its members);

• tautology prover T (A) if it is to show formula A is valid (a tautology);

• refutation prover R(B) if it is to show formula B is unsatisfiable.

If we have one of the above three procedures, i.e., P (X,Y ), T (A), and R(B),

we may implement the other two as follows.

• If P (X,Y ) is available, implement T (A) as P (>, A), and R(B) as P (B,⊥).

• If T (A) is available, implement P (X,Y ) as T (X → Y ), and R(B) as T (¬B).

• If R(B) is available, implement P (X,Y ) as R(X ∧¬Y ), and T (A) as R(¬A).

The correctness of the above implementations is based on the following theo-

rem: Given formulas A and B, the following three statements are equivalent:

1. A |= B;
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2. A→ B is valid;

3. A ∧ ¬B is unsatisfiable.

Thus, one prover can do all the three, either directly or indirectly. In Chapter

2, we have discussed several concepts and some of them can be used to construct

proof procedures as illustrated below.

• Truth table: It can be used to construct a theorem prover, a tautology prover,

and a refutation prover.

• CNF: It can be used to construct a tautology prover, as a CNF is valid iff

every clause is valid and it is very easy to check if a clause is valid.

• DNF: It can be used to construct a refutation prover, as a DNF is unsatisfiable

iff every minterm is unsatisfiable and it is very easy to check if a minterm is

unsatisfiable.

• ROBDD or INF: It can be used to construct a tautology prover or a refutation

prover, because ROBDD is a canonical form.

• Algebraic substitution: It can be used to construct a tautology prover or a

refutation prover, as substituting “equal by equal” preserves the equivalence

relation. If we arrive at > or ⊥, we can claim the original formula is valid or

unsatisfiable.

In terms of its working principle, a proof procedure may have one of three

styles: enumeration, reduction, and deduction.

• enumeration-style: enumerate all involved interpretations;

• reduction-style: use the equivalence relations to transform a set of formulas

into a simpler set;

• deduction-style: use inference rules to deduce new formulas.

By definition, A |= B iffM(A) ⊆M(B), that is, every model of A is a model

of B. We may use a truth table to enumerate all the interpretations involving A

and B, to see if every model of A is a model of B. A proof procedure based truth

tables is an enumeration-style proof procedure which uses exhaustive search. This

type of proof procedures are easy to describe but highly inefficient. For example, if

A contains 30 variables, we need to construct a truth table of 230 rows.
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Reduction-style proof procedures use the equivalence relations to transform

a set of formulas into desired, simplified formulas, such as reduced ordered binary

decision diagrams (ROBDD). Since ROBDD is canonical, we decide that a formula

is valid if its ROBDD is > (or 1), or unsatisfiable, if its ROBDD is ⊥ (or 0). We

may also use disjunctive normal forms (DNF) to show a formula is unsatisfiable:

Its simplified DNF is ⊥. In the following, we will introduce the semantic tableau

method, which is a reduction-style proof procedure and works in the same way as

obtaining DNF from the original formula.

Deduction-style proof procedures use inference rules to generate new formulas,

until the desired formula is generated. An inference rule typically takes one or two

formulas as input and generates one or two new formulas as output. Some of

these rules come from the equivalence relations between the input and the output

formulas. In general, we require that the output of an inference rule is entailed by

the input. There are many deduction-style proof procedures and in this chapter we

will present several of them. The goal of this presentation is not for introducing

efficient proof procedures, but for introducing a formalism such that other logics

can use. This comment applies to the semantics tableau method, too.

Many proof procedures are not clearly classified as enumeration, reduction,

or deduction styles. Yet, typically their working principles can be understood as

performing enumeration, or reduction, or deduction, or all actions implicitly. For

example, converting a formula into DNF can be a reduction, however, converting

a formula into full DNF can be an enumeration, as every term in a full DNF cor-

responds to one model of the formula. In practice, reduction is often used in most

deduction-style proof procedures for efficiency.

In Chapter 1, we say that a proof procedure is decision procedure if the proce-

dure terminates for every input, that is, the procedure is an algorithm. Fortunately

for propositional logic, every proof procedure introduced in this chapter is a decision

procedure.

3.1 Semantic Tableau

The semantic tableau method, also called the “truth tree” method, is a proof

procedure not just for propositional logic, but also for many other logics, including

first-order logic, temporal and modal logics. A tableau for a formula is a tree

structure, each node of the tree is associated with a list of formulas derived from the

original formula. The tableau method constructs this tree and uses it to prove/refute

the satisfiability of the original formula. The tableau method can also determine

the satisfiability of finite sets of formulas of various logics. It is the most popular
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proof procedure for modal logics.

3.1.1 Tableau: A Tree Structure for DNF

For propositional logic, the semantic tableau checks whether a formula is sat-

isfiable or not, by “breaking” complex formulas into smaller ones as we do for

transforming the formula into DNF (disjunctive normal form). The method works

on a tree whose nodes are labeled with a list of formulas. At each step, we may

extend a leaf node by adding one or two successors to this node.

• Each node of the tree is associated with a list of formulas and the comma “,”

in the list is a synonym to ∧;

• A node is called closed if it contains a complementary pair of literals (or

formulas), or ⊥, or ¬>.

• A node is called a opwn node if it contains only a set of consistent literals,

which is equivalent to a minterm in DNF.

• If a node is neither closed nor open and has no children (a leaf in the current

tree), then it is expandable. We may apply the transformation rules for DNF

on one of the formulas in an expandable node to create children nodes. Note

that the rules apply only to the top logical operation of a formula. The

expansion stops when the tree has no expandable nodes.

• The tree links indicate the equivalence relation among formulas. If the result of

the transformation rule is a disjunction, two successors of the current node are

created and the formulas of the current node is equivalent to the disjunction

of those formulas in the two successors. This type of the transformation rules

is called β-rules; the other rules are called α-rules, which generate only one

child and the formulas of the current node is equivalent to those of the child

node.

To prove the unsatisfiability of a formula, the method starts by generating

the tree and check that every leaf node is closed, that is, no open node and no

expandable nodes as leaves. In this case, we say the tree is closed.

Example 3.1.1. For the formulas A = p ∧ (¬q ∨ ¬p) and B = (p ∨ q) ∧ (¬p ∧ ¬q),
their tableaux are shown in Figure 3.1.1. For A, the tableau has one open node

(marked by �) and one closed node (marked by ×). For B, it has only two closed

nodes. Thus A is satisfiable as it has an open node; and B is unsatisfiable as its

tableau is closed. 2
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Figure 3.1.1: The tableaux for A = p ∧ (¬q ∨ ¬p) and B = (p ∨ q) ∧ (¬p ∧ ¬q)

The tableaux can be also drawn linearly, using proper labels for the parent-

child relation: The root node has the empty label. If a node has label x, its first

child has label x1 and its second child has label x2, and so on. For example, we

may display the tableaux of A and B in Figure 3.1.1 as follows:

p ∧ (¬q ∨ ¬p) (p ∨ q) ∧ (¬p ∧ ¬q)
1 : p, (¬q ∨ ¬p) 1 : (p ∨ q), (¬p ∧ ¬q)
11 : p,¬q � 11 : (p ∨ q),¬p,¬q
12 : p,¬p × 111 : p,¬p,¬q ×

112 : q,¬p,¬q ×
(a) Proof of A (b) Proof of B

The labels of nodes can uniquely identify the positions (or address) of these

nodes in a tableau.

3.1.2 α-Rules and β-Rules

Here is the listing of α-rules and β-rules, which apply to the top logical oper-

ators in a formula.

α α1, α2

A ∧B A,B
¬(A ∨B) ¬A,¬B
¬(A→ B) A,¬B
¬(A⊕B) (A ∨ ¬B), (¬A ∨B)
A↔ B (A ∨ ¬B), (¬A ∨B)
¬(A ↑ B) A,B
A ↓ B ¬A,¬B
¬¬A A

β β1 β2

¬(A ∧B) ¬A ¬B
A ∨B A B
A→ B ¬A B
A⊕B A,¬B ¬A,B
¬(A↔ B) A,¬B ¬A,B
A ↑ B ¬A ¬B
¬(A ↓ B) A B
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If we start with a formula in NNF (negation normal form), all the α-rules and

β-rules with the leading symbol ¬ are not needed.

For every α-rule, we transform formula α into α1, α2; for every β-rule, we

transform formula β into β1 and β2. It is easy to check that α ≡ α1 ∧ α2 and

β ≡ β1 ∨ β2. Those rules are what we used for transforming a formula into DNF.

Since a tableau maintains the property that the formulas of the current node is

equivalent to the disjunction of the formulas in its children nodes (the formulas in

the same node are considered in conjunction), a tableau is a tree-like representation

of a formula that is a disjunction of conjunctions, i.e., a DNF.

Example 3.1.2. To show that Frege’s formula, (p→ (q → r))→ (p→ q)→ (p→
r), is valid, we show that the semantic tableau of its negation is closed.

¬((p→ (q → r))→ (p→ q)→ (p→ r)) α ¬ →
1 : (p→ (q → r)),¬(p→ q)→ (p→ r) α ¬ →
11 : (p→ (q → r)), (p→ q),¬(p→ r) α ¬ →
111 : (p→ (q → r)), (p→ q), p,¬r β →
1111 : ¬p, (p→ q), p,¬r ×
1112 : (q → r), (p→ q), p,¬r β →
11121 : (q → r),¬p, p,¬r ×
11122 : (q → r), q, p,¬r β →
111221 : ¬q, q, p,¬r ×
111222 : r, q, p,¬r ×

2

In Chapter 1, we pointed out that there are two important properties con-

cerning a proof procedure: soundness and completeness. For a refutation prover

like semantic tableau, the soundness means that if the procedure says the formula

is unsatisfiable, then the formula must be unsatisfiable. The completeness means

that if the formula is unsatisfiable, then the procedure should be able to give us this

result.

Theorem 3.1.3. The semantic tableau is a decision procedure for propositional

logic.

Proof. Suppose the list of formulas at one node is α, β, and γ and the formula

represented by this node is A = α∧β ∧γ. If α is transformed by a α-rule to α1 and

α2, then from α ≡ α1∧α2, A ≡ α1∧α2∧β∧γ. If beta is transformed by a β-rule to

β1 and β2, then from β ≡ β1∨β2, A ≡ (α∧β1∧γ)∨ (α∧β2∧γ). In other words, the

logical equivalence is maintained for every parent-child link in the semantic tableau.

By a simple induction on the structure of the tree, the formula at the root of the
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tree is equivalent to the disjunction of all the formulas represented at the leaf nodes.

That is, the procedure modifies the tableau in such a way that the disjunction of

the formulas represented by the leaf nodes of the resulting tableau is equivalent to

the original one. One of these conjunctions may contain a pair of complementary

literals, in which case that conjunction is equivalent to false. If all conjunctions are

equivalent to false, the original formula is unsatisfiable. This shows the soundness

of the procedure.

If a formula is unsatisfiable, then every term in its DNF must be equivalent

to false and the corresponding node in the tableau is closed. Thus we will have a

closed tableau. This shows the completeness of the procedure.

Since neither α-rules nor β-rules can be used forever (each rule reduces ei-

ther one occurrence of a binary operator or two negations), the procedure must be

terminating. 2

Of course, semantic tableau can be used to show the satisfiability of a formula.

If there is an open node in the tableau, we may assign 1 to every literal in this node

so that the formula represented by this node is true under this interpretation. The

original formula will be true under this interpretation because it is equivalent to the

disjunction of the formulas of the leaf nodes. Thus, this interpretation is a model

of the original formula. This shows that the procedure can be used to find a model

when the formula is satisfiable.

Semantic tableau specifies what rules to be used but it does not specify which

rule should be used first or which node should be expanded first. In general, α-rules

are better be applied before β-rules, so that the number of nodes in a tree can be

reduced. In practice, the order of formulas in a list can be changed and the order

of β1 and β2 can be switched. This gives the user the freedom to construct trees of

different shapes, or to find an open node quicker. The procedure may terminate once

an open node is found, if the goal is to show that the original formula is satisfiable.

Semantic tableaux are much more expressive and easy to use than truth-tables,

though that is not the reason for their introduction. Sometimes, a tableau uses more

space than a truth table. For example, an unsatisfiable full CNF of n variables will

generate a tableau of more than n! nodes, which is larger than a truth table of 2n

lines. The beauty of semantic tableaux lies on the simplicity of presenting a proof

procedure using a set of α and β rules. We will see in later chapters how new

rules are added into this procedure so that a proof procedure for other logics can

be obtained.
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3.2 Deductive Systems

In logic, a deductive system S consists of a set of inference rules, where each

rule takes premises as input and returns a conclusion (or conclusions) as output.

Popular inference rules in propositional logic include modus ponens (MP), modus

tollens (MT), and contraposition (CP), which can be displayed, respectively, as

follows:

A→ B A

B
(MP)

A→ B ¬B
¬A

(MT)
A→ B

¬B → ¬A
(CP)

3.2.1 Inference Rules and Proofs

In general, an inference rule can be specified as

P1 P2 · · · Pk

C

where P1, P2, ..., Pk are the premises and C is the conclusion. We may also write it

as

P1, P2, · · · , Pk ` C

If the premises are empty (k = 0), we say this inference rule is an axiom rule.

An inference rule is sound if its premises entail the conclusion, that is,

P1, P2, · · · , Pk |= C

for every inference rule {P1, P2, · · · , Pk} ` C (or equivalently, (P1∧P2∧· · ·∧Pk)→ C

is a tautology). For example, MP (modus ponens) is sound because {A→ B,A} |=
B; modus tollens is sound because {A→ B,¬B} |= ¬A.

Given a set A of axioms, which are the formulas assumed to be true, a proof

of formula B in S is a sequence of formulas F1, F2, ..., Fn such that Fn = B and each

Fi is either a formula in A or can be generated by an inference rule of S, using the

formulas before Fi in the sequence as the premises. If such a proof exits, we denote

it by A `S B; the subscript S can be dropped if S is understood from the context.

The proof procedure P (A,B) based on S is simply to show A `S B. Obviously,

this is a deduction-style proof procedure.
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Example 3.2.1. Let A = {p → (q → r), p,¬r}, and S = {MP,CT}. A proof of

A `S ¬q is given below:

1. p→ (q → r) assumed
2. p assumed
3. q → r MP, 1, 2
4. ¬r assumed
5. ¬q MT, 3, 4

2

The formulas in a proof can be rearranged so that all axioms appear in the

beginning of the sequence. For example, the above proof can be rewritten as the

following.
1. p→ (q → r) assumed
2. p assumed
3. ¬r assumed
4. q → r MP, 1, 2
5. ¬q MP, 3, 4

Every proof can be represented by a directed graph where each node is a

formula in the proof and if a formula B is derived from A1, A2, ..., Ak by an inference

rule, then there are edges (Ai, B), 1 ≤ i ≤ k, in the graph. This proof graph must

be acyclic as we assume that no formula can be removed from a proof without

destroying the proof. Every topological sort of the nodes of this graph should give

us a linear proof. Since every acyclic direct graph (DAG) can be converted into

a tree (by duplicating some nodes) and still preserve the parent-child relation, we

may present a proof by a tree as well. The proof tree for the above proof example

is given in Figure 3.2.1. It is clear that all assumed formulas (axioms) do not have

the incoming edges. The final formula in the proof does not have outgoing edges.

All intermediate formulas have both incoming and outgoing edges.

The soundness of an inference system comes from the soundness of all the

inference rules. In general, we require all inference rules be sound to preserves truth

of all the derived formulas. For a sound inference system S, every derived formula

B ∈ T (A). If A is a set of tautologies, then B is a tautology, too.

Theorem 3.2.2. If an inference system S is sound and A `S B, then A |= B.

Proof. A `S B means there is a proof of B in S. Suppose the proof is F1, F2, ..., Fn =

B. By induction on n, we show that A |= Fi for all i = 1, ..., n. If Fi is in A,

then A |= Fi. If Fi is derived from an inference rule P1, P2, ..., Pm ` C, using

Fj1 , Fj2 , ..., Fjm as premises, by induction hypotheses, A |= Fjk , because jk < i, for

all 1 ≤ k ≤ m. That is, A |= ∧mk=1Fjk .
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Figure 3.2.1: The proof tree of ¬q

Since the inference rule is sound, ∧mk=1Pk |= C. Applying the substitution

theorem, ∧m
k=1Fjk |= Fi. Because |= is transitive, A |= Fi. 2

Different inference systems are obtained by changing the axioms or the infer-

ence rules. In propositional logic, all these systems are equivalent in the sense that

they are sound and complete.

3.2.2 Hilbert Systems

Hilbert systems, sometimes called Hilbert calculus, or Hilbert-style inference

systems, are a type of deduction system attributed to Gottlob Frege and David

Hilbert. Variants of Hilbert systems for propositional logic exist and these deductive

systems are extended to first-order logic and other logics.

Definition 3.2.3. The Hilbert system H contains three axiom rules plus MP (modus

ponens):
H1 : ` (A→ (B → A)),
H2 : ` (A→ (B → C))→ ((A→ B)→ (A→ C)),
H3 : ` (¬B → ¬A)→ (A→ B),
MP : A,A→ B ` B.

The axiom rule H3 is not needed if → is the only operator in all formulas.

Other logical operators can be defined using either→ and ¬. For example, A∧B ≡
¬(A → ¬B) and A ∨ B ≡ ¬A ∨ B. ¬A can be replaced by A → ⊥ in H3. It will

turn out that all tautologies are derivable from the three formulas H1, H2, and H3.

Example 3.2.4. Assume A = ∅, to show that A `H (p→ p), we have the following
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proof in H:

1. p→ ((p→ p)→ p) H1, A = p,B = (p→ p)
2. (p→ ((p→ p)→ p))→ ((p→ (p→ p))→ (p→ p)) H2, A = C = p,B = p→ p
3. (p→ (p→ p))→ (p→ p) MP from 1, 2
4. (p→ (p→ p)) H1, A = p,B = p
5. p→ p MP on 3, 4, A = p,B = p.

2

Proposition 3.2.5. H is sound: If A `H B, then A |= B.

Proof. It is easy to check that every inference rule of H is sound. That is, for

every axiom rule Hi, i = 1, 2, 3, the result of the rule is a tautology. For MP,

(p ∧ (p→ q))→ q is a tautology. By Theorem 3.2.2, the proposition holds. 2

Hilbert systems originally assumed that A = ∅ (or A = >), thus every derived

formula is a tautology in a proof. This restriction is relaxed today so that we may

take a set of formulas as axioms. The truth of the formulas becomes conditional on

the truth of the axioms.

Example 3.2.6. Assume A = {p → q, q → r}, to show that A `H (p → r), we

have the following proof in H:

1. p→ q assumed
2. q → r assumed
3. ((q → r)→ (p→ (q → r)) H1

4. p→ (q → r) MP from 2, 3
5. (p→ (q → r))→ ((p→ q)→ (p→ r)) H2

6. (p→ q)→ (p→ r) MP from 4, 5
7. p→ r MP from 1, 6

2

Since H is sound, from A `H (p→ r), we have (p→ q)∧ (q → r) |=H (p→ r),

or ((p→ q) ∧ (q → r))→ (p→ r) is valid.

Hilbert system is one of the earliest inference systems and has great impact to

the creation of many inference systems. However, theorem proving in this system

has always been considered a challenge because of its high complexity. Since Hilbert

systems can hardly be a practical tool for problem solving, we state without proof

the completeness result of Hilbert system.

Theorem 3.2.7. The Hilbert system is sound and complete, that is, A |= B iff

A `H B.
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3.2.3 Natural Deduction

Both of semantic tableaux and Hilbert systems for constructing proofs have

their disadvantages. Hilbert’s systems are difficult to construct proofs in; their

main uses are metalogical, the small number of rules making it easier to prove results

about logic. The tableau method on the other hand is easy to use mechanically but,

because of the form of the connective rules and the fact that a tableau starts from

the negation of the formula to be proved, the proofs that result are not a natural

sequence of easily justifiable steps. Likewise, very few proofs in mathematics are

from axioms directly. Mathematicians in practice usually reason in a more flexible

way.

Natural deduction is a deductive system in which logical reasoning is expressed

by inference rules closely related to the “natural” way of reasoning. This contrasts

with Hilbert systems, which instead use axiom rules as much as possible to express

the logical laws of deductive reasoning. Natural deduction in its modern form

was independently proposed by the German mathematician Gerhard Gentzen in

1934. In Gentzen’s natural deductive system, a formula is represented by a set A

of formulas, A = {A1, A2, ..., An}, where the comma in A are understood as ∨. To

avoid the confusion, we will write A as

(A1 | A2 | · · · | An).

A is called a sequent by Gentzen. If n = 0, i.e., A = ( ), which is equivalent to ⊥
or (⊥). Since we assume that A is a set, duplicated formulas are removed and the

order of formulas in A is irrelevant.

Definition 3.2.8. A natural deductive system G consists of the following three in-

ference rules, plus the following logical rules which guide the introduction and elim-

ination of logical operators in the sequents.

name inference rule
axiom ` (A | ¬A | α)
cut (A | α), (¬A | β) ` (α | β)

thinning (α) ` (A | α)
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op introduction elimination
¬ (A | α) ` (¬¬A | α) (¬¬A | α) ` (A | α)
∨ (A | B | α) ` (A ∨B | α) (A ∨B | α) ` (A | B | α)
∧ (A | α), (B | α) ` (A ∧B | α) (a) (A ∧B | α) ` (A | α)

(b) (A ∧B | α) ` (B | α)
→ (¬A | B | α) ` (A→ B | α) (A→ B | α) ` (¬A | B | α)
¬∨ (¬A | α), (¬B | α) ` (¬(A ∨B) | α) (a) (¬(A ∨B) | α) ` (¬A | α)

(b) (¬(A ∨B) | α) ` (¬B | α)
¬∧ (¬A | ¬B | α) ` (¬(A ∧B) | α) (¬(A ∧B) | α) ` (¬A | ¬B | α)
¬ → (A | α), (¬B | α) ` (¬(A→ B) | α) (a) (¬(A→ B) | α) ` (A | α)

(b) (¬(A→ B) | α) ` (¬B | α)

where α and β, possibly empty, denote the rest formulas in a sequent.

In natural deduction, a sequent is deduced from a set of axioms by applying

inference rules repeatedly. Each sequent is inferred from other sequents on earlier

lines in a proof according to inference rules, giving a better approximation to the

style of proofs used by mathematicians than Hilbert systems.

Example 3.2.9. The following is a proof of ¬(p ∧ q)→ (¬p ∨ ¬q) in G:

1. (p | ¬p | ¬q) axiom, A = p, α = ¬q
2. (q | ¬q | ¬p) axiom, A = q, α = ¬p
3. (p ∧ q | ¬p | ¬q) ∧I from 1, 2, A = p,B = q, α = ¬p | ¬q
4. (¬¬(p ∧ q) | ¬p | ¬q) ¬I from 4, A = (p ∧ q), α = (¬p ∨ ¬q)
5. (¬¬(p ∧ q) | (¬p ∨ ¬q)) ∨I from 3, A = ¬p,B = ¬q, α = ¬¬(p ∧ q)
6. (¬(p ∧ q)→ (¬p ∨ ¬q)) →I from 5, A = ¬(p ∧ q), B = (¬p ∨ ¬q), α = ⊥

2

Proposition 3.2.10. The deductive system G is sound, i.e., if A `G B, then A |= B.

Proof. It is easy to check that every inference rule of G is sound. In particular,

the rules of operator introduction preserve the logical equivalence. In the rules of

operator elimination, some sequents generate two results. For example, (A∧B | α)
infers both (a) (A | α) and (b) (B | α). If we bind the two results together by ∧,
these rules preserve the logical equivalence, too. On the other hand, the cut rule

and the thinning rule do not preserve the logical equivalence; only the entailment

relation holds. That is, for the cut rule, (A | α), (¬A | β) ` (α | β), we have

(A ∨ α) ∧ (¬A ∨ β) |= α ∨ β,
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and for the thinning rule, (α) ` (A | α), we have α |= A ∨ α. 2

Note that the proof in the example above uses only the axiom rule (twice) and

the introduction rules for logical operators. This is the case when we are looking

for a proof of a tautology. Recall how we would prove that ¬(p∧ q)→ (¬p∨¬q) is
a tautology by semantic tableau. Since semantic tableau is a refutation prover, we

need to show that the negation of a tautology has a closed tableau.

a. : ¬(¬(p ∧ q)→ (¬p ∨ ¬q)) α ¬ →
b. : ¬(p ∧ q),¬(¬p ∨ ¬q) α ¬∨
c. : ¬(p ∧ q),¬¬p,¬¬q α ¬
d. : ¬(p ∧ q), p,¬¬q α ¬
e. : ¬(p ∧ q), p, q β ¬∧
f. 1 : ¬p, p, q ×
g. 2 : ¬q, p, q ×

Comparing the proof of G and the tableau above, we can see a clear corre-

spondence: Closed nodes (f) and (g) correspond to (1) and (2), which are axioms;

(e) to (3), (c) and (d) to (4), (b) to (5), and finally (a) to (6), respectively. That is,

the formula represented by each sequent in a proof of G can always find its negation

in the corresponding node of the semantic tableau.

We show below that G can be used as a refutation prover by the same example.

Example 3.2.11. Let A = {¬(¬(p ∧ q)→ (¬p ∨ ¬q))}. A proof of A |= ⊥ in G is

given below.

1. (¬(¬(p ∧ q)→ (¬p ∨ ¬q))) assumed
2. (¬(p ∧ q)) ¬ →E (a) from 1, A = ¬(p ∧ q)
3. (¬(¬p ∨ ¬q)) ¬ →E (b) from 1, B = (¬p ∨ ¬q)
4. (¬p | ¬q) ¬ ∧E from 2, A = p,B = q
5. (¬¬p) ¬ ∨E (a) from 3, A = ¬p
6. (¬¬q) ¬ ∨E (b) from 3, B = ¬q
7. (p) ¬E from 5, A = p
8. (q) ¬E from 6, A = q
9. (¬q) cut from 4, 7, A = p, α = ⊥, β = ¬q
10. ( ) cut from 8, 9, A = q, α = ⊥, β = ⊥

2

The above is indeed a proof of A `G ⊥, where ⊥ is used for the empty sequent.

In this proof, the used inference rules are the cut rule and the rules for eliminating

logical operators. If we apply repeatedly the rules of operator elimination to a

formula, we will obtain a list of sequents, each of which represents a clause. In
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other words, these rules transform the formula into CNF, then the cut rule works

on them. The cut rule for clauses has another name, i.e., resolution, which is the

topic of the next section.

Indeed, G contain more rules than necessary: Using only the axiom rule and

the rules for operator introduction, it can imitate the dual of a semantic tableau

upside down. Using only the cut rule and the rules for operator elimination, it can

do what a resolution prover can do. Both semantic tableau and resolution prover

are decision procedures for propositional logic. The implication is that natural

deduction G is a decision procedure, too. We give the main result without a proof.

Theorem 3.2.12. The natural deduction G is sound and complete, that is, A |= B

iff A `G B.

3.2.4 Inference Graphs

We have seen two examples of deductive systems, Hilbert system H and

Gentzen’s natural deduction G. To show the completeness of these deductive sys-

tems, we need strategies on how to use the inference rules in these systems and

the completeness depends on these strategies. To facilitate the discussion, let’s

introduce a few concepts.

Definition 3.2.13. Given an inference system S, the inference graph of S over the

axiom set A is defined as a directed graph G = (V,E), where each vertex of V is

a set x of formulas, where A ∈ V , x ⊆ T (A), and (x,y) ∈ E iff y = x ∪ {C},
where C is the conclusion of an inference rule r ∈ S using some formulas in x as

the premises of r.

The graph G = (V,E) defines the search space for A `S B, which becomes a

search problem: To find a proof of A `S B is the same as to find a path from A to

a node of V containing B. That is, if all the axioms of A in a proof appear in the

beginning of the proof sequence, then this proof presents a path in the inference

graph. Suppose the proof is a sequence of formulas F1, F2, ..., Fn such that the first

k formulas are from A, i.e., Fi ∈ A for 1 ≤ i ≤ k and Fi 6∈ A for i > k. Then this

proof represents a directed path in x0,x1, ...,xn−k in the inference graph such that

x0 = A, Fi ∈ A for 1 ≤ i ≤ k, and Fj ∈ xj−k for k < j ≤ n. That is, a proof is a

succinct way of presenting a directed path in the inference graph G.
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Example 3.2.14. In Example 3.2.1, the second proof is copied here:

1. p→ (q → r) assumed
2. p assumed
3. ¬r assumed
4. q → r MP, 1, 2
5. ¬r → ¬q CT, 4
6. ¬q MP, 3, 5

This proof corresponds to the path x0,x1,x2,x3,x4 in the inference graph,

where x0 = {1., 2., 3.}, x1 = x0 ∪ {4.}, x2 = x1 ∪ {5.}, x3 = x2 ∪ {5.}, and

x4 = x3 ∪ {6.}. 2

Given a set of inference rules, a proof procedure can be easily constructed if

we use a fair strategy to search the inference graph. For example, starting from

A in the inference graph, a breadth-first search is a fair strategy, but a depth-first

search is not if the graph is infinite. Fair strategy requires that if an inference rule

is applicable at some point, this application will happen over time. Any fair search

strategies, heuristic search, best-first search, A*, etc., can be used for a proof.

If every inference rule is sound, the corresponding proof procedure will be

sound. Extra requirement like fair strategy is needed in general to show that the

proof procedure is complete or halting. If the inference graph is finite, the termina-

tion of the proof procedure is guaranteed, but it does not imply the completeness

of the procedure.

3.3 Resolution

In the previous section, we introduced two deductive systems, Hilbert systems

and natural deduction. These two systems are exemplary for the development of

many deductive systems, but are not practical for theorem proving in propositional

logic. One of the reasons is the use of axiom rules which provide infinite possibilities

because one rule may have infinite instances. Another reason is that, unlike reduc-

tion rules, the inference rules may be applied without termination. For automated

theorem proving, we need a deductive system which contains very few rules as com-

puters can do simple things fast. Resolution R is such a system, which contains a

single inference rule, called resolution, which is a special case of the cut rule when

all sequents are clauses.

3.3.1 Resolution Rule

To use the resolution rule, the formula A is first transformed into CNF, which

is a conjunction of clauses (disjunction of literals). We will use A = {C1, C2, ..., Cm}
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to denote the conjunction of the clauses; each clause Ci is denoted by

(l1 | l2 | · · · | lk),

where each lj is a literal (propositional variable or its negation). If k = 0, Ci is

the empty clause, denoted by ⊥; if k = 1, Ci is called a unit clause; if k = 2, Ci is

called a binary clause. A clause is said to be positive if it is not empty and contains

only positive literals; it is negative if it is not empty and contains only negative

literals. A clause is a tautology if it contains a pair of complementary literals, i.e.,

it contains both p and ¬p for some variable p.

The total number of clauses on n propositional variables is bound by 3n,

because each variable has one of three cases in a non-tautology clause: missing, as

a positive literal, or as a negative literal.

Suppose clause C1 is p | α and C2 is ¬p | β, where α and β are the rest

literals in C1 and C2, respectively, resolution may produce a new clause from C1

and C2. Formally, the resolution rule is defined by the following schema, where A

is a propositional variable.
(A | α) (¬A | β)

(α | β)
Alternatively, we may write the resolution rule as

(A | α), (¬A | β) ` (α | β).

The clause (α | β) produced by the resolution rule is called resolvent by resolving

off A from C1 and C2. C1 and C2 are the parents of the resolvent. This resolution

rule is also called binary resolution, as it involves two clauses as premises.

The resolution rule for propositional logic can be traced back to Davis and

Putnam (1960). Resolution is extended to first-order logic in 1965 by John Alan

Robinson, using the unification algorithm. If we use→ instead of | in the resolution

rule, we obtain
(¬α→ A) (A→ β)

(¬α→ β)

which states the transitivity of →. If α is empty, then we obtain MP:

A A→ β

β
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Example 3.3.1. Let C = {(p | q), (p | ¬q), (¬p | q | r), (¬p | ¬q), (¬r)}. A proof

of A `R ⊥ is given below:

1. (p | q) assumed
2. (p | ¬q) assumed
3. (¬p | q | r) assumed
4. (¬p | ¬q) assumed
5. (¬r) assumed
6. (q | r) R from 1, 3, A = p, α = q, β = (q | r)
7. (¬q) R from 2, 4, A = p, α = ¬q, β = ¬q
8. (r) R from 6, 7, A = q, α = r, β = ⊥
9. ( ) R from 8, 5, A = r, α = ⊥, β = ⊥

2

Note that we assume that duplicated literals are removed and the order of

literals is irrelevant in a clause. Thus, the resolvent generated from clauses 1 and

3 is (q | q | r), but we keep it as (q | r) by removing a copy of q. From clauses 1

and 4, we may obtain a resolvent (q | ¬q) on p, or another resolvent on (p | ¬p) on
q. These two resolvents are tautologies and are not useful in the search for ⊥. You
cannot resolve on two variables at the same time to get ( ) directly from clauses 1

and 4.

Definition 3.3.2. A resolution proof P from the set of input clauses C is a refuta-

tion proof of C `R ⊥ and the length of P is the number of resolvents in P , denoted

by |P |. The set of the input clauses appearing in P is called the core of P , denoted

by core(P ).

The length of the resolution proof in Example 3.3.1 is 4, which is the length

of the list minus the number of assumed clauses in the proof. The core of this proof

is the entire input C.

Proposition 3.3.3. The resolution R is sound, i.e., if C `R B, then C |= B.

Proof. Using truth table, it is easy to check that ((A ∨ α) ∧ (¬A ∨ β)) → (α ∨ β)

is a tautology. Thus, the resolution rule is sound. The proposition holds following

Theorem 3.2.2. 2

Corollary 3.3.4. If C `R ⊥, then C is unsatisfiable.

Proof. Since C `R ⊥ means C |= ⊥, so M(C) = M(C ∧ ⊥) = M(⊥) = ∅ (see

Corollary 2.2.26). 2
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This corollary allows us to design a refutation prover: To show A is valid, we

convert ¬A into an equivalent set C of clauses and show that C `R ⊥, where C is

called the input clauses. Since the total number of clauses is finite, the inference

graph of R is finite. It means that the proof procedure will terminate but it does

not mean the graph is small. Before we establish the completeness of R, let us

consider how to build an effective resolution prover.

The successful implementation of a resolution prover needs the integration

of search strategies that reduce the search space by pruning unnecessary deduction

paths. Some strategies remove redundant clauses as soon as they appear in a deriva-

tion. Some strategies avoid generating redundant clauses in the first place. Some

strategies sacrifice the completeness for efficiency.

3.3.2 Resolution Strategies

Here are some well-known resolution strategies which add restriction to the

use of the resolution rule.

• unit resolution: One of the two parents is a unit clause.

• input resolution: One of the two parents is an input clause (given as the

axioms).

• ordered resolution: Given an order on propositional variables, the resolved

variable must be maximal in both parent clauses.

• positive resolution: One of the two parents is positive.

• negative resolution: One of the two parents is negative.

• set-of-support: The input clauses are partitioned into two sets, S and T ,

where S is called the set of support, and a resolution is not allowed if both

parents are in T .

• linear resolution: The latest resolvent is used as a parent for the next

resolution (no restrictions on the first resolution).

A resolution proof is called X resolution proof if every resolution in the proof

is an X resolution, where X is “unit”, “input”, “ordered”, “positive”, “negative”,

“set-of-support”, or “linear”.
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Example 3.3.5. Let C = {1. (p | q), 2. (¬p | r), 3. (p | ¬q | r), 4. (¬r)}. In the

following proofs, the input clauses are omitted and the parents of each resolvent are

shown as a pair of numbers following the resolvent.

(a) (b) (c)
5. (¬p) (2, 4) 5. (p | r) (1, 3) 5. (q | r) (1, 2)
6. (p | ¬q) (3, 4) 6. (r) (2, 5) 6. (¬q | r) (2, 3)
7. (¬q) (5, 6) 7. ( ) (4, 6) 7. (r) (5, 6)
8. (q) (1, 5) 8. ( ) (4, 7)
9. ( ) (7, 8)

Note that (a) is a unit and negative resolution proof; (b) is an input, positive and

linear resolution proof; (c) is an ordered resolution proof, assuming p > q > r.

The length of (a) is 5; the length of (b) is 3; and the length of (c) is 4. It

is easy to check that (a) is not an input resolution proof, because clause 7 is not

obtained by input resolution. (b) is not a unit resolution proof. (c) is neither a unit

nor an input resolution; it is neither positive nor negative resolution proof. 2

Efficiency is an important consideration in automated reasoning and one may

sometimes be willing to trade completeness for speed. In unit resolution, one of the

parent clauses is always a literal; in input resolution, one of the parent clauses is

always selected from the original set. Albeit efficient, neither strategy is complete.

For example, C = {(p | q), (p | ¬q), (¬p | q), (¬p | ¬q)} is unsatisfiable, though
no unit resolutions are available. We may use input resolutions to obtain p and ¬p,
but cannot obtain ( ) because p and ¬p are not input clauses.

Ordered resolution impose a total ordering on the propositional variables and

treats clauses not as sets of literals but a sorted list of literals. Ordered resolution

is extremely efficient and complete.

Set-of-support resolution is one of the most powerful strategies employed by

(Wos, Carson, Robinson 1965), and its completeness depends on the choice of set of

support. To prove A |= B by resolution, we convert A∧¬B into clauses. The clauses

obtained from ¬B serve in general as a set of support S and the clauses derived

from A are in T . Set-of-support resolution dictates that the resolved clauses are

not both from T . The motivation behind set-of-support is that since A is usually

satisfiable it might be wise not to resolve two clauses from against each other.

Linear resolution always resolves a clause against the most recently derived

resolvent. This gives the deduction a simple “linear” structure and it appears that

we can have a straightforward implementation. Because linear resolution imposes

the restriction on time, we need to add a time stamp to every clause, assuming that

all the time stamps of input clauses are 0. Now a clause is represented by 〈C, t〉,
where t is the time stamp of C, the resolution rule needs to be modified as follows:
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〈(A | α), i〉 〈(¬A | β), j〉
〈(α | β),max(i, j) + 1〉

if i or j is maximal.

Now consider the inference graph G = (V,E) for linear resolution: (x,y) ∈ E

if 〈(A | α), i〉, 〈(¬A | β), j〉 ∈ x, i is maximal in x, and y = x ∪ 〈(α | β), i + 1〉. If

a clause with the same time stamp appears in two different nodes of V , it means

that we have different sequences (of the same length) to derive this clause by linear

resolution. Since the sequences are different, one cannot be replaced by the other.

For example, in x, we may obtain 〈C3, i+1〉 from 〈C1, i〉 and 〈C2, j〉, but cannot do
the same in x′, even if 〈C1, i〉 ∈ x′, because 〈C2, j〉 may not be in x′ for any j. That

means that the inference graph has to be a tree structure. The completeness of

linear resolution ensures that there exists a path from the root (the input clauses)

to a solution node (containing the empty clause) in G = (V,E). If we do not

use the depth-first search in G, multiple copies of the same clause may have to be

kept in the search. This leaves us the depth-first search as our best option and

we have to inherit all advantages and disadvantages of the depth-first search, such

as generating the same resolvent many times, or wasting many futile steps before

finding a solution node.

It must be noted that some strategies improve certain aspects of the deduction

process at the expense of others. For instance, a strategy may reduce the size of

the proof search space at the expense of increasing, say, the length of the shortest

proofs.

3.3.3 Preserving Satisfiability

The resolution rule does not preserve the logical equivalence, that is, if D is

a resolvent of C1 and C2, then C1 ∧ C2 |= D, or C1 ∧ C2 ≡ C1 ∧ C2 ∧ D, but not

C1 ∧ C2 ≡ D. For example, q is a resolvent of p and ¬p | q,M(q) has two models,

andM(p∧ (¬p | q)) has only one model. Thus, q 6≡ p∧ (¬p | q)). However, both of

them are satisfiable.

Definition 3.3.6. Given two formulas A and B, A and B are said to be equally

satisfiable, if whenever A is satisfiable, so is B, and vice versa. We denote this

relation by A ≈ B.

Obviously, A ≈ B means M(A) = ∅ iff M(B) = ∅ and is weaker than the

logical equivalence, which requiresM(A) =M(B).

Proposition 3.3.7. Let S = C ∪ {(α | β)} and S ′ = C ∪ {(α | x), (¬x | β)} be two

sets of clauses, where x is a variable not appearing in S. Then S ≈ S ′.
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Proof. If S is satisfiable and σ is a model of S, then σ(C) = 1 and σ(α | β) = 1.

If σ(α) = ⊥, we define σ(x) = 1; if σ(β) = 0, we define σ(x) = 0. Thus both

σ(α | x) = 1 and σ(¬x | β) = 1. So σ is a model of S ′.

On the other hand, if σ is a model of S ′, then σ is also a model of S without

modification, because (α | β) is a resolvent of (α | x) and (¬x | β). 2

In the above proposition, the condition that x does not appear in C is neces-

sary. Without it, for example, if C = {(¬p)}, α is empty, β = q and x = p, then

S = {(¬p), (q)} and S ′ = {(¬p), (p), (¬p | q)}. Then S is satisfiable but S ′ is not.

Using the above proposition, we may break a long clause into a set of shorter

clauses by introducing some new variables. For example, the clause (l1 | l2 | l3 | l4 |
l5) can be transformed into three clauses: (l1 | l2 | x), (¬x | l3 | y), and (¬y | l4 | l5).
This transformation does not preserve the logical equivalence, but preserves the

satisfiability.

Another usage of the above proposition is to use resolution to remove x from

a clause set. If we exhaust all resolutions on x, keep all the resolvents and re-

move all the clauses containing x, then the resulting set of clauses will preserve the

satisfiability, as stated in Lemma 3.3.11.

Proposition 3.3.8. Let B be a subformula of A and x is a new variable. Then

A ≈ (A[B ← x] ∧ (x↔ B)).

Proof. If A is satisfiable and σ is a model of A, then we define σ(x) = σ(B). When

applying σ to the formula trees of A and A[B ← x], all the common nodes have the

same truth value, so σ(A) = σ(A[B ← x]). Since σ(x) = σ(B), so σ(x ↔ B) = 1,

thus σ is a model of A[B ← x] ∧ (x↔ B).

On the other hand, if σ is A[B ← x] ∧ (x↔ B), σ is also a model of A. 2

The above proposition plays an important role when we convert a formula

into CNF and keep the size of CNF as a linear function of the size of the original

formula. When we use the distribution law

(A ∧B) ∨ C ≡ (A ∨ C) ∧ (B ∨ C)

to transform a formula into CNF, C becomes duplicated in the result. Because of

this, there exists examples that the resulting CNF has an exponential size of the

original size. Using the above proposition and introducing new variables, we may

keep the size of CNF as four times of the original size, and every clause contains

at most three literals. The CNF obtained this way is not logically equivalent to

the original formula, but it preserves the satisfiability of the original formula: The

CNF is satisfiable iff the original formula is satisfiable. This way of transforming a

formula into CNF is called Tseitin transformation.
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Example 3.3.9. Let A be (p ∧ (q ∨ ¬p)) ∨ ¬(¬q ∧ (p ∨ q)), we introduce a new

variable for every proper subformula whose node is a binary operator, and convert

each of them into at most three clauses.

x1 ↔ (q ∨ ¬p) (x1 | q | p), (q | x1), (p | x1),
x2 ↔ (p ∧ x1) (x2 | p), (x2 | x1), (p | x1 | x2),
x3 ↔ (p ∨ q) (x3 | p | q), (p | x3), (q | x3),

x4 ↔ (¬q ∧ x3) (x4 | q), (x4 | q), (q | x3 | x4),
x2 ∨ ¬x4 (x2 | x4).

2

Example 3.3.10. In Example 2.3.9, we have converted p1 ↔ (p2 ↔ p3) into four

clauses:

(p1 | p2 | p3), (p1 | p2 | p3), (p1 | p2 | p3), (p1 | p2 | p3).

If we like to convert p1 ↔ (p2 ↔ (p3 ↔ p4)) into clauses, we may replace

p3 by (p3 ↔ p4) in the above clauses and then covert each of them into clauses.

That is, from (p1 | p2 | (p3 ↔ p4)), (p1 | p2 | (p3 ↔ p4)), (p1 | p2 | (p3 ↔ p4)), and

(p1 | p2 | (p3 ↔ p4)), we obtain eight clauses, twice as before:

(p1 | p2 | p3 | p4), (p1 | p2 | p3 | p4), (p1 | p2 | p3 | p4), (p1 | p2 | p3 | p4),
(p1 | p2 | p3 | p4), (p1 | p2 | p3 | p4), (p1 | p2 | p3 | p4), (p1 | p2 | p3 | p4).

2

If we replace p4 by (p4 ↔ p5), we will get a set of 16 clauses of length 5. In

general, p1 ↔ (p2 ↔ (p3 ↔ (...(pn−1 ↔ pn)...))) will produce 2n−1 clauses of length

n. Instead, if we introduce n − 3 new variables for this formula of n variables, we

obtain only 4(n− 1) clauses of length 3. For example, for n = 5, we introduce two

new variables, q1 and q2:

(p1 ↔ (p2 ↔ q1)) ∧ (q1 ↔ (p3 ↔ q2)) ∧ (q2 ↔ (p4 ↔ q5)),

which will generate 3× 4 = 12 clauses of length 3.

Lemma 3.3.11. Let C be a set of clauses and x be a variable in C. Let D ⊂ C

such that each clause of D contains neither x nor x. Let X = {(α | β) | (x | α), (x |
β) ∈ C}, then C ≈ D ∪X.

Proof. If C is satisfiable and σ is a model of C, then σ(C) = 1 and σ(D) = 1. If

σ(X) = 0, then there exists a clause α | β ∈ X such that σ(α) = σ(β) = 0. It

means either σ(x | α) = 0 or σ(x | β) = 0, that is a contradiction to the fact that
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σ(C) = 1, because both (x | α) and (x | β) are in C. So σ(X) = 1. It means σ is a

model of D ∪X.

On the other hand, if D ∪X is satisfiable and σ is its model, we may define

σ(x) = 1 if σ(α) = 0 for some x | α ∈ C; in this case, we must have σ(β) = 1 for all

(x | β) ∈ C; otherwise, if σ(β) = 0 for some (x | β) ∈ C, then σ(α | β) = 0, that is

a contradiction to the fact that σ(X) = 1. Similarly, if σ(α) = 1 for all x | α ∈ C,

we define σ(x) = 0. Then σ becomes a model of C. 2

This lemma plays an important role in the completeness proof of resolution:

The set X can be obtained from C by resolution. From C to D ∪ X, we have

eliminated one variable from C. Replace C by D ∪ X and we repeat the same

process and remove another variable, until no more variable in C: either C = > or

C = ⊥. From the final result, we can tell if the original set of clauses is satisfiable

or not.

3.3.4 Completeness of Resolution

Theorem 3.3.12. Ordered resolution is complete with any total ordering on the

variables.

Proof. Suppose there are n variables in the input clauses Sn with the order xn >

xn−1 > · · · > x2 > x1. For i from n to 1, we apply Lemma 3.3.6 with C = Si and

x = xi, and obtain Si−1 = D ∪ X. Every resolvent in X is obtained by ordered

resolution on xi, which is the maximal variable in Si. Finally, we obtain S0 which

contains no variables. Since Sn ≈ Sn−1 ≈ · · · ≈ S1 ≈ S0, if Sn is unsatisfiable, then

S0 must contain ⊥; if Sn is satisfiable, we arrive at S0 = ∅, i.e., S0 ≡ >. In this

case, we may use the idea in the proof of Lemma 3.3.6 to assign a truth value for

each variable, from x1 to xn, to obtain a model of Sn. 2

Example 3.3.13. Let S = {c1. (a|b|c), c2. (a|e), c3. (b|c), c4. (b|d), c5. (c|d|e),
c6. (d|e) } and a > b > c > d > e. By ordered resolution, we get c7. (b|c|e)
from c1 and c2; c8. (c|d) from c3 and c4; c9. (c|e) from c3 and c7; and c10. (d|e) from
c5 and c9. No other clauses can be generated by ordered resolution, that is, c1–c10
are saturated by ordered resolution. Since the empty clause is not generated, we

may construct a model from c1–c10 by assigning truth values to the variables from

the least to the greatest. Let Sx be the set of clauses from c1–c10 such that x is the

maximal variable.

• Se = ∅ and we can assign either 0 or 1 to e, say σe = {e}.

• Sd = {c6, c10}. From c10, d has to be 1, so σd = σe ∪ {d = 0} = {e, d}.
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• Sc = {c5, c8, c9}. From c8 or c9, c has to be 1, so σc = σd ∪{c = 0} = {e, d, c}.

• Sb = {c3, c7}. Both c3 and c7 are satisfied by σc, we may assign 0 or 1 to b,

say b = 1, so σb = σc ∪ {b} = {e, d, c, b}.

• Sa = {c1, c2}. From c2, a has to be 1, so σa = σb ∪ {a} = {e, d, c, b, a}.

2

The above example illustrates that if a set of clauses is saturated by ordered

resolution and the empty clause is not there, we may construct a model from these

clauses. In other words, we may use ordered resolution to construct a decision

procedure for deciding if a formula A is satisfiable or not.

Algorithm 3.3.14. The algorithm orderedResolution will take a set C of clauses

and an order V of variables, V = (p1 < p2 < ... < pn). It returns true iff C is

satisfiable. It uses the procedure sort(A), which places the maximal literal of clause

A as the first one in the list.

proc orderedResolution(C, V )

C := {sort(A) | A ∈ C};
for i := n downto 1 do

X := ∅;
for (pi | α) ∈ C do // pi is maximal in (pi | α)

for (pi | β) ∈ C do // pi is maximal in (pi | β)
A := (α | β);
if A = ( ) return false;

X := X ∪ {sort(A)};
C := C ∪X;

return true;

Before returning true at the last line, this algorithm can call createModel to

construct a model of C when C is saturated by ordered resolution. That is, C

contains the results of every possible ordered resolution among the clauses of C.

proc createModel(C)

σ := ∅; // the empty interpretation

for i := 1 to n do

v := 0;

for (pi | α) ∈ C do // pi is maximal

if eval(α, σ) = ⊥ do
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v := 1;

σ := σ ∪ {pi 7→ v};
return σ;

The resolution algorithm is regarded as a deduction-style proof procedure

when the empty clause is its goal. If finding a model is the goal of the resolution

algorithm, it is a saturation-style proof procedure, because the set of clauses is

saturated by ordered resolution, that is, all the possible results of the inference rules

are generated, before we can build a model.

Corollary 3.3.15. Resolution is a sound and complete decision procedure for propo-

sitional logic.

Proof. We have seen that resolution is sound. If C is unsatisfiable, we may obtain

an ordered resolution proof from C. This proof is also a resolution proof. Thus

C |= ⊥ implies C `R ⊥. If C is satisfiable, we may construct a model for C as we

do for ordered resolution. 2

Theorem 3.3.16. Positive resolution is complete for refutation.

Proof. Suppose C is unsatisfiable and there is a resolution proof C `R ⊥. We prove

by induction on the length of the proof on how to convert this proof into a positive

resolution proof.

Let P be a resolution proof of C `R ⊥ of minimal length. If |P | = 1, then the

only resolution uses a positive unit clause to obtain ⊥ and it is a positive resolution.

If |P | > 1, suppose the last resolution in P resolves on variable q. Then C `R q

and C `R q. Let P1 and P2 be the proofs of C `R q and C `R p presented in P ,

respectively.

If we remove all the occurrences of q from P1, we obtain a resolution proof P ′
1

and core(P ′
1) contains clauses from core(P ) with q being removed. Since |P ′

1| < |P |,
by induction hypothesis, we have a positive resolution proof of core(P ′

1) `R ⊥. If we
add q back to core(P ′

1), we obtain a positive resolution proof P”1 of core(P ) `R q.

We then remove all the occurrences of q from P2, and obtain a resolution proof

P ′
2 and core(P ′

2) contains clauses from core(P ) with q being removed. By induction

hypothesis, there exists a positive resolution proof P”2 of core(P ′
2) `R ⊥. For each

clause α ∈ core(P ′
2), if α is obtained from α | q ∈ core(P ), we add α as the resolvent

of α |6= q and q at the beginning of P”2. Finally, we append P”1, which generates

q by positive resolution, and P”2 into one proof, the result is a positive resolution

proof of C `R ⊥. 2

The following theorem can be proved using a similar approach.
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Theorem 3.3.17. Negative resolution is complete for refutation.

Completeness of resolution strategies are important to ensure that if the empty

clause is not found, the input clauses are unsatisfiable. In this case, one strategy may

generate the empty clause quicker than another strategy. When the input clauses

are satisfiable, we have to compute all possible resolutions to ensure that no new

resolvents before claiming the input clauses are satisfiable. In this case, we say the

set of clauses, old and new, is saturated by resolution. Restricted resolutions like

ordered resolution, positive resolution, and set-of-support resolution, work much

better than unrestricted resolution, when the saturation is needed to show the

satisfiability of a set of clauses.

3.3.5 A Resolution-based Decision Procedure

If we like to employ heuristics in a decision procedure based on resolution, the

following procedure fits the purpose.

Algorithm 3.3.18. The algorithm resolution will take a set C of clauses and returns

true iff C is satisfiable. It uses the procedure resolvable(A,B), which decides if

clauses A and B are allowed to do restricted resolution, and if yes, resolve(A,B)

will their resolvent. It uses pickClause(C) to pick out a clause according to a

heuristic.

proc resolution(C)

G := C; // G: given clauses

K = ∅; // K: kept clauses

while G 6= ∅ do
A := pickClause(G);

G := G− {A};
for B ∈ K if resolvable(A,B) do

res := resolve(A,B);

if res = ( ) return false;

if res 6∈ (G ∪K)

G := G ∪ {res};
K := K ∪ {A};

return true;

In the procedure, we move each clause from G to K, and compute the reso-

lution between this clause and all the clauses in K. When G is empty, resolution

between any two clauses are done.
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With the exception of linear resolution, the above procedure can be used to

implement all the resolution strategies introduced in this section. The restriction

will be implemented in resolvable. For set-of-resolution, a better implementation is

that G is initialized with the set of support and K is initialized with the rest of the

input clauses.

The termination of this procedure is guaranteed because only a finite number

of clauses exist. When the procedure returns false, the answer is correct because

resolution is sound. When it returns true, the correctness of the answer depends on

the completeness of the resolution strategy implemented in resolvable.

In pickClause, we implement various heuristics for selecting a clause in G to do

resolutions with clauses in K. Popular heuristics include preferring shorter clauses

or older clauses. Preferring shorter clauses because shorter clauses are stronger as

constraints on the acceptance of interpretations as models. An empty clause removes

all interpretations as models; a unit clause removes half of the interpretations as

models; a binary clause removes a quarter of the interpretations as models; and so

on. Preferring older clauses alone would give us the breadth-first strategy. If we

wish to find a shorter proof, we may mix this preference with other heuristics.

Despite the result that complete resolution strategies can serve as a decision

procedure for positional logic, and some strategies can even build a model when

the input clauses are satisfiable, resolution provers are in general not efficient for

propositional logic, because the number of possible clauses is exponential in terms

of the number of variables. The computer may quickly run of memory before finding

a solution for real application problems.

3.3.6 Clause Deletion Strategies

There are several strategies which can safely remove redundant clauses during

the resolution. They are tautology deletion, subsumption deletion, and pure literal

deletion.

A clause is a tautology if it contains a complementary pair of literals of the

same variable. For example, (p | p). A tautology clause is true in every interpreta-

tion and is not needed in any resolution proof.

Proposition 3.3.19. Given any set S of clauses, let S be partitioned into S ′ ∪ T ,

where T is the set of tautology clauses in S. Then S ≡ S ′.

Proof. For any interpretation σ, σ(S) = σ(S ′) ∧ σ(T ) = σ(S ′) as σ(T ) = 1. 2

Definition 3.3.20. A clause A subsumes another clause B if B = A | α for some

α. That is, every literal of B appears in A.
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For example, (p | q) subsumes (p | q | r). Intuitively, resolution tries to delete

literals by resolution one by one to obtain an empty clause. If we use (p | q) instead
of (p | q | r), we avoid the job of removing r.

Proposition 3.3.21. If A subsumes B, then S ∪ {A,B} ≡ S ∪ {A}.

Proof. Since A subsumes B,M(A) ⊆M(A) ∪M(α) =M(B). M(S ∪ {A,B}) =
M(S) ∩ (M(A) ∩M(B)) =M(S) ∩M(A) =M(S ∪ {A}). 2

The above proposition shows that if A subsumes B, then B can be dropped

as a constraint in the presence of A. The following proposition shows that B is not

needed in a resolution proof.

Proposition 3.3.22. If A and B are two clauses appearing in the resolution proof

of S `R ⊥ such that A subsumes B, then B is no longer needed once A is present.

Proof. If B is used in a resolution proof after the presence of A, we may replace B

by A to obtain a proof of shorter or equal length, by checking all the resolutions

which remove every literal from B: Suppose the first resolution is between B and γ

and the resolvent is B′. There are two cases to consider: (1) the resolved variable

is not in A. This resolution is unnecessary, because A subsumes B′ and we replace

B′ by A. (2) the resolved variable is in A, then let the resolvent of A and γ be A′.

It is easy to check that A′ subsumes B′, and we replace B′ by A′. We replace the

descendants of B by the corresponding descendants of A, until the last resolution.

The modified resolution proof will have shorter or equal length. 2

Proposition 3.3.23. If there exists a resolution proof using a tautology clause, then

there exists a resolution proof without the tautology clause.

Proof. Suppose the tautology clause appearing in the proof is (p | p | α). We need

another clause (p | β) (or (p | β)) to resolve off p. The resolvent of (p | p | α) and
(p | β) is (p | α | β), which is subsumed by (p | β). By Proposition 3.3.22, (p | α | β)
is not needed in the resolution proof. Since every resolvent of a tautology is not

needed, so we need any tautology in a resolution proof. 2

Definition 3.3.24. A literal l is said to be pure in a set C of clauses if its comple-

ment does not appear in C.

Proposition 3.3.25. If l is pure in C, let D be the set of clauses obtained from C

by removing all clauses containing l from C, then C ≈ D.
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Proof. If σ is a model of C, then σ is also a model of D. If σ is a model of D, define

σ(l) = 1, then σ is a model of C. 2

For example, if C = {1. (p | q), 2. (p | r), 3. (p | q | r), 4. (p | q)}, then r is

pure. Remove 2. and 3. from C, q becomes pure. Remove 1. and 4., we obtain an

empty set of clauses, which is equivalent to 1. By the proposition, it means C is

satisfiable. A model can be obtained by setting q = r = 1 in the model.

The above propositions allow to use the following clause deletion strategies

without worrying about missing a proof:

• tautology deletion: Tautology clauses are discarded.

• subsumption deletion: Subsumed clauses are discarded.

• pure deletion: Clauses containing pure literals are discarded.

These deletion strategies can be integrated into the algorithm resolution as

follows.

Algorithm 3.3.26. The algorithm resolution will take a set S of clauses and

returns true iff S is satisfiable. In preprocessing(S), we may implement pure-

literal check or subsumption to simplify the input clauses as a preprocessing step.

subsumedBy(A, S) checks if clause A is subsumed by a clause in S.

proc resolution(S)

1 G :=preprocessing(S); // G: given clauses

2 K := ∅; // K: kept clauses

3 while G 6= ∅ do
4 A := pickClause(G);

5 G := G− {A};
6 N := { }; // new clauses from A and K

7 for B ∈ K if resolvable(A,B) do

8 res := resolve(A,B);

9 if res = ( ) return false;

10 if subsumedBy(res,G ∪K) continue;

11 N := N ∪ {res};
12 K = K ∪ {A};
13 for A ∈ G if subsumedBy(A,N) do

14 G := G− {A};
15 for B ∈ K if subsumedBy(B,N) do

16 K := K − {B};
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17 G := G ∪N ;

18 return true; // K is saturated by resolution

A life cycle of a clause A goes as follows in the algorithm resolution.

1. If A is an input clause, it passes the preprocessing check, such as pure-literal

check and subsumption check, and goes into G (line 1).

2. If A is picked out of G (lines 4,5), it will pair with every clause B in K to try

resolution on A and B. Once this is done, A will go to K as a kept clause

(line 12).

3. A may be subsumed by a new clause when it is in G (line 13) or in K (line

15), and will be thrown away.

4. If A is a new clause (line 8), it has to pass the subsumption check (line 10)

and parks in N (line 11).

5. All new clauses in N will be used to check if they can subsume some clauses

in G (line 13) and (line 15), then merge into G (line 17), and start a life cycle

the same way as an input clause.

6. If the algorithm stops without finding the empty clause (line 9), the set G will

be empty (line 3), and all the resolutions among the clauses in K are done.

That is, K is saturated by resolution.

In this algorithm, unit clauses are given high priority to do unit resolution

and subsumptions. Dealing with unit clauses can be separated from the main loop

of the algorithm as we will see in the next section.

3.4 Boolean Constraint Propagation (BCP)

A unit clause (A) subsumes every clause like (A | α), where A appears as a

literal. Unit resolution between (A) and (A | α), where A = p if A is p, generates

the resolvent (α), which will subsume (A | α). The rule for replacing (A | α) by (α)

at the presence of (A) is called unit deletion. That is, when subsumption deletion

is used in resolution, a unit clause (A) allows us to remove all the occurrences of

the variable p in (A), with the unit clause itself as the only exception. New unit

clauses may be generated by unit resolution and we can continue to simplify the

clauses by the new unit clause and so on. This process is traditionally called Boolean

constraint propagation (BCP), or unit propagation.
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3.4.1 BCP: a Simplification Procedure

Clause deletion strategies allow us to remove unnecessary clauses during reso-

lution. BCP also allows us to simplify clauses by removing unnecessary clauses and

shortening clauses. In the following, we will describe BCP as a procedure which

takes a set C of clauses as input and returns a pair (U, S), where U is a set of unit

clauses and S is a set non-unit clauses such that U and S share no variables and

C ≡ U ∪ S. Typically, S contains a subset of C or clauses from C by removing

some literals.

Algorithm 3.4.1. The algorithm BCP will take a set C of clauses and apply unit

resolution and subsumption deletion repeatedly, until no more new clauses can be

generated by unit resolution. It will return ⊥ if an empty clause is found; otherwise,

it returns a simplified set of clauses equivalent to C.

proc BCP(C)

S := C; // S: simplified clauses

U := ∅; // U : unit clauses

while S has a unit clause (A) do

S := S − {(A)};
U := U ∪ {A};
for (A | α) ∈ S do

S := S − {(A | α)};
for (A | α) ∈ S do

if α = ( ) return ⊥;
S := S − {(A | α)} ∪ {(α)};

return (U, S);

Example 3.4.2. Let C = {1 : (x2 | x5), 2 : (x1 | x4), 3 : (x2 | x4), 4 : (x1 | x2 |
x3), 5 : (x5)}. Then BCP(C) will return

({x5, x2, x4, x1}, ∅)

because we first add x5 into U ; clause 1. becomes (x2), x2 is then added into U ;

clause 4. is deleted because x2 ∈ U ; clause 3. becomes (x4) and x4 is added into U ;

clause 2. becomes (x1) and x1 is added into U . The set U allows us to construct

two models of C:

{x1 7→ 0, x2 7→ 1, x3 7→ v, x4 7→ 1, x5 7→ 0}

where v ∈ {0, 1} as x3 can take either value. 2
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Proposition 3.4.3. (a) If BCP(C) returns ⊥, then C is unsatisfiable. (b) If

BCP(C) returns (U, S), then C ≡ U ∪ S, where U is a set of unit clauses and

S is a set of non-unit clauses, and U and S share no variables.

Proof. In BCP(C), S is initialized with C. S is updated through three ways: (1)

unit clause A is removed from S into U ; (2) clause (A | α) is removed from S; and

(3) clause (A | α) is replaced by (α). (α) is the resolvent of (A) and (A | α), so
C |= α.

(a): If α = ( ) in (3), ⊥ will be returned and C ≡ ⊥ because C |= ⊥.
(b): Initially, C ≡ U ∪S. Since A subsumes A | α and α subsumes (A | α), by

Proposition 3.3.21, it justifies that both A | α and (A | α) can be safely removed,

as it maintains C ≡ U ∪ S for each update of U and S. When A is moved from

S to U , either A or A is removed from S, so no variables of A appear in S. The

procedure stops only when S does not have any unit clauses. 2

The procedure BCP can serve as a powerful simplification procedure when

unit clauses are present in the input. BCP plays an important role in deciding if

a formula is satisfiable, which is the topic of the next chapter. We will show later

that BCP(C) can implemented in time O(n), where n is the number of literals in

C.

3.4.2 BCP: a Decision Procedure for Horn Clauses

A Horn clause is a clause with at most one positive literal. Horn clauses are

named for the logician Alfred Horn, who first pointed out their significance in 1951.

A Horn clause is called definite clause if it has exactly one positive literal. Thus Horn

clauses can be divided into definite clauses and negative clauses. Definite clauses

can be further divided into fact (a positive unit clause) and rule (non-unit definite

clauses). Horn clauses have important applications in logic programming, formal

specification, and model theory, as they have very efficient decision procedures,

using unit resolution or input resolution. That is, unit and input resolutions are

incomplete in general, but they are complete for Horn clauses.

Proposition 3.4.4. BCP is a decision procedure for Horn clauses.

Proof. Suppose H is a set of Horn clauses and ⊥ 6∈ H. It suffices to show that

procedure BCP(H) returns⊥ iffH ≡ ⊥. If BCP(H) returns⊥, by Proposition 3.4.3,

H ≡ ⊥. If BCP(H) returns (U, S), by Proposition 3.4.3, H ≡ U ∪ S, U is a set

of unit clauses, S is a set of non-unit clauses, and U and S share no variables. In

this case, we create an assignment σ in which every literal in U is true, and every

variable in S is false. Note that each variable in U appears only once; U and S do
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not share any variable. Thus this assignment is consistent and is a model of U ∪ S,
because every unit clause in U is true under σ; for each every clause in S, since it is

a non-unit Horn clause and must have a negative literal, which is true under σ. 2

Theorem 3.4.5. Unit resolution is sound and complete for Horn clauses.

Proof. Unit resolution is sound because resolution is sound. The only used inference

rule in BCP is unit resolution. Every clause generated by BCP can be generated by

unit resolution. Subsumption only reduces some unnecessary clauses. If the input

clauses are unsatisfiable, BCP will generate the empty clause, which can also be

generated by unit resolution. If the input clauses are satisfiable, unit resolution will

terminate with a set of clauses saturated by unit resolution, without generating the

empty clause, because unit resolution is sound. 2

3.4.3 Unit Resolution versus Input Resolution

In the following, we show that input resolution and unit resolution are equiv-

alent, in the sense that if there exists a unit resolution proof, then there exists an

input resolution proof and vice versa.

Theorem 3.4.6. For any set C of clauses, if there exists an input resolution proof

from C, then there exists a unit resolution proof from C.

Proof. We will prove this theorem by induction on the length of proofs. Let P be an

input resolution proof from C of minimal length. The last resolvent is ⊥ and both

its parents are unit clauses and one of them must be an input clause, say A. For

simplicity, assume all the assumed clauses appear in the beginning of P and A is

the first in P . If |P | = 1, then P must be a unit resolution proof and we are done. If

|P | > 1, then remove A and the last clause from P , and remove all occurrences of A

from P , where A = p if A = p and A = p if A = p. The result is an input resolution

proof P ′ from C ′, where C ′ is obtained from C by removing all occurrences of A in

C. That is, (A | α) ∈ C iff (α) ∈ C ′. Because |P ′| < |P |, by induction hypothesis,

there exists a unit resolution Q′ proof from C ′. If (α) ∈ C ′ comes from (A | α) ∈ C,

then change the reason of (α) ∈ Q′ from “assumed” to “resolution from A and

(A | α)”. Let the modified Q′ be Q, then Q is a unit resolution from C. 2

Example 3.4.7. We illustrate the proof of this theorem by Example 3.3.5, where

C = {1. (p | q), 2. (p | r), 3. (p | q | r), 4. (r)}.
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Let P be (b) of Example 3.3.5. Then A = r, C ′ = {1. (p | q), 2′. (p), 3′. (p | q)}
and two input resolutions in P ′ are 5. : p (1, 3′) and 6. ⊥ (2′, 5). A unit resolution

Q′ from C ′ will contain three unit resolutions:

5. (q) (1, 2′) 6. (q) (2′, 3′) 7. ( ) (5, 6).

Adding two unit resolutions before Q′, we obtain Q:

2′ : (p) (2, 4), 3′ : (p | q) (3, 4) 5. (q) (1, 2′) 6. (q) (2′, 3′) 7. ( ) (5, 6),

which is a unit resolution proof from C. 2

Theorem 3.4.8. For any set C of clauses, if there exists a unit resolution proof

from C, then there exists an input resolution proof from C.

The proof of this theorem is left as exercise.

The above two theorems establish the equivalence of input resolution and unit

resolution: A unit resolution proof exists iff an input resolution proof exists. Since

unit resolution is complete for Horn clauses, we have the following result.

Corollary 3.4.9. Input resolution is sound and complete for Horn clauses.

Theorem 3.4.10. For any set H of Horn clauses, let H = S ∪ T , where S is a set

of negative clauses and T = H − S. Then input resolution is sound and complete

for H, when S is used as the set of support.

Proof. Resolution is not possible among the clauses in S as resolution needs a pair of

complementary literals from the two parent clauses. Set-of-support resolution does

not allow resolution among the clauses in T . Thus resolution is possible only when

one clause is from S and one from T , and the resolvent is a negative clause, because

the only positive literal from T is resolved off. For each resolution between S and

T , we add the resolvent into S, until either the empty clause ⊥ is found or no new

resolvents can be generated. If ⊥ is generated, then H ≡ ⊥ because resolution is

sound. If no new resolvents can be generated, we create an assignment σ as follows:

call BCP on T , since T is satisfiable, let (U, S) = BCP(T ). For any unit clause p

in U , let σ(p) = 1; for any other unassigned variable q in S ∪ S, let σ(q) = ⊥. We

claim that σ is a model of H. At first, σ(U ∪S) = 1, because U and S do not share

any variables, and the assignment will make every clause in U ∪ S to be true. Let

S be the set of negative clauses from H plus all the resolvents between S and T .

If σ(S) = ⊥, we look for a clause C ∈ S, such that σ(C) = ⊥ and every

variable of C appears as a unit clause in T . Since C is a negative clause, let

C = (p1 | p2 | · · · | pk). Since σ(C) = ⊥, pi ∈ U and σ(pi) = 1 for 1 ≤ j ≤ k. If
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pk 6∈ T , pk is obtained by unit resolution in BCP(T ), say from (q1 | q2 | pk) ∈ T and

q1, q2 ∈ U , then this unit resolution can be avoided by an input resolution between

(q1 | q2 | pk) ∈ T and C ∈ S to generate

C ′ = (p1 | p2 | · · · | pk−1 | q1 | q2) ∈ S.

Obviously, σ(C ′) = 0. Let C be C ′ and we check again if every variable of C appears

as a unit clause in T . Finally, we will find a clause C ∈ S, such that every variable

of C appears as a unit clause in T . In this case, input resolution between C and

{(p1), (p2), ..., (pk)} will generate the empty clause ( ), a contradiction coming from

the assumption that σ(S) = 0. So σ(S) = 1. 2

Note that input resolution with negative clauses as the set of support on Horn

clauses is also negative resolution. If the set of support initially contains a single

clause, this input resolution is also a linear resolution. If the positive literal is

maximal in each clause, then this resolution is also ordered resolution.

Corollary 3.4.11. If H is a set of Horn clauses which contains a single negative

clause, then the negative, input and linear resolution is complete for H.

Proof. If C is the only negative clause, let S = {C} and T = H − S. Using S as

the set of support, we will get an input resolution proof. Since all negative clauses

between S and T are from C, the proof can be arranged as a linear resolution proof.

2

3.4.4 Head/Tail Literals for BCP

For a unit clause (A) to be true, the truth value of literal A needs to be 1. We

can use a partial interpretation σ to remember which literals appear in unit clauses.

Definition 3.4.12. A partial interpretation is a set σ of literals, where no variables

appear in σ more than once, with the understanding that if A ∈ σ, then A is true

and A is false in σ. When σ contains every variable exactly once, it is called a full

interpretation

It is easy to see that a full interpretation σ is equivalent to the interpretation

σ′: for every variable p, σ′(p) = 1 if p ∈ σ and σ′(p) = 0 if p ∈ σ. From the above

definition, it is convenient to consider a set of unit clauses as a partial interpretation.

For example, if U = {p,¬q, r}, it represents the interpretation σ = {p 7→ 1, q 7→
0, r 7→ 1}. From now on, we do not distinguish a full interpretation from the old

definition of interpretation.
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We can evaluate the truth value of a clause or formula in a partial interpreta-

tion as we do in a full interpretation.

Definition 3.4.13. Given a partial interpretation σ and a clause c,

• c is satisfied if one or more of its literals is true in σ.

• c is conflicting if all the literals of c are false in σ.

• c is unit if all but one of its literals are false and c is satisfied.

• c is unresolved if c is not one of the above three cases.

When c becomes unit, we have to assign 1 to the unassigned literal, say A, in

c, so that c becomes true. That is, c is the reason for literal A being true, and we

record this as reason(A) = c. We also say the literal A is implied by c.

Example 3.4.14. Given the clauses {c1 : (x1), c2 : (x3), c3 : (x1 | x2 | x3)},
reason(x1) = c1, reason(x3) = c2, and reason(x2) = c3. x2 is implied to be true by

c3 because c3 is equivalent to (x1 ∧ x3)→ x2. 2

In BCP, we start with an empty partial interpretation σ. If we have found a

unit clause (A) , we extend σ by adding A into σ so that the unit clause becomes

satisfied. To save time, we do not remove clauses containing A from the clause set.

We do not remove A from any clause to create a new clause. In stead, we just

remember A is now false in σ.

We need to find out which clauses become unit clauses when some of literals

become false. A clause c of k literals becomes unit when k− 1 literals of c are false.

If we know two literals of c are not false, we are certain that c is not unit. Let

us designate these two literals as head and tail literals of c, which are two distinct

literals of c, we have the following property.

Proposition 3.4.15. A clause c of length longer than one is neither unit nor con-

flicting in a partial interpretation σ iff either one of the head/tail literals of c is true

or neither of them is false in σ.

Proof. Suppose c contains k literals and k > 1. If c is satisfied, then it contains

a true literal and we may use it as one of the head/tail literals. If c is unit or

conflicting, there are k− 1 or all literals of c are false, and no literal in c is true and

there do not exist two literals which are not false for the head/tail literals. If c is

unsolved, then there must exist two unassigned literals for the head/tail literals. 2

Initially, let the first and last literals be the head/tail literals. When a head

literal becomes false, we scan right to find in c the next literal which is not false and
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make it the new head literal; similarly, when a tail literal becomes false, we scan

left to find the next tail literal. If we cannot find new head or tail literal, we must

have found a unit clause or a conflicting clause.

To implement the above idea, we use the following data structures for clauses:

For each clause c containing more than one literal:

• lits(c): the array of literals storing the literals of c;

• head(c): the index of the first non-false literal of c in lits(c);

• tail(c): the index of the last non-false literal of c in lits(c);

Let |c| denote the number of literals in c, then the valid indices for lits(c) are

{0, 1, ..., |c| − 1}, head(c) is initialized with 0, and tail(c) is with |c| − 1.

The data structures associated with each literal A are:

• val(A): the truth value of A under partial interpretation, val(A) ∈ {1, 0,×},
× (“unassigned”) is the initial value;

• cls(A): list of clauses c such that A is in c and pointed by either head(c) or

tail(c) in lits(c). We use insert(c, cls(A)) and remove(c, cls(A)) to insert and

remove clause c into/from cls(A), respectively.

Assuming global variables are used for clauses and literals, the procedure BCP

can be implemented as follows:

proc BCP(C)

// initialization

1: U := ∅; // U : stack of unit clauses

2: for c ∈ C do

3: if c = ( ) return ⊥;
4: if (|c| > 1)

5: lits(c) := makeArray(c); // create an array of literals

6: head(c) := 0; insert(c, cls(lits(c)[0]));

7: tail(c) := |c| − 1; insert(c, cls(lits(c)[|c| − 1]));

8: else push(c, U);

9: for each literal A, val(A) := ×; // × = “unassigned”

// major work

10: res := BCPht(U);

// finishing

11: if (res 6= ”SAT”) return ⊥;
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12: U := {A | val(A) = 1};
13: S := {clean(c) | val(lits(c)[head(c)]) = ×, val(lits(c)[tail(c)]) = ×};
14: return (U, S);

Note that the procedure clean(c) at line 13 will remove from c those literals

which are false (under val) and return > if one of the literals in c is true. The

procedure BCPht will do the major work of BCP.

Algorithm 3.4.16. BCPht(U) assumes the input clauses C = U ∪S, where U is a

stack of unit clauses and S is a set of non-unit clauses stored using the head/tail data

structure, and can be accessed through cls(A). BCPht returns a conflict clause if an

empty clause is found during unit propagation; returns “SAT” if no empty clause

is found.

proc BCPht(U)

1 while U 6= ∅ do
2 A := pop(U);

3 if val(A) = 0 return reason(A); // an empty clause is found;

4 else if (val(A) = ×) // × is “unassigned

5 val(A) := 1; val(A) := 0;

6 for c ∈ cls(A) do // A is either head or tail of c

7 if (A = lits(c)[head(c)])

8 e1 := head(c); e2 := tail(c); step := 1; // scan from left to right

9 else

10 e1 := tail(c); e2 := head(c); step := −1; // scan from right to left

11 while true do

12 x := e1 + step; // x takes values from e1 + step to e2
13 if x = e2 break; // exits the inner while loop

14 B := lits(c)[x];

15 if (val(B) 6= 0)

16 remove(c, cls(A)); insert(c, cls(B));

17 if (step = 1) head(c) := x; else tail(c) := x;

18 break; // exit the inner while loop

19 if (x = e2) // no new head or tail

20 A := lits(c)[e2]; // check if c is unit or conflicting

21 if val(A) = 0 return c; // c is conflicting;

22 else if (val(A) = ×) // c is unit

23 push(A,U); reason(A) := c; val(A) := 1; val(A) := 0;

24 return “SAT”; // no empty clauses are found;
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Example 3.4.17. For the clauses in Example 3.4.2, we have the following data

structures after the initialization (the head and tail indices are given after the literal

list in each clause):

C = {c1 : 〈[x2, x5], 0, 1〉, c2 : 〈[x1, x4], 0, 1〉, c3 : 〈[x2, x4], 0, 1〉, c4 : 〈[x1, x2, x3], 0, 2〉}
U = {x5}; the rest clauses are stored as follows :
cls(x1) = {c4}, cls(x1) = {c2}, cls(x2) = {c1}, cls(x2) = {c3},
cls(x3) = ∅, cls(x3) = {c4}, cls(x4) = {c3}, cls(x4) = {c2},
cls(x5) = {c1}, cls(x5) = ∅,

and val(A) = × (unassigned) for all literal A. Note that each clause appears twice

in the collection of cls(A). 2

Inside of BCPht(U), when x5 is popped off U , we assign val(x5) = 1, val(x5) =

0 (line 5) and check c1 ∈ cls(x5) (line 6). c1 generates unit clause x2 and is added

into U (line 23) with the assignments val(x2) = 1, val(x2) = 0. When x2 is popped

off U , we check c3 ∈ cls(x2). c3 generates unit clause x4, we push x4 into U , and

assign val(x4) = 1, val(x4) = 0. When x4 is popped from U , we check c2 ∈ cls(x4).

c2 generates unit clause x1, we push x1 into U and assign val(x1) = 1, val(x1) = 0.

When x1 is popped off U , we check c4 ∈ cls(x1). c4 is true because val(x2) = 1. Now

the head index of c4 is updated to 1, and we add c4 = 〈[x1, x2, x3], 1, 2〉 into cls(x2).

Since no empty clause is found, BCPht returns “SAT”. Finally, BCP returns (U, S):

(U, S) = ({x5, x2, x4, x1}, ∅).

Note that the two assignments val(a) := 1; val(a) := 0 at line 23 of BCPht

can be removed as the same work will be done at line 5. However, having them

here often improves the performance of BCPht. BCPht can be improved slightly by

checking (val(lits(c)[e2]) = 1) after line 10: if it is true, then skip clause c as c is

satisfied.

In this implementation of BCP, once all the clauses C are read in, each oc-

currence of literals of non-unit clauses will be visited at most once in BCPht.

Proposition 3.4.18. BCP(C) runs in O(n) time, where n is the sum of the lengths

of all clauses in C.

Proof. Obviously, the initialization of BCP takes O(n). For BCPht, we access a

non-unit clause c when its head (or tail) literal becomes false (line 6). We skip the

head (tail) literal (line 11) and check the next literal b (line 13), if it is false, we

continue (line 14); otherwise, we remove c from cls(A) into cls(B) (line 16) and

update the head (tail) index (line 17). If we cannot find a new head (tail) literal
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(line 19), we have found a new unit clause (line 20). None of the literals of c is

visited more than once by BCPht. In particular, we never access the clauses from

cls(A) when literal A is true. 2

Combining the above proposition with Theorem 3.4.4, we have the following

result:

Theorem 3.4.19. BCP is a linear time decision procedure for Horn clauses.

3.5 Exercise Problems

1. Prove formally that the following statements are equivalent: For any two

formulas A and B, (a) A |= B; (b) A→ B is valid; (c) A∧¬B is unsatisfiable.

2. Use the semantic tableaux method to decide if the following formulas are valid

or not.
(a) (A↔ (A ∧B))→ (A→ B)
(b) (B ↔ (A ∨B))→ (A→ B)
(c) (A⊕B)→ ((A ∨B) ∧ (¬A ∨ ¬B))
(d) (A↔ B)→ ((A ∨ ¬B) ∧ (¬A ∨B))

3. Use the semantic tableaux method to decide if the following entailment rela-

tions are true or not.

(a) (A ∧B)→ C |= (A→ C) ∨ (B → C)
(b) (A ∧B)→ C |= A→ C
(c) A→ (B → C) |= (A→ B)→ (A→ C)
(d) (A ∨B) ∧ (¬A ∨ C) |= B ∨ C

4. Prove by the semantic tableau method that the following statement, “either

the debt ceiling isn’t raised or expenditures don’t rise” (¬d ∨ ¬e), follows

logically from the statements in Problem 31, Chapter 2.

5. Prove that if all the axioms are tautologies and all the inference rules are

sound, then all the derived formulas from the axioms and the inference rules

are tautologies.

6. Specify the introduction and elimination rules for the operators ⊕ and ↔ in

natural deductive system.

7. Estimate the upper bound of the size of the inference graph for resolution, if

the input clauses contain n variables.
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8. Use the Tseitin encoding to convert the following formulas into 3CNF (CNF

in which every clause has at most three literals):

(a) (A↔ (A ∧B))→ (A→ B)
(b) (A⊕B)→ (A ∨B)
(c) ((A ∧B)→ C)→ (A→ C)
(d) ((A ∨B) ∧ (¬A ∨ C))→ (B ∨ C)

9. Use the resolution method to decide if the following formulas are valid or not.

If the formula is valid, provide a resolution proof; if it is not valid, provide an

interpretation which falsifies the formula.

(a) (A↔ (A ∧B))→ (A→ B)
(b) (B ↔ (A ∨B))→ (A→ B)
(c) (A⊕B)→ ((A ∨B) ∧ (¬A ∨ ¬B))
(d) ((A ↓ B) ↑ C)→ (A ↑ (B ↓ C))

10. Use the resolution method to decide if the following entailment relations are

true or not. If the relation holds, provide a resolution proof; if it doesn’t,

provide an interpretation such that the premises are true, but the consequence

of the entailment is false.

(a) (A→ C) ∧ (B → D) |= (A ∨B)→ (C ∨D)
(b) (A ∧B)→ C |= (A→ C)
(c) A→ (B → C) |= (A→ B)→ (A→ C)
(d) (A ∨B) ∧ (¬A ∨ C) |= B ∨ C

11. Apply clause deletion strategies to each of the following sets of clauses, and

obtain an equally satisfiable simpler set.

S1 = {(p | q | r), (p | q | r | s), (p | q | s), (q | r), (q | r)}
S2 = {(p | q | r | s), (p | q | r | s), (p | q | s), (q | r), (q | s | r)}
S3 = {(p | q | s), (p | q | r | s), (p | r | s), (p | r), (p | q | r)}

12. Given the clause set S, where S = {1.(t | e | d), 2.(t | c), 3.(e | d | i), 4.(g |
d | i), 5.(t | c | d | g), 6.(c), 7.(i | g), 8.(c | d), 9.(c | e) }. Find the following

resolution proofs for S: (a) unit resolution; (b) input resolution; (c) positive

resolution; and (d) ordered resolution using the order t > i > g > e > d > c.

13. Apply various resolution strategies to prove that the following clause set S

entails ¬s: unit resolution, input resolution, negative resolution, positive res-

olution, and ordered resolution using the order of p > q > r > s.

S = {1.(p | q | r), 2.(p | q | s), 3.(p | q | r), 4.(p | q | r), 5.(p | q | r), 6.(q | r), 7.(r | s)}

Please show the proofs of these resolution strategies.
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14. Decide by ordered resolution if the clause set S is satisfiable or not, where

S = {1. (a | c | d | f), 2. (a | d | e), 3. (a | c), 4. (b | d | e), 5. (b | d | f),
6. (b | f), 7. (c | e), 8. (c | e), 9. (c | d) }, and the order is a > b > c > d >

e > f . If the clause set is satisfiable, please display all the resolvents from

ordered resolution and construct a model from these clauses. If the clause is

unsatisfiable, please display an ordered resolution tree of the proof.

15. Prove by resolution that S |= ¬f , where S is the set of clauses given in the

previous problem. Please display the resolution tree of this proof.

16. If head/tail literals are used for implementing BCP, what literals of the clause

set S in the previous problem will be assigned a truth value during unit

resolution before an empty clause is found? in what order?

17. A set C of clauses is said to be a 2CNF if every clause contains at most two

literals. The 2SAT problem is to decidable if a 2CNF formula is satisfiable or

not. Show that orderedResolution takes O(n3) time and O(n2) space to solve

2SAT, where n is the number of propositional variables in 2CNF.

18. Prove Theorem 3.4.8: For any set C of clauses, if there exists a unit resolution

proof from C, then there exists an input resolution proof from C.
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CHAPTER 4

PROPOSITIONAL SATISFIABILITY

Propositional satisfiability (SAT) is the problem of deciding if a propositional

formula is satisfiable, i.e., the formula has a model. Software programs for solving

SAT are called SAT solvers. SAT has long enjoyed a special status in computer

science. On the theoretical side, it is the first NP-complete problem ever discov-

ered. NP-complete problems are notorious for being hard to solve; in particular,

in the worst case, the computation time of any known solution for a problem in

this class increases exponentially with the input size. On the practical side, since

every NP problem can transform into SAT, an efficient SAT solver can be used

to solve many practical problems. SAT found several important applications in

the design and verification of hardware and software systems,and in many areas of

artificial intelligence and operation research. Thus, there is strong motivation to

develop practically useful SAT solvers. However, the NP-completeness is cause for

pessimism, since it is unlikely that we will be able to scale the solutions to large

practical instances.

In theory, the decision procedures presented in the previous chapter, such as

semantic tableau or resolution, can be used as SAT solvers. However, they served

largely as academic exercises with little hope of seeing practical use. Resolution

as a refutation prover searches for an empty clause. Semantic tableau imitates the

transformation of a formula into DNF. None of these decision procedures aims at

searching for a model.

Fortunately, in the last two decades or so, several research developments have

enabled us to tackle instances with thousands of variables and millions of clauses.

SAT researchers introduced techniques such as conflict-driven clause learning, novel

branching heuristics, and efficient unit propagation. These techniques form the

basis of many modern SAT solvers. Using these ideas, contemporary SAT solvers

can often handle practical very large SAT instances.

Annual competitions of SAT solvers promote the continuing advances of SAT

solvers. SAT solvers are the engines of modern model checking tools. Contemporary

automated verification techniques such as bounded model checking, proof-based

abstraction, interpolation-based model checking, are all based on SAT solvers and
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their extensions. These tools are used to check the correctness of hardware designs.

4.1 The DPLL Algorithm

In 1960 David and Putnam proposed resolution for propositional logic. For

realistic problems, the number of clauses generated by resolution grows quickly.

To avoid this explosion, Davis, Logemann, and Loveland suggested to replace the

resolution rule with a case split: Pick a variable p and consider the two cases p 7→ 1

and p 7→ 0. This modified algorithm is commonly referred to as the DPLL algorithm,

where DPLL stands for Davis, Putnam, Logemann, and Loveland.

DPLL can be regarded as a search procedure: The search space is all the

interpretations, partial or full. A partial interpretation can be represented by a set

of literals, where each literal in the set is assigned to be true and each literal outside

of the set is assumed unassigned. DPLL starts with an empty interpretation and

tries to extend the interpretation by adding either p or p through the case split.

DPLL stops when every variable is assigned without contradiction, and the partial

interpretation it maintains becomes a model.

4.1.1 Recursive Version of DPLL

In the following, we give a recursive version of DPLL. The first call to DPLL

with the input clauses C and σ = {}. It is one of the oldest backtracking procedures.
DPLL uses the algorithm BCP heavily for unit propagation. From the previous

chapter, we know that BCP implements unit resolution and subsumption deletion,

and can be done in linear time. Given a set C of clauses, BCP(C) returns ⊥ if an

empty clause is found by unit resolution; otherwise, BCP(C) returns (U, S), such

that C ≡ (U ∪X), U is a set of unit clauses, S does not contain any unit clauses,

U and S share no variables.

Algorithm 4.1.1. DPLL(C, σ) takes as input a set C of clauses and a partial

interpretation σ, C and σ do not share any variables. It returns a model of C if

C is satisfiable; return ⊥ if C is unsatisfiable. Procedure pickLiteral(S) will pick a

literal appearing in S.

proc DPLL(C, σ)

1 res := BCP(C);

2 if (res = ⊥) return ⊥; // no models for C

3 // It must be the case res = (U, S)

4 σ := σ ∪ U ;

5 if (S = ∅) return σ; // a model is found

6 A := pickLiteral(S);
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Figure 4.1.1: The result of BCP is shown in the box near each node.

7 res := DPLL(S ∪ {(A)}, σ);
8 if (res 6= ⊥) return res; // a model is found

9 return DPLL(S ∪ {(A)}, σ); // return either ⊥ or a model

In the above procedure, we assume again A = p if A is the literal p. If BCP(C)

does not return ⊥, it simplifies C to U ∪ S, where U is a set of literals, S is a set

of non-unit clauses, and U and S do not share any variables. By Proposition 3.4.3,

C ≡ U ∪ S. We identify two types of literals in U .

Definition 4.1.2. In DPLL, a literal A ∈ U is said to be a decision literal if A is

the one returned by pickLiteral(S) at line 6 of DPLL; otherwise, A is said to be an

implied literal.

Since U is a set of literals without complementary literals, U can be regarded as

a partial interpretation σ such that σ(U) = 1. Since U is satisfiable and C ≡ U ∪S,
we conclude that C ≈ S. Furthermore, checking the satisfiability of S is reduced

recursively to testing S ∧ A and S ∧ ¬A separately for a literal A appearing in S.

This transformation, applied recursively, yields a complete decision procedure.

Example 4.1.3. Let C = {1 : (x2 | x3 | x5), 2 : (x1 | x4), 3 : (x2 | x4), 4 : (x1 |
x2 | x3), 5 : (x5)}. If pickLiteral picks a variable in the order of x1, x2, ..., x5, then

DPLL(C, {}) calls
BCP(C), which returns ({x5}, C1 = {1′ : (x2 | x3), 2., 3., 4.});
x1 is picked as the decision literal of level 1;
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DPLL(C1 ∪ {(x1)}, {x5}), which calls

BCP(C1 ∪ {(x1)}), which returns ⊥;
and returns ⊥

DPLL(C1 ∪ {(x1)}, {x5}), which calls

BCP(C1 ∪ {(x1)}), which returns ({x1}, C2 = {1′., 3.});
x2 is picked as the decision literal of level 2;

DPLL(C2 ∪ {(x2)}, {x1, x5}), which calls

BCP(C2 ∪ {(x2)}), which returns (∅, {x1, x2, x4, x5})
and returns {x1, x2, x4, x5}

and returns {x1, x2, x4, x5}
and returns {x1, x2, x4, x5}

Thus a model of C can be constructed from {x1, x2, x4, x5} by adding x3 7→ v for

any value v. 2

In the above example, the height of the recursion tree (also called decision

tree) is two; x1 and x2 are decision literals; x4 and x5 are implied literals. We have

called BCP four times: one call at the root (level 0); two calls at the nodes of level

one; and one call at the node of level two. If we want to search for all models, we

may choose to try the branch with x2 7→ 0, as shown in Figure 4.1.1.

Definition 4.1.4. The level of an assigned variable is the depth of a node of the

recursion tree of DPLL(C, {}) at which the variable is assigned a truth value. We

write x@l if x 7→ 1 at level l, and x@l if x 7→ 0 at level l.

In the above example, for the model returned by DPLL, we may write it as

{x1@1, x2@2, x4@2, x5@0}

Theorem 4.1.5. DPLL(C, {}) is a decision procedure for the satisfiability of C.

Proof. Assuming ⊥ 6∈ C. To prove the theorem, we just need to show that DPLL is

sound and terminating. DPLL(C, σ) will terminate because for each recursive call,

the number of variables in C is decreased by at least one. In DPLL(C, σ), since σ

and C share no variables, (C ∪ σ) ≈ C. So in the soundness proof of DPLL, we

ignore the presence of σ.

We will prove by induction on the structure of the recursion tree of DPLL. As a

base case, if DPLL(C, σ) returns ⊥, it means that ⊥ is generated by unit resolution

inside BCP(C). By Proposition 3.4.3, C ≡ ⊥. If BCP(C, σ) returns (U, S), by

Proposition 3.4.3, C ≡ U ∪ S. As another base case, if S = ∅, then C ≡ U and U
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is the model for the unit clause set U if U is regarded as an interpretation, so C is

satisfiable. If S 6= ∅, then since

S ≡ (S ∧ A) ∨ (S ∧ ¬A)

for any formula A, if either DPLL(S∪{p}, σ) or DPLL(S∪{p}, σ) returns a model,

by induction hypotheses, it means (S ∧ p) ∨ (S ∧ ¬p) is satisfiable, so is S. If

both DPLL(S ∪ {p}, σ) and DPLL(S ∪ {p}, σ) return ⊥, by induction hypotheses,

it means (S ∧ p) ∨ (S ∧ ¬p) is unsatisfiable, so is S. 2

4.1.2 All-SAT and Incremental SAT Solvers

Given a satisfiable set of clauses, DPLL returns a single satisfying assignment.

Some applications, however, require us to enumerate all satisfiable assignments of a

formula and this problem is called All-SAT. It is easy to modify DPLL so that all

the models can be found. That is, we replace line 5 of DPLL as follows:

5: if (S = ∅) save(σ); return ⊥; // save model and continue

When the modified DPLL finishes, all the models are saved. Note that these

models are partial models. One partial model represents 2k full models, where k is

the number of unassigned variables in the partial model.

During the execution of DPLL, the list of decision literals (labeled with 1) and

their complements (labeled with 2) decides the current position in the recursion tree

of DPLL. This list of literals, called guiding path, can be very useful for designing

an incremental SAT solver: The solver takes the guiding path as input, uses the

literals in the guiding path to skip the branches already explored and explores the

new branches in the recursion tree for a new model.

Example 4.1.6. In Example 4.1.3, a model is found with the decision literals x1

and x2. The guiding path for this model is [x1 : 2, x2 : 1], where the label 2 after x1

means this is the second branch of x1. The label 1 after x2 means this is the first

branch of x1. If the next model is needed, it must be in the subtree with the initial

guiding path [x1 : 2, x2 : 2]. Using [x1 : 2, x2 : 2], the SAT solver avoids the search

space it has traveled before. 2

Since modern SAT solvers are often designed as a black box, it is cumbersome

to use them as an incremental solver for enumerating each model. We can force

the SAT solver to find a new model by subsequently blocking all models previously

found. A model can be viewed as a conjunction of true literals, one for every
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variable. The negation of this conjunction can be represented as a clause, called

blocking clause. If this clause is added into the set of input clauses, the model will be

blocked by this clause and cannot be generated by the SAT solver. Since a blocking

clause contains every variable, it is unlikely to become unit and it is expensive to

keep all the blocking clauses. Therefore, it is desirable to reduce the size of blocking

clauses, i.e., to construct a smaller clause which still blocks the model. If we know

the guiding path of this model, the negation of the conjunction of all the decision

literals in the guiding path will block the model.

Many applications of SAT solvers require solving a sequence of instances by

adding more clauses. Incremental SAT solvers with the guiding path can support

this application without any modification, because the search space skipped by the

guiding path of the first model will contain no models.

In many application scenarios, it is beneficial to be able to make several SAT

checks on the same input clauses under different forced partial interpretation, called

“assumption”. For instance, people may be interested in questions like “Is the

formula F satisfiable under the assumption x 7→ 1 and y 7→ 0?” In such applications,

the input formula is read in only once, the user implements an iterative loop that

calls the same solver instantiation under different sets of assumptions. The calls can

be adaptive, i.e., assumptions of future SAT solver calls can depend on the results

of the previous solver calls. The SAT solver can keep its internal state from the

previous call to the next call. DPLL with a guiding path can be easily modified to

support such applications, treating the assumption as a special set of unit clauses

which can be added into or removed from the solver. The guiding path allows us to

backtrack to the new search space but never revisit the search space visited before.

To obtain a high-performance SAT solver, we may use the deletion techniques

presented in section 3.3.6 as pre-processing techniques. They enable us to reduce

the size of the formula before passing it to DPLL.

Inside the body of DPLL, it calls itself twice, once with S ∪ {(A)} and once

with S ∪{(A)}. A persistent data structure for S would quickly run out of memory

as S is very large and the recursion tree is huge for practical SAT instances. A

better approach is to use a destructive data structure for S: We remember all the

operations performed onto S inside the first call, and then undo them if necessary

when we enter the second call.

4.1.3 BCPw: Implementation of Watch Literals

In Algorithm 3.4.16, we presented an efficient implementation of BCP as a

decision procedure for Horn clauses. This version of BCP, called the procedure

BCPht, uses the head/tail data structure for each non-unit clause. Naturally, BCPht
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can be used to support DPLL. Better yet, with minor modification, BCPht can

implement the idea of watch literals, which is based on head/tail literals and used

in solver zchaff by Moskewicz and Zhang.

The function of watch literals is the same as head/tail literals: Use two literals

to decide if a clause becomes unit or conflicting, as stated in Proposition 3.4.15.

Head/tail literals are watch literals; when head/tail literals are allowed to appear

anywhere in a clause, head/tail literals are identical to watch literals.

Since the idea of watch literals is based on that of head/tail literals, the

implementation of watch literals is easy if we have an implementation of head/tail

literals. In BCPht, when a head or tail literal of c becomes false, we look for its

replacement at index x, where head(c) < x < tail(c). There are two alternative ways

to modify BCPht. One solution is to allow x ∈ {0, 1, ..., |c|− 1}−{head(c), tail(c)};
we will introduce an implementation of this solution shortly. The other solution is

to fix head(c) = 0 and tail(c) = 1 or |c| − 1, and swap the elements of lits(c) if

necessary.

The second solution saves the space for head(c) and tail(c), but may cost

more for visiting literals of lits(c). For example, if a clause has k literals which

become false in the order from left to right during BCP. The second solution may

take O(k2) time to visit the literals of the clause, while the first solution takes O(k)

time. As a result, BCP cannot be a linear time decision procedure for Horn clauses

if the second solution is used. Of course, we may introduce a pointer in the clause

to remember the position of the last visited literal, so that the second solution still

gives us a linear time algorithm.

Algorithm 4.1.7. BCPw(U) is an implementation of BCP(C) based on the head/tail

data structure. BCPw(U) works the same way as BCPht(U), where U is a stack of

unit clauses and non-unit clauses are stored using the head/tail data structure. Like

BCPht, BCPw returns a conflicting clause if an empty clause is generated; returns

“SAT” otherwise. Unlike BCPht, values of head(c) and tail(c) can be any valid

indices of lits(c).

proc BCPw(U)

1 while U 6= {} do
2 A := pop(U);

3 if val(A) = 0 return reason(A); // an empty clause is found;

4 else if (val(A) 6= 1)

5 val(A) := 1; val(A) := 0;

6 for c ∈ cls(A) do // A is either head or tail of c

7 if (A = lits(c)[head(c)])
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8 e1 := head(c); e2 := tail(c); step := 1; // scan from left to right

9 else

10 e1 := tail(c); e2 := head(c); step := −1; // scan from right to left

11 while true do

12 x := (e1 + step) mod |c|; // x takes any valid index of lits(c)

13 if x = e1 break; // exits the inner while loop

13’ if x = e2 continue; // go to line 12

14 B := lits(c)[x];

15 if (val(B) 6= 0)

16 remove(c, cls(A)); insert(c, cls(B));

17 if (step = 1) head(c) := x; else tail(c) := x;

18 break; // exit the inner while loop

19 if (x = e1) // no new head or tail found

20 A := lits(c)[e2]; // c is unit or conflicting.

21 if val(A) = 0 return c; // c is conflicting.

22 else if (val(A) 6= 1) // c is unit.

23 push(A,U); reason(A) := c; val(A) := 1; val(A) := 0;

24 return “SAT”; // no empty clauses are found;

The above algorithm comes from BCPht (Algorithm 3.4.16) by the following

modifications, which allow the values of head(c) and tail(c) to be any valid indices

of lits(c).

• At line 12, x := x+ step is replaced by x := (x+ step) mod |c|.

• At line 13, the condition x = e2 is replaced by x = e1.

• Line 13’ is added to skip the literal watched by e2; this is the literal to be in

the unit clause if the clause becomes unit.

• At line 19, the condition x = e2 is replaced by x = e1; when this is true, every

literal of the clause is false, with the exception of the literal watched by e2.

• At line 23, we record the reason for the assignment of a literal; this information

is used at line 3 when a clause becomes conflicting.

In DPLL, the book-keeping required to detect when a clause becomes unit can

involve a high computational overhead if implemented naively. Since it is sufficient

to watch in each clause two literals that have not been assigned yet, assignments

to the non-watched literals can be safely ignored. When a variable p is assigned 1,

the SAT solver only needs to visit clauses watched by p. Each time when one of the
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watched literals becomes false, the solver chooses one of the remaining unassigned

literals to watch. If this is not possible, the clause is necessarily unit, or becomes a

conflicting clause, or is already satisfied under the current partial assignment. Any

sequence of assignments that makes a clause unit will include an assignment of one

of the watched literals. The computational overhead of this strategy is relatively

low: In a formula with m clauses and n variables, 2m literals need to be watched,

and m/n clauses are visited per assignment on average. This advantage is inherited

from the idea of head/tail literals.

The key advantage of the watch literals over the head/tail literals is that the

watched literals do not need to be updated upon backtracking in DPLL. That is,

the key advantage of BCPw over BCPht is its use inside DPLL: When you backtrack

from a recursive call of DPLL, you do not need to undo the operations on head(c)

and tail(c), because any two positions of c will be sufficient for checking if c becomes

unit.

4.1.4 Iterative Implementation of DPLL

Since the compiler will convert a recursion procedure into an iterative one

using a stack, to avoid the expense of this conversion, in practice, the procedure

DPLL is not implemented by means of recursion but in an iterative manner using

a stack for the partial interpretation σ. If the head/tail data structure is used, σ

can be obtained from val(a), but we still need a stack of literals to record the time

when a literal is assigned. This stack is called trail, which can also serve as a partial

interpretation. We keep track of the recursive case-splits and their implications

using the trail. Every time a literal is assigned a value, either by a decision, or

an implication inside BCP, the literal is pushed into the trail and its level in the

recursion tree is remembered.

A trail may lead to a dead-end, i.e., result in a conflicting clause, in which

case we have to explore the alternative branch of one of the case splits previously

made. This corresponds to backtracking which reverts one of the decisions. When

we backtrack from a recursive call, we pop those literals off the trail, and make

them as “unassigned” (denoted by ×). When backtracking enough times, the search

algorithm always yields a conflicting clause or a satisfying assignment and eventually

exhausts all branches.

To implement the above idea, we use the trail σ which is a stack of literals

and serves as a partial interpretation. σ will keep all the assigned literals. For each

literal A, we use lvl(A) to record the level at which A is assigned a truth value.
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This is actually done at line 5 of BCPw. The Line 5 of BCPw now is read as follows:

5 : val(A) := 1; val(A) := 0; lvl(A) := lvl(A) := level; push(A, σ);

where val, lvl, σ, and level are global variables. From now on, we call the modified

BCPw simply as BCP.

In practice, it is more convenient to set the level of a right child the same as

the level of its parent in the recursion tree, to indicate that the right child has no

alternatives to consider. In the following implementation of DPLL, we have used

this idea.

Algorithm 4.1.8. Non-recursive DPLL(C) takes as input a set C of clauses and

returns a model of C if C is satisfiable; returns 0 if C is unsatisfiable. Procedure

initialize(C) will return the unit clauses of C and store the rest clauses in the

head/tail data structure.

proc DPLL(C)

1 U := initialize(C); // initialize the head/tail data structure

2 σ := {}; level := 0; // initialize σ and level

3 while (true) do

4 if (BCP(U) = ⊥)
5 if (level = 0) return ⊥; // C is unsatisfiable

6 level := level − 1; // level of the second child

7 A := undo(); // A is the last literal picked at line 10

8 U := {A};
9 else

10 A := pickLiteral(); // pick an unassigned literal

11 if (A = nil) return σ; // all literals assigned, a model is found

12 level := level + 1; // level of the first child

13 U := {A};

proc undo()

// Backtrack to level, undo all assignments to literals of higher levels.

// Return the last literal of level + 1 in the trail, or nil.

1 A := nil;

2 while (σ 6= {}) ∧ (lvl(top(σ)) > level) do

3 A := pop(σ);

4 val(A) := val(A) := ×; // × means “unassigned”

5 return A;
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The procedure undo() will undo all the assignments (made at line 5 of BCP)

to the literals of levels higher than level (including their complements), and return

the last literal of level + 1 in σ, which must be the last decision literal A picked at

line 10 of DPLL.

The procedure pickLiteral(L) (line 12) is the place for implementing various

heuristics of best search strategies. It leaves the question of which literals to as-

sign open. As we know from Theorem 4.1.5, this choice has no impact on the

completeness of the search algorithm. It has, however, a significant impact on the

performance of the solver, since this choice is instrumental in pruning the search

space. We will address this issue later.

4.2 Conflict-Driven Clause Learning (CDCL)

This section introduces conflicting clauses as a source information to prevent

the repeated exploration of futile search space. We start with a motivating example.

Example 4.2.1. Suppose C is a set of clauses over the variable set {x1, x2, ..., xn}
and C has more than a million models. Let C ′ = C ∪ S, where S = {(y1 | y2), (y1 |
y2), (y1 | y2), (y1 | y2)}. Then C ′ has no models, because the added four clauses

are unsatisfiable. Now we feed C ′ to DPLL and assume that pickLiteral will prefer

xi over y1 and y2. Every time when DPLL picks y1 for case-split, a model of C

was found at that point. If y1 is true, then one of (y1 | y2) and (y1 | y2) will be

conflicting. If y1 is false, then one of (y1 | y2) and (y1 | y2) will be conflicting.

Either value of y1 will lead to a conflicting clause in S, so DPLL will backtrack.

Since C has more than a million models, it means DPLL will try to show that S is

unsatisfiable more than a million times. 2

If we can learn from the conflicting clauses of S, we may avoid repeatedly

doing the same work again and again. This is the motivation for the technique

of conflict-driven clause learning (CDCL): Learn new information from conflicting

clauses and use the new information to avoid futile search effort. Using CDCL, new

information is obtained in the form of clauses which are then added back into the

search procedure. For the above example, when y1 is true by case-split, (y1 | y2)
becomes unit, so y2 must be set to 1. Now (y1 | y2) becomes conflicting. A resolution

between these two clauses on p2 will generate a new clause, i.e., (y1). The new clause

has nothing to do with the assignments of xi, so we can jump back to the level 0 of

DPLL and the subsequent BCP will find the empty clause from S ∧ y1 and DPLL

returns ⊥, thus avoiding finding models in C a million times.
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4.2.1 Generating Clauses from Conflicting Clauses

Recall that in the last DPLL algorithm, when a non-unit clause c becomes

unit, where c contains an unassigned literal A, we do reason(A) := c, i.e., c is the

reason for the unassigned literal A to be true. When a conflicting clause is found in

DPLL, all of its literals are false, and we pick the literal A, which is assigned last in

c, in the clause and do resolution on A between this clause and reason(A), hoping

the resolvent will be useful to cut the search space. Since resolution is sound, new

clauses generated this way are logical consequences of the input and it is safe to

keep them. For practical reason, we must selectively do resolution and keep at most

one clause per conflicting clause.

Algorithm 4.2.2. conflictAnalysis(c) takes as input a conflicting clause c in the

current partial interpretation at level level, generates a new clause by resolution,

and returns it. Procedure latestAssignedLiteral(c) will return a literal A of c such

that A is the last literal assigning a truth value in c. Procedure countLevel(c, lvl)

will return the number of literals in c which are assigned at level lvl. Procedure

resolve(c1, c2) returns the resolvent of c1 and c2.

proc conflictAnalysis(c)

// c is conflicting in the partial interpretation val()

1 α := c;

2 while (|α| > 1) do // as α has more than one literal

3 A := latestAssignedLiteral(α); // A is assigned last in α

4 α := resolve(α, reason(A)); // resolution on A

5 if (countLevel(α, level) ≤ 1) return α;

6 return α;

Example 4.2.3. Let the input clauses C = {c1 : (x2 | x3), c2 : (x1 | x4), c3 : (x2 |
x4), c4 : (x1 | x2 | x3)}. If we pick x1 as the first decision literal in DPLL, it will

result in the following assignments:

assignment reason
x1@1 (x1)
x4@1 c2 : (x1 | x4)
x2@1 c3 : (x2 | x4)
x3@1 c1 : (x2 | x3)

2

Clause c4 becomes conflicting, which contains three literals of level 1. Calling

conflictAnalysis(c4), we will have the following resolutions:
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1. α0 is c4;

2. α1 : (x1 | x2) = resolve(α0, c1).

3. α2 : (x1 | x4) = resolve(α1, c3).

4. α3 : (x1) = resolve(α2, c2) and is returned.

Proposition 4.2.4. Assuming c is conflicting in the current interpretation.

• (a) The procedure conflictAnalysis(c) will terminate and return a clause which

is an entailment of the input clauses.

• (b) conflictAnalysis(c) will return a new conflicting clause in the current in-

terpretation.

• (c) If we backtrack off the current level, the new clause returned by conflictAnalysis(c)

will have at most one literal at level level − 1.

Proof. (a): We assigned only a finite number of literals a truth value at the current

level. The literals we chose to resolve off are in the backward order when they are

assigned. Once resolved off, these literals can never come back into the new clause,

thus there is no chance for a loop. Since the new clause is generated by resolution

from the input clauses, it must be an entailment of the input clauses.

(b): In fact, any resolvent in conflictAnalysis(c) is a conflicting clause in the

current interpretation. Since c is a conflicting clause, every literal is false in the cur-

rent interpretation. c is resolved with a reason clause which has only one true literal

in the interpretation and this true literal was resolved off during the resolution. The

resulting resolvent will contain only false literals in the current interpretation.

(c): The procedure conflictAnalysis(c) will terminate when at most one literal,

say B, of the current level remains in the new clause. If we backtrack off the current

level, B will be unassigned and the rest literals are false by (b). 2

4.2.2 DPLL with CDCL

The new DPLL procedure with CDCL (conflict-driven clause learning) can be

described as follows:

Algorithm 4.2.5. DPLL(C) takes as input a set C of clauses and returns a model

of C if C is satisfiable; return ⊥ if C is unsatisfiable. Procedure initialize(C) will

return the unit clauses of C and store the rest clauses in the head/tail data structure.
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proc DPLL(C)

1 U := initialize(C); // initialize the head/tail data structure

2 σ := {}; level := 0; // initialize σ and level

3 while (true) do

4 res := BCP(U);

5 if (res 6= ”SAT”) // res contains a conflicting clause

6 if (level = 0) return ⊥; // C is unsatisfiable

7 U := insertNewClause(conflictAnalysis(res)); // new level is set

8 undo(); // undo to the new level

9 else

10 A := pickLiteral(); // pick an unassigned literal

11 if (A = nil) return σ; // all literals assigned, a model is found

12 level := level + 1; // level of the first child

13 U := {A};

proc insertNewClause(α)

1 if (|α| = 1)

2 level := 0;

3 A := literal(α); reason(A) := α; // assume α = (A)

4 return {A};
5 else // insert α into the clause set

6 lits(α) := makeArray(α); // create an array of literals

7 secondHigh := 0; // look for the second highest level in α

8 for x := 0 to |α| − 1 do

9 if (lvl(lits(α)[x]) = level) head(α) := x; H := lits(α)[x]; // lvl(H) = level

10 else if (lvl(lits(α)[x]) > secondHigh) secondHigh := lvl(lits(α)[x]); t := x;

11 tail(α) := t;

12 level := secondHigh;

13 reason(H) := α;

14 return {H}; // the head literal of α

The procedure insertNewClause will return a singleton set of literals served as

new unit clauses and reset the level variable of DPLL. If the new clause α generated

by conflictAnalysis is a unit clause, this clause will be returned and the level is set

to 0. If the new clause is not unit, by Proposition 4.2.4, there is only one literal of

the current level in α and this literal will be the head literal of α when the level is

decreased. We then pick one literal of the highest level other than the head literal as

the tail literal. The level will be reset to that of the tail literal. When we backtrack

to this level, by Proposition 4.2.4, α becomes unit and is the reason for the head
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literal, unassigned at this point, to be assigned true.

Example 4.2.6. Consider the clause set C = {c1 = (x1 | x2), c2 = (x1 | x3 |
x7), c3 = (x2 | x3 | x4), c4 = (x4 | x5 | x6), c5 = (x3 | x4), c6 = (x5 | x6), c7 =

(x2 | x3), c8 = (x1 | x3), c9 = (x1 | x2 | x3)}. If the first three literals chosen by

pickLiteral in DPLL are x7, x6, and x5, in that order, then the only implied literal is

x4@3 by c4. The next decision literal is x1, which implies the following assignments:

x2@4 by c1 and x3@4 by c3. c7 becomes conflicting at level 4.

Calling conflictAnalysis(c7), we obtain (x2 | x4) by resolution between c7 and

c3, which contains x2 as the only literal at level 4. We add (x2 | x4) into DPLL as

c10.

The level of DPLL is set to 3 as lvl(x4) = 3. So we backtrack to level 3, and

c10 = (x2 | x4) becomes unit. The next call to BCP will have make the following

assignments at level 3: x2@3 by c10, x1@3 by c1, x3@3 by c8, and c9 becomes

conflicting.

Calling conflictAnalysis(c9), we obtain c11 = (x2) by two resolutions between

c8, c9, and c1. The new clause is unit and we set level = 0. Back jumping to level

0 by undo, the next call to BCP will imply the following assignments: x2@0 by c11,

x3@0 by c7, x4@0 by c10, and c5 becomes conflicting.

Calling conflictAnalysis(c5), we obtain c12 = (x2) by two resolutions between

c5, c10, and c7. Clauses c11 and c12 will generate the empty clause. Thus, the input

clauses are unsatisfiable. 2

Clause learning with conflict analysis does not impair the completeness of the

search algorithm: even if the learned clauses are dropped at a later point during the

search, the trail guarantees that the solver never repeatedly enters a decision level

with the same partial assignment. We have shown the correctness of clause learning

by demonstrating that each conflicting clause is implied by the original formula.

The idea of CDCL was used first in solver grasp of Marques-Silva and Sakallah,

and solver relsat of Bayardo and Schrag. In their solvers, they introduced inde-

pendently a novel mechanism to analyze the conflicts encountered during the search

for a satisfying assignment. There are many ways to generate new clauses from con-

flicting clauses and most of them are based on implication graphs. The method of

learning new clauses through resolution is the easiest one to present.

CDCL brings a revolutionary change to DPLL so that DPLL is no longer

a simple backtrack search procedure, because the level reset by insertNewClause

may not be level − 1 and DPLL will backjumping to a higher level, thus avoiding

unnecessary search space. If the new clause learned contains a single literal, the

new level is set to 0. DPLL with CDCL can learn from failure and back jumping
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to the level where the source of failure is originated. Several new techniques are

proposed based on CDCL, including generating a resolution proof when the input

clauses are unsatisfiable, or randomly restarting the search.

4.2.3 Unsatisfiable Cores

The existence of a resolution proof for a set of unsatisfiable clauses is guaran-

teed by the completeness of resolution. How to find a resolution proof is a difficult

job. It has been shown that CDCL as practiced in today’s SAT solvers corresponds

to a proof system exponentially more powerful than resolution. Specifically, each

learning step is in fact a sequence of resolution steps, of which the learned clause

is the final resolvent; conversely, a resolution proof can be obtained by regarding

the learning procedure as a guided resolution procedure. In Example 4.2.6, we have

seen how the empty clause is generated. The resolution proof leading to the empty

clause can be displayed as follows:

c1 (x1 | x2) assumed
c3 (x2 | x3 | x4) assumed
c5 (x3 | x4) assumed
c7 (x2 | x3) assumed
c8 (x1 | x3) assumed
c9 (x1 | x2 | x3) assumed
c10 (x2 | x4) resolvent of c7, c3
c11 (x1 | x2) resolvent of c8, c9
c12 (x2) resolvent of c11, c1
c13 (x2 | x3) resolvent of c5, c10
c14 (x2) resolvent of c13, c7
c15 ( ) resolvent of c12, c14

This example shows the general idea of obtaining a resolution proof when

DPLL finds a set of clauses unsatisfiable. During the search inside DPLL, conflict-

ing clauses are generated due to decision literals. The procedure conflictAnalysis

produces a new clause to show why the previous decisions were wrong and we go up

in the decision tree according to this new clause. DPLL returns ⊥ when it finally

finds a conflicting clause at level 0. In this case, a resolution proof is generated by

conflictAnalysis and this proof uses either the input clauses or the clauses generated

previously by conflictAnalysis.

Given an unsatisfiable set C of clauses, we can use all the resolution steps

inside the procedure conflictAnalysis to construct a resolution proof. Obviously,

such a proof provides an evidence for the unsatisfiability of C. The clauses used

as the premises of the proof are a subset of the clauses of C and are called the
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unsatisfiable core of the proof. Note that a formula typically does not have a unique

unsatisfiable core. Any unsatisfiable subset of C is an unsatisfiable core. Resolution

proofs and unsatisfiable cores have applications in hardware verification.

An unsatisfiable core is minimal if removing any clause from the core makes

the remaining clauses in the core satisfiable. We may use this definition to check if

every clause in the core is necessary, and this is obviously a difficult job when the

core is huge. The core of the above example contains every input clauses except

c2, c4, and c6; it is a minimal core.

4.2.4 Random Restart

Suppose we are looking for a model of C by DPLL(C) and the first decision

literal is A. Unfortunately, C ∧ A is a hard unsatisfiable instance and your DPLL

stuck there without success. Randomly restarting DPLL may be your only option.

By “restart”, we mean that DPLL throws away all the previous decision literals (this

can be easily done by level := 0; undo() in DPLL). By “random”, we mean that

when you restart the search, the first decision literal will most likely be a different

literal from A. Intuitively, randomly restarting means there is a chance of avoiding

bad luck and getting luckier with guessing the right literal assignments that would

lead to a quick solution.

Without CDCL, random restart makes DPLL incomplete. With CDCL, the

input and generated clauses keep DPLL from choosing the same sequence of decision

literals, and cannot generate the same clause again. Since the number of possible

clauses is finite, DPLL cannot run forever.

The same intuition suggests random restart should be much more effective

when the problem instance is in fact satisfiable. Experimental results showed that

random restart also helps when the input clauses are unsatisfiable. If restart is fre-

quent, this assumes a deviation from standard practice, CDCL can be as powerful

as general resolution, while DPLL without restart has been known to correspond

to the weaker tree-like resolution. The theoretical justification for the speedup is

that a restart allows the search to benefit from the knowledge gained about persis-

tently troublesome conflicting variables sooner than backjumping would otherwise

allow the partial assignment to be similarly reset. In effect, restarts may allow the

discovery of shorter proofs of unsatisfiability.

To implement the restart strategy, when DPLL has found a certain number of

failures (empty clauses) without success (a model), it is time for a restart. Today’s

SAT solvers often use the following restart policy: Let ri = r0γ
i−1 be the number

of failures for the ith restart, where r0 is a given integer, and 1 ≤ γ < 2. If r0 = 300

and γ = 1.2, it means the first restart happens when DPLL has 300 failures, the
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second restart happens after another 360 failures, and so on. If γ = 1, it means

DPLL restarts after a fixed number of failures.

Given the common use of restarts in today’s clause learning SAT solvers, the

task of choosing a good restart policy appears appealing. While experimental results

showed that no restart policy is better than others for a wide range of problems,

a clause learning SAT solver could benefit substantially from a carefully designed

restart policy. Specifically, experiments show that nontrivial restart policies did

significantly better than if restarts were disabled, and exhibited considerably dif-

ferent performance among themselves. This provides motivation for the design of

better restart policies, particularly dynamic ones based on problem types and search

statistics.

4.2.5 Branching Heuristics for DPLL

Using CDCL or not, every implementation of DPLL needs a function for

selecting literals for case-split. We assume that when a literal is chosen for case-

split, the literal will be assigned true in the first branch of DPLL. Prior to the

development of the CDCL techniques, branching heuristics were the primary method

used to reduce the size of the search space. It seems likely, therefore, that the role

of branching heuristics is likely to change significantly for algorithms that prune the

search space using clause learning.

It is conventional wisdom that it is advantageous to assign the most tightly

constrained variables, i.e., variables that occur in a large number of clauses. One rep-

resentative of such a selection strategy is known as the MOMS rule, which branches

on a literal which has the Maximum Occurrences in clauses of Minimum Size. If

the clauses contain any binary clauses, then the MOMS rule will choose a literal in

a binary clause. By assigning true to this literal, it is likely that a maximal number

of binary clauses will become satisfied. On the other hand, if the primary criterion

for the selection of a branch literal is to pick one that would enable a cascade of unit

propagation (the result of such a cascade is a smaller subproblem), we would assign

false to the literal chosen by the MOMS rule, in the presence of binary clauses, as-

signing this literal false will likely create a maximal number of unit clauses from all

the binary clauses. MOMS provides a rough but easily computed approximation to

the number of unit propagation that a particular variable assignment might cause.

Alternatively, one can call BCP multiple times on a set of promising variables

in turn, and compute the exact number of unit clauses that would be caused by a

branching choice. Each chosen variable is separately fixed to true and to false and

BCP is executed for each choice. The precise number of unit propagation caused is

then used to evaluate possible branching choices. Unlike the MOMS heuristic, this
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rule is obviously exact in its attempt to judge the number of unit clauses caused by a

potential variable assignment. Unfortunately, it is also considerably more expensive

to compute because of the multiple executions of BCP and undoing them. It has

shown that, using MOMS to choose a small number of promising candidates, each

of which is then evaluated exactly using BCP, it outperforms other heuristics on

randomly generated problems.

Another strategy is to branch on variables that are likely to be backbone lit-

erals. A backbone literal is one that must be true in all models of the input clauses.

The likelihood that any particular literal is a backbone literal is approximated by

counting the appearances of that literal in the satisfied clauses during the execution

of DPLL. This heuristic outperforms those discussed in the previous paragraphs on

many examples.

The development of CDCL techniques enabled solvers to attack more struc-

tured, realistic problems. There are no formal studies comparing the previously dis-

cussed heuristics on structured problems when CDCL techniques are used. CDCL

techniques create many new clauses and make the occurrence counts of each literal

difficult or less significant. Branching techniques and learning are deeply related,

and the addition of learning to a DPLL implementation will have a significant effect

on the effectiveness of any of these branching strategies. As new clauses are learned,

the number of unit clauses an assignment will cause can be expected to vary; the

reverse is also true in that the choice of branch literal can affect which clauses the

algorithm learns.

Branching heuristics that are designed to function well in the context of clause

learning generally try to branch on literals among the new clauses which have been

learned recently. This tends to allow the execution of DPLL to keep “making

progress” on a single section of the search space as opposed to moving from one

area to another; an additional benefit is that existing learned clauses tend to remain

relevant, avoiding the inefficiencies associated with losing the information present

in learned clauses that become irrelevant and are discarded.

One of the popular branch heuristics for DPLL with clause learning is called

“dynamic largest individual sum (DLIS) heuristic” and it behaves similarly as the

MOMS rule. At each decision point, it chooses the assignment that satisfies the

most unsatisfied clauses. Formally, let px be the number of unresolved clauses

containing x and nx be the number of unresolved clauses containing x. Moreover,

let x be the variable for which px is maximal, and let y be variable for which ny is

maximal. If px > ny, choose x as the next branching literal; otherwise, choose y.

The disadvantage of this strategy is that the computational overhead is high: the

algorithm needs to visit all clauses that contain a literal that has been set to true
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in order to update the values px and nx for all variables contained in these clauses.

Moreover, the process needs to be reversed upon backtracking.

A heuristic commonly used in contemporary SAT solvers favors literals in

recently added conflict clauses. Each literal is associated with a count, which is

initialized with the number of times the literal occurs in the clause set. When a

learned clause is added, the count associated with each literal in the clause is incre-

mented. Periodically, all counters divided by a constant greater than 1, resulting

in a decay causing a bias towards branching on variables that appear in recently

learned clauses. At each decision point, the solver then chooses the unassigned

literal with the highest count (where ties are broken randomly by default). This

approach, known as the variable state independent decaying sum (VSIDS) heuris-

tics, was first implemented in zchaff. Zchaff maintains a list of unassigned literals

sorted by count. This list is only updated when learned clauses are added, resulting

in a very low overhead. Decisions can be made in constant time. The heuristic used

in berkmin builds on this idea but responds more dynamically to recently learned

clauses. The berkmin heuristic prefers to branch on literals that are unassigned in

the most recently learned clause that is not yet satisfied.

The emphasis on variables that are involved in recent conflicting clauses leads

to a locality-based search, effectively focusing on a subspace. The subspaces in-

duced by this decision strategy tend to coalesce, resulting in more opportunities for

resolution of conflicting clauses, since most of the variables are common. Represent-

ing count using integer variables leads to a large number of ties. Solver minisat

avoids this problem by using a floating-point number to represent the weight. An-

other possible (but significantly more complex) strategy is to concentrate only on

unresolved conflicting clauses by maintaining a stack of conflicting clauses.

When restart is supported, the branching heuristic should be a combination

of random selection and other heuristics, so that DPLL will select a different branch

literal after each restart. All told, there are many competing branching heuristics

for satisfiability solvers, and there is still much to be done in evaluating their relative

effectiveness with clause learning on realistic, structured problems.

4.3 Use of SAT Solvers

There exist excellent implementations of DPLL and you can find these SAT

solvers at the International SAT competition web page (satcompetition.org).

Most of them are available, free of charge, such as minisat, glucose, lingeling,

maple LCM, to name a few. These SAT solvers are also called general-purpose model

generators, because they accept CNF as input and many problems can be specified

in CNF as SAT is NP-complete.
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If you have a hard search problem to solve, either solving a puzzle or finding

a solution under certain constraints, you may either write a special-purpose pro-

gram or describe your problem in CNF and use one of these general-purpose model

generators. While both special-purpose tools and general-purpose model genera-

tors rely on exhaustive search, there are fundamental differences. For the latter,

every problem has a uniform internal representation (i.e., clauses for SAT solvers).

This uniform representation may introduce redundancies and inefficiencies. How-

ever, since a single search engine is used for all the problems, any improvement

to the search engine is significant. Moreover, we have an accumulated knowledge

of three decades on how to make such a uniform search engine efficient. Using

general-purpose model generators to solve hard combinatorial problems deserves

the attention for at least two reasons.

• It is much easier to specify a problem in CNF than to write a special program

to solve it. Similarly, fine-tuning a specification is much easier than fine-tuning

a special program.

• General-purpose model generators can provide competitive and complemen-

tary results for certain combinatorial problems. Several examples will be pro-

vided in the following.

4.3.1 Specify SAT Instances in DIMACS Format

Today SAT solvers uses the format suggested by DIMACS (the Center for

Discrete Mathematics and Theoretical Computer Science) many years ago for CNF

formulas. The DIMACS format uses a text file: If the first character of a line is

“c”, it means a comment. The CNF starts with a line “p cnf n m”, where n is

the number of propositional variables and m is the number of clauses. Most SAT

solvers only require m be an upper bound for the number of clauses. Each literal is

represented by an integer: positive integers are positive literals and negative literals

are negative literals. A clause is a sequence of integers ending with 0.

Example 4.3.1. To represent C = {(x1 | x2 | x3), (x1 | x2), (x2 | x3), (x2 | x3)} in
the DIMACS format, the text file will look as follows: 2

c a tiny example

c

p cnf 3 4

1 2 -3 0
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Figure 4.3.1: A typical example of Sudoku puzzle and its solution.

-1 2 0

-2 -3 0

2 3 0

To use today’s SAT solvers, you need to prepare your SAT instances in the

DIMACS format. This is done typically by writing a small program called encoder.

Once a model is found by a SAT solver, you may need another program, called

decoder, which translates the model into desired format. For example, the encoder

for a Sudoku puzzle will generate a formula A in CNF from the puzzle and the

decoder will take the model of A and generate the solution of the Sudoku.

4.3.2 Sudoku Puzzle

The standard Sudoku puzzle is to fill a 9× 9 board with the digits 1 through

9, such that each row, each column, and each of nine 3 × 3 blocks contain all the

digits from 1 to 9. A typical example of Sudoku puzzle and its solution is shown in

Figure 4.3.1.

To solve this problem by a SAT solver, we need to specify the puzzle in CNF.

At first, we need to define the propositional variables. Let pi,j,k be the propositional

variable such that pi,j,k = 1 iff digit k is at row i and column j of the Sudoku board.

Since 1 ≤ i, j, k ≤ 9, there are 93 = 729 variables.

We may encode pi,j,k as 81(i−1)+9(j−1)+k, then p1,1,1 = 1 and p9,9,9 = 729.

Another encoding is pi,j,k = 100i+ 10j + k, then p1,1,1 = 111 and p9,9,9 = 999. The

latter wasted some variables, but it allows us to see clearly the values of i, j and k

from the integer. We will use the latter, since this is a very easy SAT problem, a

tiny waste does not hurt. The first three lines of the CNF file may read as

c Sudoku puzzle
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p cnf 999 1000000

where 1000000 is an estimate for the number of clauses from the constraints on the

puzzle.

The general constraints of the puzzle can be stated as follows.

• Each cell contains exactly one digit of any value.

• Each row contains every digit exactly once, i.e., there are no duplicate copies

of a digit in a row.

• Each column contains every digit exactly once.

• Each 3× 3 grid contains every digit exactly once.

A solution to a given board will say which digit should be placed in which cell.

The first constraint above can be divided into two parts: (1): Each cell con-

tains at least one digit; and (2): Each cell contains at most one digit. If every cell

in a row contributes one digit and each digit appears at most once, then it implies

that every digit appears exactly once in this row. The same reasoning applies to

columns and grids, so the next three constraints can be simplified by dropping the

constraints like “every row contains every digit at least once”.

1. Each cell contains at least one digit.

2. Each cell contains at most one digit.

3. Each row contains every digit at most once.

4. Each column contains every digit at most once.

5. Each 3× 3 grid contains every digit at most once.

Now it is easy to convert the above constraints into clauses:

1. For 1 ≤ i, j ≤ 9, (pi,j,1 | pi,j,2 | · · · | pi,j,9).

2. For 1 ≤ i, j ≤ 9, 1 ≤ k < c ≤ 9, (pi,j,k | pi,j,c).

3. For 1 ≤ i, k ≤ 9, 1 ≤ j < b ≤ 9, (pi,j,k | pi,b,k).

4. For 1 ≤ j, k ≤ 9, 1 ≤ i < a ≤ 9, (pi,j,k | pa,j,k).

5. For 0 ≤ a, b ≤ 2, 1 ≤ i < i′ ≤ 3, 1 ≤ j < j′ ≤ 3, 1 ≤ k ≤ 9, (p3a+i,3b+j,k |
p3a+i′,3b+j′,k).
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Finally, we need to add the initial configuration of the board as clauses. If

digit c is placed at row a and column b, we create a unit clause (pa,b,c) for it. Each

Sudoku puzzle should have at least 17 digits placed initially on the board.

You may write a small program to convert the above clauses in the DIMACS

format and use one of the SAT solvers available on the internet to solve the Sudoku

puzzle. A SAT solver takes no time to find the solution. If you like to design a

Sudoku puzzle for your friend, you could use a SAT solver to check if your puzzle

has no solutions or has more than one solution.

4.3.3 Latin Square Problems

Definition 4.3.2. Given a set S of n elements, a Latin square L over S is an n×n

matrix such that each row and each column of L is a permutation of S. The size of

S, |S|, is called the order of L.

A Sudoku puzzle is a Latin square of order 9 over S = {1, 2, ..., 9}. People

usually use S = Zn = {0, 1, ..., n− 1} for a Latin square of order n.

Every Latin square can be regarded as a definition of the function ∗ : S×S −→
S such that (a ∗ b) = c iff the cell at row a and column b contains c. The pair (S, ∗)
is a special structure in abstract algebra, called quasigroup.

Latin squares of special properties have been extensively studied in design

theory and SAT solvers have been used to solve many open problems there. For

example, SAT solvers have been used successfully to show the non-existence of Latin

squares of orders n = {9, 10, 12, 13, 14, 15} satisfying the constraint ((y∗x)∗y)∗y = x

for x, y ∈ Zn. It remains open if there exists such a Latin square of order 18.

To represent the constraint ((y ∗ x) ∗ y) ∗ y = x in CNF, we need to “flatten”

the constraint by introducing new variables: the constraint ((y ∗ x) ∗ y) ∗ y = x is

equivalent to

(y ∗ x = z) ∧ (z ∗ y = w)→ w ∗ y = x.

If we replace y ∗ x = z by py,x,z, etc., we have the following clause:

(py,x,z | pz,y,w | pw,y,x)

for x, y, z, w ∈ Zn. Since a Latin square can be specified in CNF as we did for a

Sudoku puzzle, now searching for a Latin square of order n satisfying ((y∗x)∗y)∗y =

x is the same as searching a model of the following clauses:

1. For 0 ≤ i, j < n, (pi,j,0 | pi,j,2 | · · · | pi,j,n−1).

2. For 0 ≤ i, j < n, 0 ≤ k < c < n, (pi,j,k | pi,j,c).
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3. For 0 ≤ i, k < n, 0 ≤ j < b < n, (pi,j,k | pi,b,k).

4. For 0 ≤ j, k < n, 0 ≤ i < a < n, (pi,j,k | pa,j,k).

5. For 0 ≤ x, y, z, w < n, (py,x,z | pz,y,w | pw,y,x).

The first four sets of clauses are copied from those for the Sudoku puzzle, and the

last set is the specification of ((y ∗ x) ∗ y) ∗ y = x in propositional logic.

4.3.4 Graph Problems

Many application problems can be modeled as a graph problem, such as rep-

resenting the exam scheduling problem as graph coloring problem. In the study of

NP-completeness theory, we learned to reduce SAT to some graph problems. That

is, we use the algorithms for the graph problems to solve SAT. Now, since we have

a SAT solver, the reduction is reversed: graph problems are reduced to SAT, i.e.,

we use SAT solvers to solve graph problems. The challenge is to ensure that the

reduction produces a CNF of minimal size, or at least, the reduction is polynomial.

Definition 4.3.3. (graph coloring) Given an undirected simple graph G = (V,E)

and a positive integer K, each number k, 1 ≤ k ≤ K, represents a color. The graph

coloring problem is to assign a color k, to each v ∈ V such that the two ends of

every edge of E receive different colors.

Suppose V = {v1, v2, ..., vn}. We introduce kn propositional variables pi,k,

1 ≤ i ≤ n, 1 ≤ k ≤ K, with the meaning that pi,k = 1 iff vi receives color k. The

constraints for the graph coloring are

1. Every vertex receives exactly one color.

2. The two ends of every edge receive different color.

These constraints translate into the following clauses:

1. For 1 ≤ i ≤ |V |, (pi,1 | pi,2 | · · · | pi,K).

2. For 1 ≤ i ≤ |V |, 1 ≤ j < k ≤ K, (pi,j | pi,k).

3. For (vi, vj) ∈ E, 1 ≤ k ≤ K, (pi,k | pj,k).

The first two sets of clauses specify “at least one” and “at most one” for the

constraint “exactly one”, as we did in the Sudoku puzzle. The size of the first set

of clauses is K|V | (counting the number of literals); the size of the second set is
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(K − 1)K/2|V |; the size of the third set is 2K|E|. Strictly speaking, this is not a

polynomial reduction if K is not a constant. If K is large, we may assume K = s∗ t
for some integers s, t > 1 and introduce s new variables qi,j, 0 ≤ j < s, such that

qi,j is true if node i receives color c for j ∗ t < c ≤ (j+1) ∗ t, and use these variables

to reduce the size of the second set of clauses.

Definition 4.3.4. (clique) Given an undirected simple graph G = (V,E) and a

positive integer k, the clique problem is to find a subset S ⊆ V such that |S| = k

and for any two vertices x, y of S, (x, y) ∈ E.

Suppose V = {v1, v2, ..., vn}. As a first try, let us define n propositional

variables, xi, 1 ≤ i ≤ n, with the understanding that xi = 1 iff vi ∈ S. It is easy

to specify if vi, vj ∈ S, then (vi, vj) ∈ E. That is, if (vi, vj 6∈ E, then (xi | xj).

However, it will be inefficient to specify that |S| = k. To ensure that |S| = k, we

consider any subset T ⊂ V with n− k + 1 vertices. One of them must be in S. To

specify this constraint in logic, we have the following clauses:

For T ⊂ V and |T | = n− k + 1, (∨vi∈Txi).

This is a very large set of very long clauses, as evidently the reduction from

the clique to CNF is not polynomial. For example, if n = 100 and k = 5, then there

are 3, 921, 225 (= 100!/(4!96!)) clauses of length 96. Obviously, any SAT solver will

have difficulty to handle them.

An alternative solution is to consider that S is stored as a list L of k vertices.

We introduce additionally k ∗ n propositional variables, pi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ k,

with the understanding that pi,j = 1 iff vi is at position j of L. We then have the

following constraints:

1. There is exactly one vertex at each position of L.

2. If vi ∈ L, then vi ∈ S.

3. If vi ∈ S, then vi ∈ L (optional).

The above constraints, plus the old constraint, can be specified in CNF as

follows:

1. For 1 ≤ j ≤ k, (p1,j | p2,j | · · · | pn,j).

2. For 1 ≤ j ≤ k, 1 ≤ i < i′ ≤ n, (pi,j | pi′,j).

3. For 1 ≤ j ≤ k, 1 ≤ i ≤ n, (pi,j | xi).

4. For 1 ≤ i ≤ n, (xi | pi,1 | pi,2 | · · · | pi,k).
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5. For 1 ≤ i, j ≤ n, if (vi, vj) 6∈ E, (xi | xj).

Without loss of generality, we may assume that L is a sorted list by adding

more clauses, to reduce some symmetric solutions.

If n = 100, k = 5, (1) produces 5 clauses of length 100; (2) produces 24, 750

(=5 ∗ 100 ∗ 99/2) clauses of length 2; (3) produces 500 clauses of length 2; and (4)

produces 100 clauses of length 6, for a total of 25, 355 clauses. This is a substantial

reduction from 3, 921, 225 at the cost of introducing 500 new variables.

4.4 Local Search Methods and MaxSAT

Given a set C of clauses and a full interpretation σ, we may count how many

clauses are false under σ. Let

f(C, σ) = |{c : c ∈ C, σ(c) = 0}|,

then 0 ≤ f(C, σ) ≤ |C|. When f(C, σ) = 0, σ is a model of C. The maximum

satisfiability problem MAX-SAT is thus the optimization problem where f serves

as the objective function: find σ such that f(C, σ) is minimal (or |C| − f(C, σ) is

maximal).

4.4.1 Local Search Methods for SAT

Local search methods are widely used for solving optimization problems. In

these methods, we first define a search space and for each point in the search space,

we define the neighbors of the point. Starting with any point, we replace repeatedly

the current point by one of its better neighbors under the objective function, until

the point fits the search criteria or we run out of time.

For SAT or MAX-SAT, the search space of common local search methods

is the set of full interpretations. If C contains n variables, then the search space

size is O(2n), which is smaller than O(3n), the search space size for exhaustive

search procedures like DPLL, where all partial interpretations are considered. For

convenience, we assume that a full interpretation σ is represented by a set of n

literals where each variable appears exactly once (or equivalently, a full minterm).

The neighbor of σ is obtained by flipping the truth value of one variable in σ. Thus,

every σ has n neighbors:

neighbors(σ) = {σ − {A} ∪ {¬A} | A ∈ σ}

Selman et al. proposed a greedy local search procedure called GSAT for SAT.

The running time of GSAT is controlled by two parameters: MaxTries is the
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maximal number of the starting points; and MaxFlips is the maximal number of

flips allowed for any starting point.

Algorithm 4.4.1. GSAT(C) takes as input a set C of clauses and returns a model

of C if it finds one; returns “unknown” if it terminates without finding a model.

proc GSAT(C, σ)

1 for i := 1 to MaxTries do

2 σ := a random full interpretation of C; // a starting point

3 for j := 1 to MaxFlips do

4 if σ(C) = 1 return σ; // a model is found

5 pick A ∈ σ; // pick a literal of σ for flipping

6 σ′ = σ − {A} ∪ {¬A};
7 σ = σ′;

8 return “unknown”;

Example 4.4.2. Let C = {c1 : (x1 | x3 | x4), c2 : (x1 | x4), c3 : (x2 | x4), c4 :

(x1 | x2 | x3), c5 : (x2 | x4)}. If the starting interpretation is σ0 = {x1, x2, x3, x4},
f(C, σ0) = 2 as σ0(c2) = σ0(c3) = 0. If x1 is chosen for flipping, we obtain σ1 =

{x1, x2, x3, x4} and f(C, σ1) = 1 since σ1(c3) = 0. If x2 is chosen next for flipping,

then σ2 = {x1, x2, x3, x4} and f(C, σ2) = 1 since σ2(c5) = 0. If x4 is chosen next for

flipping, then σ3 = {x1, x2, x3, x4} and f(C, σ3) = 0, i.e., σ3 is a model of C. 2

There exist many variations of GSAT, as there are many ways to pick a literal

at line 5. In general, we need to pick a literal A ∈ neighbors(σ) such that the

resulting interpretation σ′, here σ′ = σ−{A}∪{¬A}, satisfies (f(C, σ′) ≤ f(C, σ)).

We may randomly pick one of such literals, or pick the best one such that f(C, σ′)

is minimal (the original GSAT uses this strategy).

When f(C, σ′) = f(C, σ), GSAT still chooses to move from σ to σ′, and

such moves are called “sideways” moves; they are moves that do not increase or

decrease the total number of unsatisfied clauses. To avoid GSAT going back and

forth between two neighboring interpretations of the same f value, the idea of tabu

search is needed, so that recent visited interpretations are not allowed to be the next

interpretation. The search of GSAT typically begins with a rapid greedy descent

towards a better truth assignment, followed by long sequences of “sideways” moves.

Experiments indicate that on many formulas, GSAT spends most of its time on

sideways moves.

We can also allow moves that increase the value of f (called upward moves)

occasionally, especially in the beginning of the execution. For example, using the

idea of “simulated annealing”, upward moves can be allowed with a probability, and
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this probability decreases as the number of tries increases. To implement this idea,

we replace line 7 by the following two lines:

7 x := random(0, 1); // x is a random number in [0, 1)

7’ if (x < p ∨ (f(C, σ′) ≤ f(C, σ)) σ := σ′;

Selman et al. proposed a variation of GSAT, called walksat, which interleaves

the greedy moves of GSAT with random walk moves of a standard Metropolis search.

Walksat’s strategy for picking a literal to flip is as follows:

1. Randomly pick a conflicting clause, say α;

2. If there is a literal B ∈ α such that the flipping of B does not turn any

currently satisfied clauses to unsatisfied, return B as the picked literal;

3. With probability p, randomly pick B ∈ α and return B;

4. With probability 1− p, pick B ∈ α such that the flipping of B turns the least

number of currently satisfied clauses to unsatisfied, return B.

Since the early 1990s, there has been active research on designing, under-

standing, and improving local search methods for SAT. In the framework of GSAT,

various ideas are proposed and they include the following:

• When picking a literal, take the literal that was flipped longest ago for breaking

ties.

• A weight is given to each clause, incrementing the weight of unsatisfied clauses

by one for each interpretation. One of the literals occurring in more clauses

of maximum weight is picked.

• A weight is given to each variable, which is increased in variables that are

often flipped. The variable with minimum weight is chosen.

Selman et al. showed through experiments that GSAT as well as walksat

substantially outperformed the best DPLL-based SAT solvers on some classes of

formulas, including randomly generated formulas and graph coloring problems.

GSAT returns either a model or “unknown”, as it can never declare that “the

input clauses are unsatisfiable”. This is a typical feature of local search methods as

they are incomplete in the sense that they do not provide the guarantee that it will
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eventually either report a satisfying assignment or declare that the given formula is

unsatisfiable.

There have also been attempts at hybrid approaches that explore the combi-

nation of ideas from DPLL methods and local search techniques. There has also

been work on formally analyzing local search methods, yielding some of the best

o(2n) time algorithms for SAT. For instance, the expected running time, ignoring

polynomial factors, of a simple local search method with restarts after every 3n

“flips” has been shown to (k + 1)/k)n for kCNF instances of n variables, where

each clause contains at most k literals. When k = 3, the result yields a complex-

ity of (4/3)n for 3SAT. This result has been derandomized to yield a deterministic

algorithm with complexity 1.481n (up to polynomial factors) to solve 3SAT.

4.4.2 2SAT versus Max2SAT

Let Max-kSAT denote the decision version of MaxSAT which takes a positive

integer m and a set C of clauses, where each clause has no more than k literals, as

input and returns true iff there exists an interpretation σ such that at leastm clauses

are satisfied under σ. It is well-known that 2SAT can be solved in polynomial time,

while Max2SAT is NP-complete.

Theorem 4.4.3. There is a linear time decision procedure for 2SAT.

Proof. This sketch of the proof comes from (Aspvall, Plass, Tarjan, 1979). Let C

be in 2CNF without pure literals. We construct a directed graph G = (V,E) for C

as follows: V contains the two literals for each variable appearing in C. For each

clause (A | B) ∈ C, we add two edges, (A,B) and (B,A), into E. Obviously, the

edges represent the implication relation among the literals, because (A | B) ≡ (A→
B)∧(B → A). Since the implication relation is transitive and (A→ B) ≡ (B → A),

the following three statements are equivalent for any pair of literals x and y in G:

1. C |= (x→ y);

2. there is a path from x to y in G; and

3. there is a path from y to x in G.

We then run the algorithm for strongly connected components (SCC), which can

be done in linear time, on G. It is easy to see that C |= (x ↔ y) for any two

literals x and y in the same component, because x and y share a cycle in G. If

both a variable, say p, and its complement, p, appear in the same component, then

C is unsatisfiable, because C |= (p ↔ p). If no such cases exist, then C must be
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Figure 4.4.1: The implication graph for 2CNF C and the SCC.

satisfiable. A model can be obtained by assigning the same truth value to each node

in the same component, following the topological order of the components induced

by G: Always assign 0 to a component, unless one of the literals in the component

had already received 1. 2

Example 4.4.4. Given C = {c1 : (p | q), c2 : (p | r), c3 : (p | r), c4 : (q | r), c5 :

(q | s), c6 : (r | s)}, its implication graph is shown in Figure 4.4.1. There are two

SCCs: S1 = {p, q, r, s} and S2 = {p, q, r, s}. We have to assign 0 to every node in

S1 (and 1 to every node in S2) to obtain a model of C. 2

Theorem 4.4.5. Max2SAT is NP-complete.

Proof. This proof comes from (Garey, Johnson, and Stockmeyer, 1976). Max2SAT

is in NP because we can guess non-deterministically an interpretation σ and check

if there are at least K clauses are true under σ in polynomial time.

To show Max2SAT is NP-hard, we reduce 3SAT to Max2SAT. That is, if there

exists an algorithm A to solve Max2SAT, we can construct algorithm B to solve

3SAT, and the computing times of A and B differ polynomially.

Given any instance C of 3SAT, we assume that every clause of C has exactly

three literals. For every clause ci = (l1 | l2 | l3) ∈ C, where l1, l2, and l3 are arbitrary

literals, we create 10 clauses in Max2SAT:

(l1), (l2), (l3), (xi), (l1 | l2), (l1 | l3), (l2 | l3), (l1 | xi), (l2 | xi), (l3 | xi),

where xi is a new variable. Let C ′ be the collection of these clauses created from

the clauses in C, then |C ′| = 10|C| and the following statements are true:

• If an interpretation satisfies ci, then we can make seven of the ten clauses

satisfied.
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• If an interpretation falsifies ci, then at most six of the ten clauses can be

satisfied.

The above statements can be verified by a truth table on l1, l2, l3 and xi:

l1 l2 l3 xi (l1|l2) (l1|l3) (l2|l3) (l1|xi) (l2|xi) (l3|xi) sum
0 0 0 0 1 1 1 1 1 1 6
0 0 0 1 1 1 1 0 0 0 4
0 0 1 0 1 1 1 1 1 1 7
0 0 1 1 1 1 1 0 0 1 6
0 1 1 0 1 1 0 1 1 1 7
0 1 1 1 1 1 0 0 1 1 7
1 1 1 0 0 0 0 1 1 1 6
1 1 1 1 0 0 0 1 1 1 7

The first four columns serve both the truth values of {l1, l2, l3, xi} and the first four

clauses of the ten clauses. The first two lines of the table shows that when (l1 | l2 | l3)
is false, the sum of the truth values of the ten clauses (the last column) is at most

6. The rest of the table shows the sums of the truth values of the ten clauses when

one, or two, or three literals of {l1, l2, l3} are true (some cases are ignored due to

the symmetry of l1, l2, and l3). It is clear from the table that when (l1 | l2 | l3) is
true, we may choose the value of xi to obtain 7 true clauses out of the ten clauses.

Then C is satisfiable iff C ′ has an interpretation which satisfies K = 7|C| clauses
of C ′. If we have an algorithm to solve C ′ with K = 7|C|, then the output of the

algorithm will tell if C is satisfiable or not. 2

The above theorem shows that MaxSAT is a hard problem even for 2CNF.

4.5 Maximum Satisfiability

The algorithm GSAT can be used to solve the MaxSAT problem, which asks

to find an interpretation for a set of clauses such that a maximal number of clauses

are true. Since GSAT is incomplete, the answer found by GSAT is not guaranteed

to be optimal. This is a typical feature of local search methods which always find

local optimal solutions. GSATcan also be used to solve MaxSAT of general form:

weighted MaxSAT and hybrid MaxSAT.

4.5.1 Weight MaxSAT and Hybrid MaxSAT

Definition 4.5.1. Given a set C of clauses and a function w : C −→ N , w(c)

is called the weight (or cost) of c ∈ C. (C,w) is called weighted CNF (WCNF).
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Given (C,w), the weighted MaxSAT problem is to find a full interpretation σ such

that
∑

c∈C,σ(c)=0 w(c) is minimal (or equivalently,
∑

c∈C,σ(c)=1 w(c) is maximal). Any

clause in C is called a weighted clause and denoted by (c;w(c)).

Example 4.5.2. Let C be a weighted MaxSAT instance, where C = {c1 : (x1; 5),

c2 : (x1 | x2; 4), c3 : (x1 | x2 | x3; 3), c4 : (x1 | x2; 2), c5 : (x1 | x2 | x3; 4), c6 : (x1 |
x3; 1), c7 : (x1 | x2 | x3; 2)}. Then σ = {x1, x2, x3} is the optimal interpretation for

C, where c4 and c6 are false, with the total weights of falsified clauses being 3; the

sum of weights of true clauses is 18. 2

Definition 4.5.3. Given a WCNF (C,w), let (H,S) be a partition of the set C,

where each clause c ∈ H has weight w(c) = ∞, a solution of (H,S) is a full

interpretation σ such that every clause of H is true in σ. The hybrid MaxSAT

problem is to find an optimal solution such that
∑

c∈S,σ(c)=0w(c) is minimal. The

clauses in H are called hard clauses and the clauses in S are called soft clauses.

Hybrid MaxSAT is also called weighted partial MaxSAT. The definition of

hybrid MaxSAT assumes that hybrid MaxSAT is a special case of weighted MaxSAT.

Weighted MaxSAT can be also viewed as a special case of hybrid MaxSAT when

H = ∅. In other words, the two definitions are equivalent in expressive power. In

practice, ∞ can be replaced by the sum of all weights in S. Separating H from S

will allow us to handle H efficiently, using advanced techniques for SAT.

Since MaxSAT is a special case of weighted MaxSAT or hybrid MaxSAT,

weighted MaxSAT or hybrid MaxSAT must be NP-complete, too. In fact, it is very

easy to reduce NP-complete problems to weighted MaxSAT or hybrid MaxSAT.

The clique problem is a well-known NP-complete problem in graph theory.

Given a graph G = (V,E), let V = {v1, v2, ..., vn}. We define n propositional

variables xi, 1 ≤ i ≤ n, with the meaning that xi = 1 iff vi is in the solution of a

maximum clique. Then we may reduce the clique problem to the weighted MaxSAT

problem by converting G = (V,E) into a formula of 2WCNF, which consists of the

following two sets of weighted clauses.

• For 1 ≤ i ≤ n, create (xi; 1).

• For vi, vj ∈ V , i 6= j and (vi, vj) 6∈ E, create (xi | xj;n).

The first set of clauses says that if a vertex is chosen in the solution, there is

a reward of 1 (equivalently, if the vertex is not in the solution, there is a penalty of

1). The second set of clauses specifies the property of a clique: If two vertices are

chosen in the solution and there is no edge between them, there is a penalty of |V |.
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Figure 4.5.1: Finding a maximal clique in a graph.

Example 4.5.4. For the graph in Figure 4.5.1, the clauses are

C = {(xa | xe; 5), (xb | xc; 5), (xc | xe; 5), (xa; 1), (xb; 1), (xc; 1), (xd; 1), (xe; 1)}.

One of the optimal solutions is σ = {xa 7→ 1, xb 7→ 1, xc 7→ 0, xd 7→ 1, xe 7→ 0},
under which, two clauses, i.e., (xc) and (xe), are false and the total penalty is 2. 2

Consider an interpretation σ in which one variable xi is true; all the other

variables are false. Given σ, all the clauses in the second set will be true and all the

clauses in the first set will be false, except one. That is, the sum of weights of the

falsified clauses is n − 1 under σ. Thus, the total weights of all falsified clauses in

any optimal solution cannot be greater than n−1. In other words, all the clauses in

the second set must be true in an optimal solution. This implies that there must be

an edge between two vertices in the solution. The optimal solution picks a maximal

number of xi’s and thus gives us a maximal clique. It is natural to specify the

second set of clauses as hard clauses in the hybrid MaxSAT format.

4.5.2 The Branch-and-Bound Algorithm

To obtain an optimal solution of MaxSAT or hybrid MaxSAT, the traditional

approach is to use the branch-and-bound algorithm. In these algorithms, we often

cast MaxSAT as a minimization problem: find solution with minimum (optimal)

cost. The branching part of the branch-and-bound algorithm is very much like

DPLL, doing case-splits on selected literals. The bounding part of the algorithm

checks if an estimation of the current solution is better or not than the solution found

so far. If not better, the algorithm cuts this futile branch and backtracks. If we

look for a minimal solution, the estimation produces a lower bound; for a maximal

solution, the estimation produces an upper bound. For example, if we look for a

minimal solution, and already have a solution of value 30, if the estimation says

the lower bound is 32, then there is no point to continue, because the value of the

solution from the current branch cannot be lower than 32.
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Here we present the branch-and-bound algorithm for hybrid MaxSAT in the

style of recursive DPLL (Algorithm 4.1.1).

Algorithm 4.5.5. HyMaxSATBB(H,F, σ, soln) takes as input a set H of hard

clauses, a set F of weighted soft clauses, a partial interpretation σ, and the best

solution soln found so far. H and σ do not share any variables. It looks for a

full interpretation σ which is a model of H and the sum of the weights of the false

clauses in F is minimal under σ; this weight sum will be returned by the algorithm.

Procedure pickLiteral(S) will pick a literal appearing in S.

proc HyMaxSATBB(H,F, σ, soln)

1 res := BCP(H);

2 if (res = ⊥) return ∞; // hard causes violated

3 // Assume res = (U, S)

4 σ := σ ∪ U ;

5 F := simplifySoft(F, σ);

6 if soln ≤ lowerBound(F ) return soln;

7 A := pickLiteral(S ∪ F );

8 if (A = nil) return countFalseClauseWeight(F, σ);

9 soln := min(soln,HyMaxSATBB(S ∪ {(A)}, F, σ, soln));
10 return min(soln,HyMaxSATBB(S ∪ {(A)}, F, σ, soln));

We have seen BCP (H) in Algorithm 4.1.1; the following four procedures are

called inside HyMaxSATBB:

• simplifySoft(F, σ) at line 5: Simplify soft clauses F using the partial inter-

pretation σ and keep the total weights of false clauses unchanged under any

interpretation. Details will follow.

• lowerBound(F ) at line 6: Estimate the minimal total weights of false clauses

when σ is extended to a full interpretation in all possible ways. Details will

be discussed later.

• pickLiteral(S ∪ F ) at line 7: pick an unassigned literal for case-splits; returns

nil if every literal has a truth value. Here is the place heuristics for branching

are implemented.

• countFalseClauseWeight(F, σ) at line 8: a simple procedure for computing the

sum of all the weights of false clauses in F . Here, σ is a full interpretation

and can be saved for late use.
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For an efficient implementation of HyMaxSATBB, the first solution is always

obtained by a local search algorithm such as GSAT. We can use all techniques used

for DPLL, including iterative procedure, destructive data structure, and conflict-

driven clause learning for hard clauses.

For soft clauses, the treatment is different. For example, unit resolution is a

powerful simplification rule for hard clauses, but it is unsound for soft clauses. If

C = {(x1; 1), (x1 | x2; 1), (x1 | x2; 1), (x1 | x3; 1), (x1 | x3; 1)}, the optimal solution

has one false clause when x 7→ 1. If we apply unit resolution to C to get C ′ =

{(x1; 1), (x2; 1), (x2; 1), (x3; 1), (x3; 1)}, an optimal solution of C ′ will contain two

false clauses. Of course, if a unit clause is hard, we may apply unit resolution to

both hard and soft clauses.

4.5.3 Simplification Rules and Lower Bound

Definition 4.5.6. An inference rule or simplification rule applicable to a set C of

weighted clauses is said to be sound, if the optimal solution of the resulting set C ′

of weighted clauses has the same value as the optimal solution of C.

In other words, sound rules should preserve the value of optimal solutions.

Most inference rules are unsound for weighted clauses because they generate extra

clauses. One exception is when a hard clause can be generated from soft clauses.

For example, given a soft clause (c;w), if c becomes false, w will be added as a

portion of the lower bound. If this addition of w causes the lower bound to exceed

the value of the current solution, then we can generate the hard clause c to prevent

c from being false. In the following, we focus on simplification rules, which replace

some clauses by other clauses when we transform C to C ′. Each simplification rule

can be denoted by

C1, C2, .., Cm =⇒ C ′
1, C

′
2, .., C

′
n

when we want to replace {C1, C2, .., Cm} ⊆ C by {C ′
1, C

′
2, .., C

′
n}, where Ci, C

′
j are

weighted clauses.

In the following rules, α and β denote arbitrary, possibly empty, disjunction

of literals.

1. zero elimination: Weighted clauses with zero weights can be discarded.

(α; 0) =⇒ 1

2. tautology elimination: Valid clauses are always true and can be discarded.

(p | p | α;w) =⇒ 1
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3. identical merge: Identical clauses are merged into one.

(α;w1), (α;w2) =⇒ (α;w1 + w2)

4. unit clash: Unit clauses with complement literals can be reduced to one.

(A;w1), (A;w2) =⇒ (A;w1 − w2), (⊥;w2)

where A is a literal and w1 ≥ w2. For example, given (p; 2) and (p; 3), if

p 7→ 1, we get a cost of 3 from (p; 3); if p 7→ 0, we get a cost of 2 from (p; 2).

The same result can be obtained from (p, 1) and (⊥; 2); the latter is added

into the cost function.

5. weighted resolution:

(p | α;w1), (p | β;w2) =⇒
(α | β;u), (p | α,w1 − u), (p | β;w2 − u),

(p | α | β;u), (p | α | β;u)

where w1 > 0, w2 > 0, and u = min(w1, w2). This rule is proposed by Larrosa

et al. (2007). Since either w1 − u = 0 or w2 − u = 0, the above rule cannot

be used forever. For example, from (p | q; 2) and (p | q; 3), α = β = q, u =

min(2, 3), we obtain five clauses: (q; 2), (p | q; 0), (p | q; 1), (p | q | q; 2), and
(p | q | q; 2). The second clause is removed by zero elimination, and the last

two clauses by tautology elimination, we obtain two clauses: (q; 2), (p | q; 1).
Note that β and α in the last two clauses are not disjunction of literals in

general. We need to convert (p | α | β;u) (or (p | α | β;u)) into a set of

clauses, each having the weight u. In practice, this rule often applies to short

clauses or when α = β.

It is easy to check all of the above simplification rules are sound for weighted

clauses, as they preserve optimal solutions.

To efficiently implement simplifySoft(F, σ), F will be simplified first by σ, as

σ represents a set of hard unit clauses. Every true clause under σ will be removed

from F and every false literal under σ will be removed from the clauses in F . After

this step, F and σ do not share any variable. The second step is to apply the above

simplification rules. Some rules like zero elimination and tautology elimination, are

applied eagerly. Some rules like weighted resolution are applied selectively.

To implement lowerBound(F, soln), at first, we assumed that F is simplified

and we count the total weights of all false clauses. If the sum exceeds the current

solution, we exit.
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For non-false clauses of F , there exist various techniques to estimate the lower

bound. One technique is to formulate F as an instance of Integer Linear Program-

ming (ILP). ILP Solvers are common optimization tools for operation research. ILP

solvers solve problems with linear constraints and linear objective function where

some variables are integers. State-of-the-art ILP solvers are powerful and effective

and can attack MaxSAT directly. In practice, ILP solvers are effective on many

standard optimization problems, e.g., vertex cover, but for problems where there

are many boolean constraints ILP is not as effective.

To obtain a lower bound of ILP, the constraints on integer solutions are relaxed

so that ILP becomes an instance of the Linear Programming (LP), which is known

to have polynomial-time solutions.

If we view > as 1 and ⊥ as 0, it is well known that a clause can be converted

into a linear inequation, such as (x1 | x2 | x3) becomes (1− x1) + x2 + (1− x3) ≥ 1,

so that the clauses are satisfiable iff the set of inequations has a 0/1 solution for all

variables.

For any clause c, let P (c) and N(c) be the sets of positive literals and negative

literals in c, respectively. Let F = {(ci;wi) : 1 ≤ i ≤ m} over n variables, say

{x1, x2, ..., xn}. F can be formulated as the following instance of ILP:

minimize
∑

1≤i≤m wi(1− yi) // minimize the weights of falsified clauses

subject to
∑

x∈P (ci)
x+

∑
x∈N(ci)

(1− x) ≥ yi, 1 ≤ i ≤ m, // ci is true iff yi = 1

yi ∈ {0, 1}, 1 ≤ i ≤ m, // every clause is falsified or satisfied

xj ∈ {0, 1}, 1 ≤ j ≤ n. // every variable is false or true

where yi is a new variable for each clause ci in F .

Intuitively, the more yi’s with yi = 1, the less the value of
∑

1≤i≤m wi(1− yi).

And yi = 1 implies that
∑

x∈P (ci)
x+

∑
x∈N(ci)

(1− x) ≥ 1, i.e., ci is true.

The above ILP instance can be relaxed to an instance L of LP:

minimize
∑

1≤i≤m wi(1− yi)

subject to
∑

x∈P (ci)
x+

∑
x∈N(ci)

(1− x) ≥ yi, 1 ≤ i ≤ m,

0 ≤ yi ≤ 1, 1 ≤ i ≤ m, and

0 ≤ xj ≤ 1, 1 ≤ j ≤ n.

If L has a solution, then
∑

1≤i≤m wi(1 − yi) is a lower bound for the solutions of

F . The ILP can be used to obtain an approximate solution for F when we round

up/down the values of xi from reals to integers.

Other techniques for lower bounds look for inconsistencies that force some soft

clause to be falsified. Some suggested learning falsified soft clauses, some people
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use the concepts of clone, minibcukets, or width-restricted BDD in relaxation. For

instance, we may treat the soft clauses as if they were hard and then run BCP to lo-

cate falsified clauses. This can help us to find unsatisfiable subsets of clauses quickly

and use them to estimate the total weights of falsified clauses. These techniques

can be effective on small combinatorial problems. Once the number of variables

in F gets to 1, 000 or more, these lower bound techniques become weak or too ex-

pensive. Strategies for turning on/off these techniques in HyMaxSATBB should be

considered.

Besides the algorithm based on branch-and-bound, some MaxSAT solvers con-

vert a MaxSAT instance into a sequence of SAT instances where each instance

encodes a decision problem of the form, for different values of k, “is there an inter-

pretation that falsifies soft clauses of total weights at most k?”

For example, if we start with a small value of k, the SAT instance will be

unsatisfiable. By increasing k gradually, the first k when the SAT instance becomes

satisfiable will be the value of an optimal solution. Of course, this linear strategy

on k does not provide necessarily an effective MaxSAT solver.

There are many ongoing researches in this direction. The focus of this ap-

proach is mainly doing two things:

1. Develop economic ways to encode the decision problem at each stage of the

sequence.

2. Exploit information obtained from the SAT solver at each stage in the next

stage.

Some MaxSAT solvers use innovation techniques to obtain more efficient ways

to encode and solve the individual SAT decision problems. Some solvers use un-

satisfiable cores to improve SAT solving efficiency. These solvers appear promising

as they are effective on some large MaxSAT problems, especially those with many

hard clauses.

4.5.4 Use of Hybrid MaxSAT Solvers

Most real-world problems involve an optimization component and there are

high demand for automated approaches to finding good solutions to computation-

ally hard optimization problems. We have seen how to encode the clique problem

easily and compactly into a MaxSAT instance. MaxSAT allows for compactly en-

coding various types of high-level finite-domain soft constraints due to Cook-Levin

Theorem: Any NP constraint can be polynomially represented as a weighted SAT

instance.
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There exists an extension of DIMACS format for WCNF. To specify an in-

stance of hybrid MaxSAT, the line starting with p will contain the keyword wcnf,

followed by the number of variables, the number of clauses, and the label for hard

clauses. That is,

p wcnf <# of variables> <# of clauses> <hard clause label>

The hard clause label is an integer larger than the maximal weight of soft clauses.

Each clause starts with the weight value, followed by literals and ending with 0. For

the small clique example of Example 4.5.4, the input file to a MaxSAT solver will

look like:

c small clique example

c xa = 1, xb = 2, xc = 3, xd = 4, xe = 5

p wcnf 5 8 9

9 -1 -5 0

9 -2 -3 0

9 -3 -5 0

1 1 0

1 2 0

1 3 0

1 4 0

1 5 0

A clause is hard if the weight of the clause is the label for hard clauses.

The standard format for MaxSAT instances makes the annual evaluation of

MaxSAT solvers possible. The latest website for MaxSAT evaluation can be found

on the internet and the site for the year 2020 is given below:

https://maxsat-evaluations.github.io/2020/

Researchers on MaxSAT can assess the state-of-the-art MaxSAT solvers and create

a collection of publicly available MaxSAT benchmark instances.

There MaxSAT solvers are built on the successful techniques for SAT, evolve

constantly in practical solver technology, and offer an alternative to traditional ap-

proaches, e.g., integer programming. MaxSAT solvers use propositional logic as

the underlying declarative language and are especially suited for inherently “very

Boolean” optimization problems. The performance of MaxSAT solvers have sur-

passed that of specialized algorithms on several problem domains:

• correlation clustering
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• probabilistic inference

• maximum quartet consistency

• software package management

• fault localization

• reasoning over bionetwork

• optimal covering arrays

• treewidth computation

• Bayesian network structure learning

• causal discovery

• cutting planes for IP (integer programming)

• argumentation dynamics

The advances of contemporary SAT and MaxSAT solvers have transformed

the way we think about NP complete problems. They have shown that, while

these problems are still unmanageable in the worst case, many instances can be

successfully tackled.

4.6 Exercise Problems

1. Draw the four complete decision trees (trees of recursive calls) of DPLL on

the following set of clauses,

{(p | q), (p | r), (p | r), (p | q | r), (q | r)}

using the orders of p, q, r and r, q, p, respectively, for splitting (either value

can be chosen first) and with or without BCP.

2. Draw the complete decision tree of DPLL on the following set of clauses,

{(p | q | s), (p | r | s), (q | r | s), (p | q | r), (q | r | s)}

using the orders of p, q, r, s for splitting (the value 1 is used first for each

splitting variable) and report the truth values of variables at various levels.

How many models are found by DPLL? What guiding paths are found when

each model is found?
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3. If we feed the clause set in the previous problem to a SAT solver which works

as a black box and can produce only one model at a time, what clause should

be added into the clause set so that the SAT solver will produce a new model?

4. Estimate the upper bound of the size of the inference graph for resolution, if

the input clauses contain n variables.

5. Provide the pseudo-code for implementing BCPw based on BCPht such that

the space for head(c) and tail(c) are freed by assuming head(c) = 0 and

tail(c) = |c| − 1 for any non-unit clause c, and no additional space can be

used for c. In your code, you may call swap(lits(c), i, j), which swaps the two

elements at indices i and j in the array lits(c).

6. Given a set H of m+ 1 Horn clauses over m variables:

H = {c1 = (x1 | x2 | · · · | xm−1 | xm), c2 = (x1 | x2), c3 = (x2 | x3), ...,
cm = (xm−1 | xm), cm+1 = (x1)}

Show that the size of H is O(m), and the algorithm BCPw in the previous

problem will take Ω(m2) time on H, if all the clauses in cls(A) must be

processed before considering cls(B), where ¬A is assigned true before ¬B.

7. We apply DPLL (without CDCL) to the following set S of clauses: S =

{1. (a | c | d | f), 2. (a | d | e), 3. (a | c), 4. (b | d | e), 5. (b | d | f), 6. (b | f),
7. (c | e), 8. (c | e), 9. (c | d) }, assuming that pickLiteral picks a literal in

the following order a, b, c, d, e, f (false is tried first for each variable). Please

(a) draw the decision tree of DPLL; (b) provide the unit clauses derived by

BCP at each node of the decision tree; and (c) identify the head/tail literals

of each clause at the end of DPLL(assuming initially the first and last literals

are the head/tail literals).

8. We apply GSAT to the set S of clauses in the previous problem. Assume that

the initial node (i.e., interpretation) is σ0 = {a, b, c, d, e, f}, and the strategy

for picking a neighbor to replace the current node is (a) the best among all

the neighbors; (b) the first neighbor which is better than the current node

(flipping variables in the order of a, b, ..., f). Sideways moves are allowed

if no neighbors are better than the current node. If no neighbors are better

than the current node, a local optimum is found and you need to start with

the node σ0 = {a, b, c, d, e, f}.

9. We apply DPLL with CDCL to the clause set C : {c1 : (x1 | x2 | x5), c2 : (x1 |
x3 | x4 | x5), c3 : (x1 | x2 | x3 | x4), c4 : (x3 | x4 | x5), c5 : (x2 | x3 | x5), c6 :
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(x3 | x4 | x5), c7 : (x3 | x4 | x5)}. If pickLiteral picks a literal for case-split

in the following order x5, x4, ..., x1 (xi = 0 is tried first), please answer the

following questions:

(a) For each conflicting clause found in DPLL(C), what new clause will be

generated by conflictAnalysis?

(b) What will be the head and tail literals if the new clause generated in (a)

is not unit? And what will be the value of level at the end of the call to

insertNewClause?

(c) Draw the DPLL decision tree until either a model is found or DPLL(C)

returns false.

10. The pigeon hole problem is to place n+1 pigeons into n holes such that every

pigeon must be in a hole and no holes can hold more than one pigeon. Please

write an encoder in any programming language that reads in an integer n and

generates the CNF formula for the pigeon hole problem with n+1 pigeons and

n holes in the DIMACS Format. Store the output of your encoder in a file

named pigeonN.cnf and feed pigeonN.cnf to a SAT solver which accepts

CNF in the DIMACS format. Turn in both the encoder, the result of the

SAT solver for n = 4, 6, 8, 10, and the CNF file for n = 4 (i.e., pigeon4.cnf),

plus a summary of the outputs of SAT solvers on the sizes of the input, the

computing times, numbers of conflicts. What relation between the size of the

input and the computing time?

11. The n-queen problem is to place n queens on an n × n board such that no

two queens are in the same row, the same column, or the same diagonal.

Please write a smaller program called encoder in any programming language

that reads in an integer n and generates the CNF formula for the n-queen

problem in the DIMACS Format. Store the output of your encoder in a file

named queenN.cnf and feed queenN.cnf to a SAT solver which accepts CNF

in the DIMACS format. Write another smaller program called decoder which

reads the output of the SAT solver and displays a solution of n-queen on your

computer screen. Turn in both the encoder and decoder, the result of the

SAT solver for n = 5, 10, 15, and the CNF file for n = 5 (i.e., queen5.cnf),

and the output of your decoder for n = 10.

12. You are asked to write two small programs, one called encoder and the other

called decoder. The encoder will read a sudoku puzzle from a file (some ex-

amples are provided online) and generates the CNF formula for this puzzle
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in the DIMACS Format. Store the output of your encoder in a file named

sudokuN.cnf and feed sudokuN.cnf to a SAT solver which accepts CNF in

the DIMACS format. The decoder will read the output of the SAT solver and

displays a solution of the Sudoku puzzle on your computer screen. Turn in

both the encoder and decoder, the result of the SAT solver, and the result of

your decoder for the provided Sudoku puzzles.

13. A Latin square over N = {0, 1, ..., n−1} is an n×n square where each row and

each column of the square is a permutation of the numbers from N . Every

Latin square defines a binary function ∗ : N,N −→ N such that (x∗y) = z iff

the entry at the xth row and the yth column is z. You are asked to write a small

program called encoder. The encoder will read an integer n and generates the

CNF formula for the Latin square of size n satisfying the constraints x∗x = x

and (x∗y)∗(y∗x) = y (called Stein’s third law) in the DIMACS Format. Store

the output of your encoder in a file named latinN.cnf and feed latinN.cnf

to a SAT solver which accepts CNF in the DIMACS format. Turn in the

encoder, and a summary of the results of the SAT solver for n = 4, 5, ..., 9.

14. Given an undirected simple graph G = (V,E), an independent set of G is

a subset X ⊆ V such that for any two vertices of X, (x, y) 6∈ E. The in-

dependent set problem is to find a maximum independent set of G. Specify

the independent set problem in hybrid MaxSAT; and (b) specify the decision

version of the independent set problem in SAT.

15. Given an undirected simple graph G = (V,E), a vertex cover of G is a subset

X ⊆ V such that for every edge (x, y) ∈ E, {x, y} ∩X 6= ∅. The vertex cover

problem is to find a minimal vertex cover of G. (a) Specify the vertex cover

problem in hybrid MaxSAT; and (b) specify the decision version of the vertex

cover problem in SAT.

16. Given an undirected simple graph G = (V,E), the longest path problem is

to find the longest simple path (no repeated vertices) in G. (a) Specify the

longest path problem in hybrid MaxSAT; and (b) specify the decision version

of the longest path problem in SAT.

17. Given a set S of binary clauses,

S = {(a | b), (a | c), (a | d), (b | c), (b | d), (c | d)}

(a) draw the implication graphG = (V,E) of S; (b) find the strongly connected

components of G; (c) From G, decide if S is satisfiable or not. If satisfiable,

construct a model of S from G.
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CHAPTER 5

FIRST ORDER LOGIC

Propositional logic provides a good start at describing the general principles

of logical reasoning, but it is not possible to express general properties of many

important sets, especially when a set is infinite. For example, how to specify that

every natural number is either even or odd, a natural number is even iff its successor

is odd, or the relation < is transitive over the natural numbers?

The weak expressive power of propositional logic accounts for its relative math-

ematical simplicity, but it is a very severe limitation, and it is desirable to have more

expressive logics. Mathematics and some other disciplines such as computer science

often consider sets of elements in which certain relations and operations are singled

out. When using the language of propositional logic, our ability to talk about the

properties of such relations and operations is very limited. Thus, it is necessary to

refine the logic language, in order to increase the expressive power of logic. This is

exactly what is provided by a more expressive logical framework known as first-order

logic, which will be the topic of the next three chapters. First-order logic is a con-

siderably richer logic than propositional logic, yet enjoys many nice mathematical

properties.

In first-order logic, many interesting and important properties about various

sets can be expressed. Technically, this is achieved by allowing the propositional

symbols to have arguments ranging over elements of sets, to express the relations and

operations in question. These propositional symbols are called predicate symbols.

This is the reason that first-order logic is often called predicate calculus.

5.1 Syntax of First Order Languages

A logic is a collection of closely related formal languages. There are certain

languages called first-order languages, and together they form first-order logic. Our

study of first-order logic will parallel the study of propositional logic: We will at first

define the syntax and semantics of first-order languages as an extension of proposi-

tional languages, and then present various reasoning tools for these languages.

5.1.1 Terms and Formulas

Consider some general statements about the natural numbers:
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• Every natural number is even or odd, but not both.

• A natural number x is even iff x+ 1 is odd.

• For any natural number x, x < x+ 1 and ¬(x < x).

• For any three natural numbers x, y, and z, if x < y and y < z, then x < z.

• For every natural number x, there exists a natural number y, such that x < y.

Before any attempt to prove these statements, let us consider how to write

them in a formal language. At first, we need a way to describe the set of natural

numbers. Like propositional logic, first-order logic does not assume the existence

of any special sets, except some symbols, and everything needs to be constructed

from scratch. Fortunately, from Example 1.3.11, we know that the set of natural

numbers can be constructed recursively from two symbols: the constant 0 and the

unary function symbol s: Natural number i is uniquely represented by the term

si(0), which means there are i copies of s in s(s(...s(0)...)). Hence, our first-order

language will have 0 and s.

Next, to express “even” or “odd” properties, we may introduce the predicate

symbols even and odd, which take a natural number and return a Boolean value.

The relation < is used in the statement and we take it in the first-order language.

Since some variables like x, y, and z are already used in the statements, we borrow

them, too.

Finally, to express “for every” and “there exists” in natural languages, we

add two important symbols, ∀ and ∃, respectively, in a first-order language. The

symbol ∀ is called universal quantifier and ∃ is called existential quantifier. These

two symbols will be discussed extensively in the next subsection.

Definition 5.1.1. A first-order language L is built up by an alphabet that consists

of four sets of symbols:

• A set P of predicate symbols, including propositional variables, usually de-

noted by p, q, r, with or without subscripts, or some popular binary relation

symbols, such as <, ≤, ≥, >, etc.

• A set F of function symbols, including constants, usually denoted by a, b, c

(constants), f , g, h, with or without subscripts.

• A set X of variables, usually denoted by x, y, and z, with or without subscripts.

• A set Op of logical operators such as >,⊥,¬,∧,∨,→, and ↔, plus ∀ and ∃.
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For each symbol in P ∪ F , the number of arguments for that symbol is fixed

and is dictated by the arity function arity : P ∪F −→ N . If arity(p) = 0 for p ∈ P ,

p is the same as a propositional variable; if arity(f) = 0 for f ∈ F , f is a constant.

The triple (P, F, arity) is called the signature of the language. We denote the

language L by L = (P, F,X,Op).

In general, P or F could be empty; X and Op can never be empty. In theory,

P or F orX could be infinite, but in practice, they are always finite. We also assume

that no symbols appear more than once in these four sets. Rather than fixing a

single language once and for all, different signatures generate different first-order

languages and allow us to specify the symbols we wish to use for any given domain

of interest.

Example 5.1.2. To specify the properties of the natural numbers listed at the be-

ginning of this section, we use the signature (P, F, arity), where P = {even/1, odd/1,
< /2}, F = {0/0, s/1}, the arity is given after the symbol / following each predicate

or function symbol. 2

Once a signature is given, we add some variables X and logical operators Op,

to obtain the alphabet for a first-order language. First-order logic allows us to build

complex expressions out of the alphabet. Starting with the variables and constants,

we can use the function symbols to build up compound expressions which are called

terms.

Definition 5.1.3. Given a first-order language L = (P, F,X,Op), the set of terms

of L are the set of strings built up by F and X, which can be formally defined by

the following BNF grammar:

〈Constants〉 ::= a if a ∈ F, arity(a) = 0
〈V ariables〉 ::= x if x ∈ X
〈Terms〉 ::= 〈Constants〉 | 〈V ariables〉 |

f(〈Terms〉1, 〈Terms〉2, ..., 〈Terms〉k) if f ∈ F, arity(a) = k

The set of terms in 〈Terms〉 is often denoted by T (F,X). A term is said to be

ground if it does not contain any variable. The set of all ground terms is denoted

by T (F ). Note that T (F ) = ∅ if F contains no constants.

For F = {0, s} in the previous example, T (F ) = {0, s(0), s(s(0)), ...} and

T (F,X) = {0, s(0), s(x), s(y), s(s(0)), s(s(x)), s(s(y)), ...} for X = {x, y}.
Intuitively, the terms name objects in the intended domain of interest. In

a term, besides the symbols from F and X, the parentheses “(” and “)” and the

comma “,” are also used to identify its structure. Like every propositional formula



173

has a formula tree (Definition 2.1.1), for each term we can have a term tree in which

parentheses and commas are omitted. We may assign a position to each node of the

term tree and use this position to identify the subterm denoted by that node.

Definition 5.1.4. Given a term t, a position p of t, with the subterm at p, denoted

by t/a, is recursively defined as follows:

• If t is a constant or a variable, then p = ϵ, the empty sequence, and t/p = t.

• If t = f(t1, ..., tk), then either p = ϵ and t/p = t, or p = i.q, where 1 ≤ i ≤ k,

and t/p = ti/q.

For example, if t = f(x, g(g(y))), then the legal positions of t are ϵ, 1, 2, 2.1,

and 2.1.1, and the corresponding subterms are t, x, g(g(y)), g(y), and y, respectively.

Now adding the usual logical operators from propositional logic, we have pretty

much all the symbols needed for a first-order language.

Definition 5.1.5. Given a first-order language L = (P, F,X,Op), the formulas of

L are the set of strings built up by terms, predicate symbols and logical operators.

Let op be the binary operators used in the current application, then the formulas for

this application can be defined by the following BNF grammar:

〈op〉 ::= ∧ | ∨ |→| ⊕ |↔
〈Atoms〉 ::= p(〈Terms〉1, 〈Terms〉2, ..., 〈Terms〉k) if p ∈ P, arity(a) = k
〈Literals〉 ::= 〈Atoms〉 | ¬〈Atoms〉
〈Formulas〉 ::= > | ⊥ | 〈Atoms〉 | ¬〈Formulas〉 |

(〈Formulas〉 〈op〉 〈Formulas〉) |
(∀〈V ariables〉〈Formulas〉) | (∃〈V ariables〉〈Formulas〉)

A formula (clause, literal, atom) is said to be ground if it does not contain any

variable.

Atoms are a shorthand for atomic formulas. We can have a formula tree for

each first-order formula.

Some parentheses are unnecessary if we use a precedence relation among the

logical operators. When displaying a formula, it is common to drop the outmost

parentheses or those following a predicate symbol of zero arity, e.g. we write p in-

stead of p(). We may also define subformulas of a formula as we did for propositional

formulas and terms.

Example 5.1.6. Given a signature (P, F, arity), where P = {child/2, love/2} and
F = {ai/0 : 1 ≤ i ≤ 100}, then T (F ) = F and T (F,X) = F ∪X, because F does

not have any non-constant function symbols. If X = {x, y, z}, the following are

some examples of formulas:
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• ground atoms: child(a2, a1), child(a3, a1), love(a1, a2), ...

• non-ground atoms: child(x, y), loves(y, x), love(z, x), ...

• ground non-atom formulas: ¬child(a3, a4), child(a2, a1) ∨ child(a3, a1),

child(a4, a1)→ love(a1, a4), ...

• general formulas: ¬child(a1, y), ¬child(x, y)∨love(y, x), love(x, y)∨¬love(y, x),
...

2

In these examples, if we replace each atom by a propositional variable, they

become propositional formulas. This is true for all ground formulas. Examples of

formulas with quantifiers are given in the next subsection.

5.1.2 The Quantifiers

What makes first-order logic powerful is that it allows us to make general as-

sertions using quantifiers: Universal quantifier ∀ and existential quantifier ∃. In the

definition of 〈Formulas〉, every occurrence of quantifiers is followed by a variable,

say x, and then followed by a formula, say A. That is, the quantifiers appear in a

formula like either ∀xA or ∃xA; the former says A is held for every value of x and

the latter says A is held for some value of x.

In middle school algebra, when we say + is commutative, we use formula

x+ y = y+ x, here x and y are meant for all values. When solving an equation like

x2 − 3x+ 2 = 0, we try to find some value of x so that the equation holds. In first-

order logic, the two cases are expressed as ∀x∀y (x+y = y+x) and ∃x (x2−3x+2 =

0), respectively.

Example 5.1.7. Continue from Example 5.1.6, if child(x, y) means x is a child of

y, parent(x, y) means x is a parent of y, descen(x, y) means x is a descendant of

y, and love(x, y) means x loves y, then we can write many assertions in first-order

logic. 2

• x is a child of y iff y is a parent of x: ∀x∀y child(x, y)↔ parent(y, x).

• If x is a child of y, then x is a descendant of y: ∀x∀y child(x, y)→ descen(x, y).

• Every parent loves his child: ∀x∀y (parent(x, y)→ love(x, y)).

• Everybody is loved by somebody: ∀x∃y love(y, x).
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• The descendant relation is transitive: ∀x∀y∀z (descen(x, y) ∧ descen(y, z) →
descen(x, z)).

When using ∀ to describe a statement under various conditions, these condi-

tions usually should be the first argument of →. When using ∃ to describe a state-

ment under various conditions, we cannot use imply. For example, let own(x, y)

means “x owns y”, red(x) means “x is red”, toy(x) means “x is a toy”, car(x)

means “x is a car”. Then the statement “Tom loves every red toy he owns” can be

expressed as

∀x (own(Tom, x) ∧ red(x) ∧ toy(x)→ love(Tom, x)).

It is natural to read it as a restricted quantifier: “for everything x, if Tom owns x,

x is red and x is a toy, then Tom loves x.” Of course, if we get rid of → in the

above formula, we have

∀x¬own(Tom, x) ∨ ¬red(x) ∨ ¬toy(x) ∨ love(Tom, x)),

which can be read as ““for everything x, either Tom doesn’t own x, x is not red, x

is not a toy, or Tom loves x.” Note that if we replace→ by ∧ in the above formula,

then it claims that “Tom owns everything”, “everything is red”, “everything is a

toy”, and “Tom loves everything”.

On the other hand, to express “Tom loves one of his red toy cars”, the formula

is

∃x (own(Tom, x) ∧ toy(x) ∧ red(x) ∧ car(x) ∧ love(Tom, x)).

If we replace the last ∧ by → in the above formula, then it claims that there exists

something, denoted by “it”, and one (or more) of the following is true: “Tom doesn’t

own it”, “it is not a toy”, “it is not red”, “it is not a car”, or “Tom loves it”. Since

there are many things that “Tom doesn’t own it”, “it is not a toy”, “it is not red”,

or “it is not a car”, the above formula does not catch the meaning that “Tom loves

one of his red toy cars.”

Definition 5.1.8. In ∀xA or ∃xA, the scope of the variable x is A and every

occurrence of x in A is said be bounded. A variable in A is said to be free if it is

not bounded. A formula A is said to be closed if it has no free variables. A sentence

is a closed formula.

In love(x, y), both x and y are free; in ∃y p(x, y), x is free, y is bounded

(we cannot say “y in p(x, y) is bounded” as “y is free in p(x, y)”); in ∀x∃y p(x, y),
neither x nor y is free; in (∀x q(x)) ∨ r(x), the first occurrence of x is bounded and

the second occurrence of x is free.
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When A represents any formula, we write A(x1, x2, ..., xn) to indicate that the

free variables of A are among x1, x2, ..., xn.

Like propositional formulas, we may use the precedence relation on the logical

operators to avoid writing out all the parentheses in a formula. The precedence

relation used in Chapter 2 is

¬, ∧, ∨, →, {⊕,↔}.

Where to place ∀ and ∃? According to Wikipedia on first-order logic, the quantifiers

can be placed right before →. However, as a common practice, we will place them

at the end, after ↔. That is,

¬, ∧, ∨, →, {⊕,↔}, {∀,∃}.

For example, ∀xA∨B is interpreted as ∀x (A∨B), and we would write (∀xA)∨
to limit the scope of x on A only.

Now, using the predicates and relation symbols, we can create formulas about

the statements mentioned in the beginning of this section:

• ∀x odd(x)↔ ¬even(x): Every natural number is even or odd, but not both.

• ∀x even(s(x))↔ odd(x): A natural number x is odd iff x+ 1 is even.

• ∀xx < s(x) ∧ ¬(x < x): For any natural number x, x < x+ 1 and ¬(x < x).

• ∀x∃y x < y: For every natural number x, there exists a natural number y,

such that x < y.

• ∀x∀y∀z (x < y) ∧ (y < z) → (x < z): For any three natural numbers x, y,

and z, if x < y and y < z, then x < z, that is, < is transitive.

5.1.3 Unsorted and Many-Sorted Logics

First-order languages are generally regarded as unsorted languages. If we look

at its syntax carefully, two sets of objects are defined: 〈Terms〉 and 〈Formulas〉.
Obviously, 〈Formulas〉 are of sort boolean, denoted by Bool = {0, 1}. 〈Terms〉
represent objects of interests, and the set of objects is commonly called the universe

(also called the domain of discourse) of the language. For example, the universe

could use T (F ), the set of ground terms, to represent the universe.

If we use U to denote the sort of 〈Terms〉, for any signature (P, F, arity),

predicate symbol p ∈ P represents a function p : Uarity(p) −→ Bool and function
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symbol f ∈ F represents a function f : Uarity(f) −→ U . The universal and existen-

tial quantifiers range over that universe U . For example, the first-order language

in Example 5.1.6 talks about 100 people living in a certain town, with a relation

love(x, y) to express that x loves y. In such a language, we might express the

statement that “everyone loves someone” by writing ∀x∃y love(x, y).
For many applications, Bool and U are disjoint, like in Examples 5.1.2 and

5.1.6. For some applications, Bool can be regarded as a subset of U . For example,

to model the if-then-else command in a programming language, we may use the

symbol ite : Bool × U × U −→ U . Another example is the function symbol says :

U ×Bool −→ Bool in the Knight and Knave puzzles (Example 2.5.4).

It is not difficult to introduce sorts in first-order logic and this is done by

using unary predicate symbols (arity = 1). In Example 5.1.6, we use ai to stand

for person i. If we need function age(x) to tell the age of person x, we need the

function symbols for natural numbers. If we use those in Example 5.1.2, then

F = {0, s, ai | 1 ≤ i ≤ 100}. In this application, we do need to tell which are

persons and which are numbers by using the following predicate symbols:

• person : U −→ Bool: person(x) is true iff x is a person.

• nat : U −→ Bool: nat(x) is true iff x is a natural number.

person(x) can be easily defined by asserting person(ai) for 1 ≤ i ≤ 100. nat(x) can

also be defined by asserting nat(0) and nat(s(x)) ≡ nat(x).

Now, to state general properties as in Examples 5.1.2 and 5.1.6, we have to

put restrictions on the variables. For example, to express “everybody is loved by

somebody”, the formula now is

∀x∃y person(x) ∧ person(y)→ love(y, x).

To say “<” is transitive on natural numbers, we use

∀x, y, z nat(x) ∧ nat(y) ∧ nat(z) ∧ (x < y) ∧ (y < z)→ (x < z).

Dealing with such unary predicates is tedious. To get rid of such clumsy,

people introduce “sorts”. Let

Person = {x | person(x) ∧ x ∈ U}
Nat = {x | nat(x) ∧ x ∈ U}

Then define love : Person2 −→ Bool and <: Nat2 −→ Bool and the formulas

become neat again: We do not need person(x), nat(x), etc., in the formula. For
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the age function, we have age : Person −→ Nat. That is the birth of many-sorted

logic, which is a mild extension of first-order logic.

The idea of many-sorts is based on set theory, where each sort is a set of similar

objects. Sets are usually defined by unary predicates. From a logician’s viewpoint,

a set S = {x | p(x)} and a predicate p(x) have the same meaning. In many-sorted

logic, one can have different sorts of objects — such as persons and natural numbers

— and a separate set of variables ranging over each. Moreover, the specification

of function symbols and predicate symbols indicates what sorts of arguments they

expect (the domain), and, in the case of function symbols, what sort of value they

return (the range). The concept of signature is extended to contain the domain and

range information of each function and predicate symbol.

Many-sorted logic can reflect formally our intention not to handle the universe

as a collection of objects, but to partition it in a way that is similar to types in

programming languages. This partition can be carried out on the syntax level:

substitution of variables can be done only accordingly, respecting the “sorts”.

5.2 Semantics

We should be aware that, at this stage, all the function and predicate symbols

are just symbols. In propositional logic, a symbol p can represent “Tom runs fast”,

or “Mary is tall”. The same holds true in first-order logic as we may give different

meaning to a symbol.

In Example 5.1.7, we have seen the following two formulas:

• ∀x∀y (child(x, y)→ descen(x, y)).

• ∀x∀y (parent(x, y)→ love(x, y)).

The first formula says “if x is a child of y, then x is a descendant of y”; the second

says “every parent loves his child.” What is the difference between them? They

differ only on predicate symbols. If we give different meanings to the predicate

symbols, one can replace the other. That is, we have designed the language with

a certain interpretation in mind, but one could also interpret the same formula

differently.

In this section, we will spell out the concepts of interpretations, models, sat-

isfiable or valid formulas, as an extension of these concepts of propositional logic.

5.2.1 Interpretation

For propositional logic, an interpretation is an assignment of propositional

variables to truth values. For a first-order language L = (P, F,X,Op), we need an
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interpretation for every symbol of L.

Definition 5.2.1. Given a closed formula A of L = (P, F,X,Op), an interpretation

of A is a triple I = (D,R,G), where

• D is a non-empty set called the universe of I, often denoted by DI .

• For each predicate symbol p ∈ P of arity k, there is a k-ary relation rp ∈ R

over D, rp ⊆ Dk, denoted by rp = pI . If k = 0, then p is a proposiitonal

variable and pI is either 1 or 0, a truth assignment to p.

• For each function symbol f ∈ F of arity k, there is a function g : Dk −→ D ∈
G, denoted by g = f I . If k = 0, then f I ∈ D.

Example 5.2.2. Consider L = (P, F,X,Op), where P = {p/2}, F = {a/0}, and
X = {x}. Then for the formula A = ∀x p(a, x), we may have the following inter-

pretations: 2

1. I1 = (N , {≤}, {0}) and the meaning of A is “for every natural number x,

0 ≤ x.”

2. I2 = (N , {|}, {1}), x|y returns true iff x divides y, and the meaning of A is

“for every natural number x, 1 | x.”

3. I3 = ({0, 1}3, {prefix}, {ϵ}), prefix(x, y) returns true iff x is a prefix of y, the

meaning of A is “for every binary string x of length 3, the empty string ϵ is a

prefix of x.”

4. I4 = (P(N ), {⊆}, {∅}), P(N ) is the power set of N , and the meaning of A is

“for every subset x of natural numbers, ∅ ⊆ x.”

5. I5 = (V, {E}, {a}), where V = {a, b, c}, E = {(a, a), (a, b), (a, c), (c, c)}, G =

(V,E) is a graph, and the meaning of A is “for every vertex x ∈ V , there is

an edge (a, x) ∈ E.”

In propositional logic, once we have an interpretation, we may use a procedure

like eval (Algorithm 2.2.4) to obtain the truth value of a formula. We can do the

same in first-order logic, provided that we have a way of handling free variables and

quantifiers in the formula.

Let free(A) be the free variables of formula A. Given a universe D, an

assignment is a mapping θ : free(A) −→ D, which maps each free variable of A to

an element of D. The purpose of θ is that, during the evaluation of a formula under

an interpretation, if we see a free variable x, we will use the value θ(x) for x.
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Procedure 5.2.3. The procedure eval takes a formula or a term A, with or without

free variables, in L = (P, F,X,Op), an interpretation I for L, and an assignment

θ : free(A) −→ DI , and returns a Boolean value for a formula and an element of

DI for a term.

proc eval(A, I, θ)

if A = > return 1; // 1 means true

if A = ⊥ return 0; // 0 means false

if A ∈ X return θ(A); // A is a free variable

if A = f(t1, t2, ..., tk) return f I(t′1, t
′
2, ..., t

′
k), where t′i = eval(ti, I, θ);

if A = ¬B return ¬eval(B, I, θ);

if A = (B op C) return eval(B, I, θ) op eval(C, I, θ), where op ∈ Op;

if A = (∀xB) return allInD(B, I, θ, x,DI);

if A = (∃xB) return someInD(B, I, θ, x,DI);

else return “unknown”;

Procedure allInD(B, I, θ, x, S) takes formula B, interpretation I, assignment

θ, free variable x in B, and S ⊆ D, evaluates the value of B under I and θ∪{x ↼ d}
for every value d ∈ S. If eval(B, I, θ ∪ {x ↼ d}) returns 0 for one d ∈ DI , return 0;

otherwise, return 1.

proc allInD(B, I, θ, x, S)

if S = ∅ return 1;

pick d ∈ S;

if (eval(B, I, θ ∪ {x ↼ d}) = 0) return 0;

return allInD(B, I, θ, x, S − {d});

Procedure someInD(B, I, θ, x, S) works in the same way as allInD, except

that if one of the evaluations, eval(B, I, θ∪{x ↼ d}), return 1, return 1; otherwise,

return 0.

proc someInD(B, I, θ, x, S)

if S = ∅ return 0;

pick d ∈ S;

if (eval(B, I, θ ∪ {x ↼ d}) = 1) return 1;

return someInD(B, I, θ, x, S − {d});

Proposition 5.2.4. Given a formula A of L = (P, F,X,Op), an interpretation I,

and an assignment θ : free(A) −→ DI , eval(A, I, θ) will return a boolean value; if

t is a term appearing in A, then eval(t, I, θ) will return a value of DI .
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Proof. (sketch) Let D be DI . We do induction on the tree structure of A. The

base cases when A or t are symbols of arity 0 are trivial. If t = f(t1, t2, ..., tk) is

a term in A, the returned value is f I(t′1, t
′
2, ..., t

′
k) ∈ DI because f I : Dk −→ D

is a function over D. If A is an atom p(t1, t2, ..., tk), where p ∈ P , then pI is a

relation and pI(t′1, t
′
2, ..., t

′
k) = 1 iff (t′1, t

′
2, ..., t

′
k) ∈ pI by our assumption. That is,

pI(t′1, t
′
2, ..., t

′
k) is boolean. For non-atom formulas, the returned values are always

boolean as shown by the next proposition. 2

From now on, we will denote eval(A, I, θ) by I(A, θ) and eval(A, I, ∅) by I(A)

for brevity.

Proposition 5.2.5. For formulas A and B, interpretation I, and assignment θ,

• I(¬A, θ) = ¬I(A, θ);

• I(A ∨B, θ) = I(A, θ) ∨ I(B, θ);

• I(A ∧B, θ) = I(A, θ) ∧ I(B, θ);

• I(A⊕B, θ) = I(A, θ)⊕ I(B, θ);

• I(A↔ B, θ) = I(A, θ)↔ I(B, θ);

• I(∀xB(x), θ) = allInD(B(x), I, θ, x,DI);

• I(∃xB(x), θ) = someInD(B(x), I, θ, x,DI).

From the definition of eval, it is easy to check that the above proposition

holds. Obviously, eval cannot be an algorithm because allInD will not terminate

when DI is infinite. We present eval as a procedure because we assume that the

reader is familiar with algorithms. We need other tools such as induction to evaluate

a formula when the universe of the interpretation is infinite. When DI is finite, the

termination of eval is easy to establish.

Example 5.2.6. For I5 in Example 5.2.2, I5(∀x p(a, x)) will call allInD with pa-

rameters (p(a, x), I5, ∅, x, {a, b, c}), which will call eval three times, with θ = {x ↼

a}, {x ↼ b}, and {x ↼ c}, respectively. Since E contains (a, x) for x ∈ {a, b, c}, all
the evaluations return 1. The returned result can be expressed as

I5(∀x p(a, x)) =
∧

d∈{a,b,c}

I5(p(a, x), {x ↼ d})

2
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We can do the same for all the interpretations in Example 5.2.2. In general,

I(∀xB(x), θ) =
∧

d∈DI

I(B(x), θ ∪ {x ↼ d})

which catches the meaning that “I(∀xB(x), θ) returns 1 iff B(x) is evaluated to be

1 under I and θ ∪ {x ↼ d} for every value d ∈ D”.

Similarly, we have the following notation for I(∃xB(x), θ), which is equal to

someInD(B(x), I, θ, x,D):

I(∃xB(x), θ) =
∨

d∈DI

I(B(x), θ ∪ {x ↼ d})

which catches the meaning that “I(∃xB(x), θ) returns 1 iff B(x) is evaluated to be

true under I and θ ∪{x ↼ d} for some value d ∈ DI”. These notations will help us

to understand quantified formulas and establish their properties. Note that if the

domain DI is empty, then I(∀xB(x), θ) = 1 and I(∃xB(x), θ) = 0.

5.2.2 Models, Satisfiability, and Validity

Here are just straightforward extensions from propositional logic to first-order

logic. Recall that a sentence is a closed formula.

Definition 5.2.7. Given a sentence A and an interpretation I, I is said to be a

model of A if I(A) = 1. If A has a model, A is said to be satisfiable.

For a propositional formula, the number of models is finite; for a first-order

formula, the number of models is infinite in general, because we have an infinite

number of choices for domains, relations, and functions in an interpretation. How-

ever, we can still borrow the notationM(A) from propositional logic.

Definition 5.2.8. Given a closed formula A, letM(A) be the set of all models of A.

IfM(A) = ∅, A is said to be unsatisfiable; ifM(A) contains every interpretation,

i.e., every interpretation is a model of A, then A is said to be valid.

With the identical definitions from propositional logic to first-order logic, the

following result is expected.

Proposition 5.2.9. Every valid propositional formula is a valid formula in first-

order logic, and every unsatisfiable propositional formula is unsatisfiable in first-

order logic.

Of course, there are more valid formulas in first-order logic and our attention

is on formulas with quantifiers.
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Example 5.2.10. Let us check some examples: 2

1. A1 = ∀x (p(a, x)→ p(a, a)).

Consider I = ({a, b}, {p}, {a}), where pI = p = {〈a, a〉}, aI = a, I(A1) = 1

because pI(a, a) = 1 and

I(A1) =
∧

d∈{a,b} I(p(a, x)→ p(a, a)), {x ↼ d})
= I(p(a, a)→ p(a, a)) ∧ I(p(a, b)→ p(a, a))
= 1 ∧ (pI(a, b)→ pI(a, a))
= 1

Let I ′ = ({a, b}, {{〈a, b〉}}, {a}), then I ′(A1) = 0 because pI
′
(a, a) = 0 and

pI
′
(a, b) = 1 imply that I ′(p(a, b) → p(a, a)) = 0. I ′(A1) = I ′(p(a, a) →

p(a, a)) ∧ I ′(p(a, b) → p(a, a)) = 1 ∧ 0 = 0. Thus A1 is satisfiable but not

valid.

2. A2 = (∀x p(a, x))→ p(a, a).

A2 is different from A1 because the scopes of x are different in A1 and A2. For

any interpretation I, we consider the truth value of pI(aI , aI). If pI(aI , aI) = 1,

then I(A2, ∅) = 1. If pI(aI , aI) = 0, then I(∀x p(a, x)) = 0 because x will take

on value aI . So I(A2) = 1 in any case. Since I is arbitrary, A2 must be valid.

3. A3 = ∃x∃y (p(x) ∧ ¬p(y)).
Consider I = ({a, b}, {p}, ∅), where p(a) = 1 and p(b) = 0, then p(a)∧¬p(b) =
1. From I(p(x) ∧ ¬p(y), {x ↼ a, y ↼ b}) = 1, we conclude that I is a model

of A3. A3 is false in any interpretation whose domain is empty or contains a

single element. Thus, A3 is not valid.

Definition 5.2.11. Let A(x) be a formula where x is a free variable of A. Then

A(t) denotes the formula A(x)[x ↼ t], where every occurrence of x is replaced by

term t. The formula A(t) is called an instance of A(x) by substituting x for t

(ref. Definition 2.1.3).

We will use substitutions extensively in the next chapter. The substution θ :

X −→ D used in the evalutation procedure eval coincides with the above definition

if D = T (F ) (the set of ground terms built on F ). That is, for any interpretation

I = (D,R,G) of L = (P, F,X,Op), if D = T (F ), then I(A(x), {x ↼ d}) = I(A(d)),

i.e., eval(A(x), I, {x ↼ d}) = eval(A(d), I, ∅), where x ∈ X, d ∈ T (F ), and A(d) =

A(x)[x ↼ d].

Proposition 5.2.12. For any formula A(x), where x is a free variable of A and

variable y does not appear in A(x), ∀xA(x) ≡ ∀y A(y) and ∃xA(x) ≡ ∃y A(y).
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Proof. For any interpretation I,

I(∀xA(x)) =
∧

d∈D I(A(x), {x ↼ d})
I(∀y A(y)) =

∧
d∈D I(A(y), {y ↼ d})

The variable x serves as a placeholder in A(x), just like y serves as the same place-

holder in A(y), to tell eval when to replace x or y by d. Any distinct name can be

used for this placeholder, thus I(∀xA(x), θ) = I(∀y A(y), θ). Since I is arbitrary, it

must be the case that ∀xA(x) ≡ ∀y A(y). The proof for the second part is identical.

2

The above proposition allows us to change the names of bounded variables

safely, so that different variables are used for each occurrence of quantifiers. For

example, it is better to replace ∀x p(x)∨∃x q(x, y) by ∀x p(x)∨∃z q(z, y), to improve

the readability.

We will keep the convention that a set S of formulas denotes the conjunction of

the formulas appearing in the set. If every formula is true in the same interpretation,

then the set S is said to be satisfiable and the interpretation is its model.

Example 5.2.13. Let S = {∀x∃y p(x, y),∀x¬p(x, x),∀x∀y∀z p(x, y) ∧ p(y, z) →
p(x, z)}. The second formula states that “p is irreflexive”; the third formula says

“p is transitive”.

Consider the interpretation I = ({N}, {<}, ∅), it is easy to check that I is

a model of S, because < is transitive and irreflexive, i.e., ¬(x < x), and for every

x ∈ N , there exists x+ 1 ∈ N such that x < x+ 1.

Does S has a finite model, i.e., a model in which the universe is finite? If S

has a finite model, say I = (D, {rp}, ∅), where |D| = n, consider the directed graph

G = (D, rp), then G cannot have any cycle, because, if there exists a cycle, then

there exists a path from a vertex in the cycle to itself. If there exists a path from a

to b in G, there must exist an edge from a to b, because rp is transitive. We cannot

have an edge from a vertex to itself because rp is irreflexive. For a vertex x at the

end of a path, we cannot find another vertex y satisfying ∀x∃y p(x, y). Hence, S

cannot have any finite model. 2

5.2.3 Entailment and Equivalence

The following two definitions are copied from Definitions 2.2.13 and 2.2.17.

Definition 5.2.14. Given two formulas A and B, we say A entails B, or B is a

logical consequence of A, denoted by A |= B, ifM(A) ⊆M(B).
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To denote that A is valid, we can simply write |= A.

Definition 5.2.15. Given two formulas A and B, A and B are said to be logically

equivalent ifM(A) =M(B), denoted by A ≡ B.

With the same definitions, we have the same results for first-order logic.

Theorem 5.2.16. For any two formulas A and B, (a) A |= B iff A→ B is valid;

and (b) A ≡ B iff A↔ B is valid.

The substitution theorem from propositional logic still holds in first-order

logic.

Theorem 5.2.17. For any formulas A, B, and C, where B is a subformula of A,

and B ≡ C, then A ≡ A[B ↼ C].

Proposition 5.2.18. Let A(x), B(x), and C(x, y) be the formulas with free vari-

ables x and y.

1. ¬∀xA(x) ≡ ∃x¬A(x)

2. ¬∃xA(x) ≡ ∀x¬A(x)

3. ∀xA(x) ∧B(x) ≡ (∀xA(x)) ∧ (∀xB(x))

4. ∃xA(x) ∨B(x) ≡ (∃xA(x)) ∨ (∃xB(x))

5. (∀xA(x)) ∨B ≡ ∀xA(x) ∨B if x is not free in B

6. (∃xA(x)) ∧B ≡ ∃xA(x) ∧B if x is not free in B

7. ∀x∀y C(x, y) ≡ ∀y∀xC(x, y)

8. ∃x∃y C(x, y) ≡ ∃y∃xC(x, y)

Proof. We give the proofs of 1, 3, 5, and 7, and leave the rest as exercises.

1. Consider any interpretation I, using de Morgan’s law, ¬(A∧B) ≡ ¬A∨¬B,

I(¬∀xA(x))
= ¬I(∀xA(x))
= ¬

∧
d∈DI I(A(x), {x ↼ d})

=
∨

d∈DI ¬I(A(x), {x ↼ d})
=

∨
d∈DI I(¬A(x), {x ↼ d})

= I(∃x¬A(x)).
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Because I is arbitrary, the equivalence holds.

3. Consider any interpretation I = (D,R,G), using the commutativity and

associativity of ∧,

I(∀xA(x) ∧B(x))
=

∧
d∈D I(A(x) ∧B(x), {x ↼ d})

=
∧

d∈D I(A(x), {x ↼ d}) ∧ I(B(x), {x ↼ d})
= (

∧
d∈D I(A(x), {x ↼ d})) ∧ (

∧
d∈D I(B(x), {x ↼ d}))

= I(∀xA(x)) ∧ I(∀xB(x))
= I((∀xA(x)) ∧ (∀xB(x)))

Because I is arbitrary, the equivalence holds.

5. In the following proof, we assume that x does not appear in B. Consider

any interpretation I = (D,R,G), using the distribution law of ∨ over ∧,

I((∀xA(x)) ∨B)
= I(∀xA(x)) ∨ I(B)
= (

∧
d∈D I(A(x), {x ↼ d})) ∨ I(B)

=
∧

d∈D(I(A(x), {x ↼ d}) ∨ I(B))
=

∧
d∈D(I(A(x), {x ↼ d}) ∨ I(B, {x ↼ d}))

=
∧

d∈D I(A(x) ∨B, {x ↼ d})
= I(∀xA(x) ∨B)

Because I is arbitrary, the equivalence holds.

7. Consider any interpretation I = (D,R,G), using the commutativity and

associativity of ∧,

I(∀x∀y C(x, y))
=

∧
d∈D I(∀y C(x, y), {x ↼ d})

=
∧

d∈D(
∧

e∈D I(C(x, y), {x ↼ d, y ↼ e}))
=

∧
e∈D(

∧
d∈D I(C(x, y), {x ↼ d, y ↼ e}))

=
∧

e∈D I(∀xC(x, y), {y ↼ e})
= I(∀y∀xC(x, y))

Because I is arbitrary, the equivalence holds. 2

Example 5.2.19. Consider ∃x∀y p(x, y) and ∀y∃x p(x, y). If p(x, y) stands for “x

loves y”, then the former means “there exists somebody who loves everyone”, but

the latter means “everyone is loved by somebody”. Obviously, the two are not

equivalent. To show

∃x∀y p(x, y) |= ∀y∃x p(x, y),
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consider any model I = (D,R,G) of ∃x∀y p(x, y). There must exists d ∈ D such

that I(∀y p(x, y), {x ↼ d}) = 1. Then ∀y∃x p(x, y) must be true in I:

I(∀y∃x p(x, y), ∅)
=

∧
e∈D I(∃x p(x, y), {y ↼ e})

=
∧

e∈D I(p(x, y), {y ↼ e, x ↼ d})
= I(∀y p(x, y), {x ↼ d})
= 1

2

To formally show that the two formulas are not equivalent, we need to provide

a model in which one is true and the other is false.

Example 5.2.20. Let us prove that (∃x p(x))→ ∀y q(y) and ∀x p(x)→ q(x) are not

equivalent. Let I = ({a, b}, {rp, rq}, ∅) where rp(a) = rq(a) = 1 and rp(b) = rq(b) =

0. Then I(∃x p(x)) = 1 and I(∀y q(y)) = 0. So I((∃x p(x)) → ∀y q(y)) = 0. On

the other hand, I(∀x p(x) → q(x)) = 1 because rp = rq, thus I(p(x) → q(x), {x ↼

d}) = 1. Hence, (∃x p(x))→ ∀y q(y) and ∀x (p(x)→ q(x)) are not equivalent. 2

Example 5.2.21. We may use known equivalence relations to show ∃xA(x) →
B(x) ≡ (∀xA(x))→ ∃xB(x).

∃xA(x)→ B(x)
≡ ∃x¬A(x) ∨B(x) //A→ B ≡ ¬A ∨B
≡ (∃x¬A(x)) ∨ ∃xB(x) //Proposition 5.2.18 4.
≡ ¬(∀xA(x)) ∨ ∃xB(x) //Proposition 5.2.18 1.
≡ (∀xA(x))→ ∃xB(x) //A→ B ≡ ¬A ∨B

2

5.3 Proof Methods

In Chapter 3, we introduced various proof systems for propositional logic:

semantic tableau, natural deduction, resolution, etc. All these systems can be ex-

tended to first-order logic. In this section, we briefly introduce the extensions of

semantics tableau and natural deduction to first-order logic and leave resolution to

the next chapter.
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5.3.1 Semantic Tableau

Semantic tableau as given in Chapter 3 transforms a propositional formula

into DNF by a set of α-rules (which handle conjunctions and generate one child in

the tableau and β-rules (which handle disjunctions and generate two children in the

tableau. These rules will be inherited for first-order logic. Keep in mind that the

rules apply to the top logical operators in a formula in a leaf node of the tableaux.

α α1, α2

A ∧B A,B
¬(A ∨B) ¬A,¬B
¬(A→ B) A,¬B
¬(A⊕B) (A ∨ ¬B), (¬A ∨B)
A↔ B (A ∨ ¬B), (¬A ∨B)
¬(A ↑ B) A,B
A ↓ B ¬A,¬B
¬¬A A

β β1 β2

¬(A ∧B) ¬A ¬B
A ∨B A B
A→ B ¬A B
A⊕B A,¬B ¬A,B
¬(A↔ B) A,¬B ¬A,B
A ↑ B ¬A ¬B
¬(A ↓ B) A B

To handle the quantifiers, we introduce two rules, one for the universal quan-

tifier, called the ∀-rule, and one for the existential quantifier, called the ∃-rule.

Definition 5.3.1. The ∀-rule is an inference rule:

(∀) ∀xA(x)
A(t)

t is a ground term

The ∀-rule works as follows: if ∀xA(x) appears in a leaf node n, we create a

child node n′ of n, copy every formula of n into n′, and add A(t) into n′, where t is

a ground term (without variables) appearing in n. If n′ does not have any ground

term, we may introduce a new constant as t.

We emphasize that the ∀-rule is an inference rule, not a simplification rule,

because it creates and adds something, not replacing ∀xA(x) by something. Because

of the ∀-rule, we may not be able to show the termination of the semantic tableau

method.

Definition 5.3.2. The ∃-rule is a simplification rule:

(∃) ∃xA(x)
A(c)

c is a new constant

The ∃-rule works as follows: if ∃xA(x) appears in a leaf node n, we create

a child node n′ of n, copy every formula of n into n′, and replace ∃xA(x) in n′
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by A(c). Later after you finish reading this chapter, you will know that the new

constant is called Skolem constant, to remember Skolem’s contribution to logic.

If the formulas are not in NNF (negation normal form), we also need the

¬∃-rule, which is also an inference rule:

(¬∃) ¬∃xA(x)
¬A(t)

t is a ground term

and the ¬∀-rule, which is a simplification rule:

(¬∀) ¬∀xA(x)
¬A(c)

c is a new constant

Example 5.3.3. To show (∃x∀y p(x, y))→ ∀y∃x p(x, y) is valid by semantic tableaux,

we show that the negation of the formula has a closed tableau.

ϵ : ¬((∃x∀y p(x, y))→ ∀y∃x p(x, y)) α ¬ →
1 : ∃x∀y p(x, y), ¬∀y∃x p(x, y) ∃
11 : ∀y p(c1, y), ¬∀y∃x p(x, y) ¬∀
111 : ∀y p(c1, y), ¬∃x p(x, c2) ∀
1111 : ∀y p(c1, y), ¬∃x p(x, c2), p(c1, c2) ¬∃
11111 : ∀y p(c1, y), ¬∃x p(x, c2)), p(c1, c2), ¬p(c1, c2) closed

2

Example 5.3.4. Let A be B∧C∧∧(∀x∀y ¬q(x)∨¬q(y)) where B = (∀x p(x, s(x)))
and C = (∀x∀y q(x) ∨ q(y)). If we choose to work on q first, we will find a closed

tableau for A, thus A is unsatisfiable. 2

ϵ : B ∧ C ∧ (¬∃x q(x)) α∧
1 : B,C ∧ (¬∃x q(x)) α∧
11 : B,C, (¬∃x q(x)) ∀
111 : B,C, (¬∃x q(x)), (∀y q(c) ∨ q(y)), ∀
1111 : B,C, (¬∃x q(x)), (∀y q(c) ∨ q(y)), q(c) ∨ q(c), ¬∃
11111 : B,C, (¬∃x q(x)), (∀y q(c) ∨ q(y)), q(c) ∨ q(c),¬q(c), β∨
111111 : B,C, (¬∃x q(x)), (∀y q(c) ∨ q(y)), q(c),¬q(c), closed
111112 : B,C, (¬∃x q(x)), (∀y q(c) ∨ q(y)), q(c),¬q(c), closed

If we choose to work on p first, then the tableau will never terminate:

ϵ : (∀x p(x, s(x))), (∀x∀y q(x) ∨ q(y)), (¬∃x q(x)) ∀
1 : (∀x p(x, s(x))), ..., p(c, s(c)), ∀
11 : (∀x p(x, s(x))), ..., p(c, s(c)), p(s(c), s(s(c))) ∀
111 : (∀x p(x, s(x))), ..., p(c, s(c)), p(s(c), s(s(c))), p(s(s(c)), s(s(s(c)))) ∀
1...1 : ...
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This example shows clearly that the nondeterminism in the application of

the rules (i.e., choosing a leaf node, choosing a rule, or choosing a term in the ∀
rule) does matter for obtaining a closed tableau. If we use a fair strategy for the

application of the rules, then a closed tableau is guaranteed to be found when the

input formula is unsatisfiable, as indicated by the following result (without a proof).

Theorem 5.3.5. A formula A is unsatisfiable iff A has a closed tableau, which can

be found by a fair strategy.

5.3.2 Natural Deduction

In natural deduction for propositional logic, we have an introduction rule and

an elimination rule for each logical operator. These rules will be inherited, plus the

new rules for the quantifiers over the sequents:

op introduction elimination
∀ (A(x) | α) ` (∀y A(x) | α) (∀xA(x) | α) ` (A(t) | α)
∃ (A(t) | α) ` (∃xA(x) | α) (∃xA(x) | α) ` (A(c) | α)

where x and y are variables, t is a term and c is a new constant. From these rules, we

can see that free variables have the same function as universally quantified variables.

We use two examples to illustrate these rules.

Example 5.3.6. Let A = {∀x p(x),∀x q(x)}. A proof of A |= ∀y p(y) ∧ q(y) in

natural deduction is given below. 2

1. (∀x p(x)) assumed
2. (∀x q(x)) assumed
3. (p(y)) ∀E from 1
4. (q(y)) ∀E from 2
5. (p(y) ∧ q(y)) ∧I from 3, 4
6. (∀y p(y) ∧ q(y)) ∀I from 5

By Theorem 5.2.16, (∀x p(x) ∧ (∀x q(x))→ ∀y p(y) ∧ q(y) is valid.

Example 5.3.7. Show that (∃x p(x) ∨ q(x)) |= (∃x p(x)) ∨ (∃x q(x)) in natural

deduction. 2

1. (∃x p(x) ∨ q(x)) assumed
2. (p(c) ∨ q(c)) ∃E from 1
3. (p(c) | q(c)) ∨E from 2
4. (∃x p(x) | q(c)) ∃I from 3
5. (∃x p(x) | (∃x q(x))) ∃I from 4
6. (∃x p(x) ∨ (∃x q(x))) ∨I from 5
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By Theorem 5.2.16, (∃x p(x) ∨ q(x))→ ((∃x p(x)) ∨ (∃x q(x))) is valid.

5.4 Conjunctive Normal Form

We just introduced an extension of semantic tableau and natural deduction to

first-order logic and illustrated the use of these two methods for proving theorems in

first-order logic. In practice, these two methods are not as effective as the resolution

method, which is the focus of the next chapter.

Recall that in propositional logic, the resolution is a refutational method and

the input formula must be in clausal form. This is still true for first-order logic. In

this section, we discuss how to convert first-order formulas into clausal form.

Definition 5.4.1. In first-order logic, a literal is either an atom (positive literal)

or the negation of an atom (negative literal); a clause is a disjunction of literals; a

formula is in CNF if it is a conjunction of clauses.

From the definition, if we replace each atom in a clause by a propositional

variable, we obtain a clause in propositional logic. Since clauses use only three

logical operators, i.e., ¬, ∨ and ∧, we need to get rid of →, ↔, ⊕, etc., as we did

in propositional logic. We also need to get rid of quantifiers and we will talk about

it now.

5.4.1 Prenex Normal Form

Definition 5.4.2. A formula A is in prenex normal form (PNF) if

A = Q1x1Q2x2 · · ·QkxkB(x1, x2, ..., xk),

where Qi ∈ {∀,∃}, and B does not contain any quantifiers.

The idea of prenex normal form is to move all the quantifiers to the top of the

formula. For example, ∀x∀y p(x, y)∨ q(x) is a PNF but ∀x(∀y p(x, y))∨ q(x) is not.
To make the discussion easier, we assume that the formulas contain only ¬, ∧,

∨, plus the two quantifiers, as operators. A quantifier which is not at the top must

have another operator immediately above it: in this case the operator will be one

of the three operators: ¬, ∧ or ∨. Since the quantifier can be in either parameter

position of ∧ or ∨, and there are two quantifiers, there are 10 cases to consider.

If we consider ∧ and ∨ are commutative, we need six rules, which are provided in

Proposition 5.2.18:
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Equivalence Rules for PNF

1. ¬∀xA(x) ≡ ∃x¬A(x)

2. ¬∃xA(x) ≡ ∀x¬A(x)

3. (∀xA(x)) ∧B ≡ (∀xA(x) ∧B) if x is not free in B

4. (∀xA(x)) ∨B ≡ (∀xA(x) ∨B) if x is not free in B

5. (∃xA(x)) ∧B ≡ (∃xA(x) ∧B) if x is not free in B

6. (∃xA(x)) ∨B ≡ (∃xA(x) ∨B) if x is not free in B

where the arguments of ∨ and ∧ can be switched.

To meet the condition that “x is not free in B”, it is necessary first to rename

all the quantified variables so that no variable appears more than once following a

quantifier.

In Chapter 2, we introduced the concept of “negation normal form”, where

the negation appears only in literals. Using the first two of the above rules plus

de Morgan’s laws and the double negation law, we may push the negation down,

until all negations appear in literals. The resulting formulas are also said to be in

negation normal form (NNF), a straightforward extension from propositional logic.

Proposition 5.4.3. Every first-order formula can be transformed into an equivalent

formula in NNF.

Example 5.4.4. Given the following formula

(∀x∃y p(x, y)) ∧ ¬(∀x∀y q(x, y) ∧ q(y, x)),

we may choose to rename the variable names first so that every quantified variable

has a different name:

(∀x∃y p(x, y)) ∧ ¬(∀z∀w q(z, w) ∧ q(w, z))

Applying equivalence rule 1 twice,

(∀x∃y p(x, y)) ∧ ∃z∃w¬(q(z, w) ∧ q(w, z))

Now we may apply the deMorgan’s law to get

(∀x∃y p(x, y)) ∧ ∃z∃w¬q(z, w) ∨ ¬q(w, z))
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which is in NNF; this step is not required for obtaining PNF. We have two options

now: either choose equivalence rule 3 or rule 5. To use rule 3, we have

∀x (∃y p(x, y)) ∧ ∃z∃w¬q(z, w) ∨ ¬q(w, z))

To apply rule 5 three times, we have

∀x∃y∃z∃w p(x, y) ∧ (¬q(z, w) ∨ ¬q(w, z)),

which is a PNF. 2

Note that the order of quantified variables in this formula is xyzw. There

are five other possible outcomes where the order is xzyw, xzwy, zxyw, zxwy, or

zwxy. If we are allowed to switch the quantifiers of the same type (the last two in

Proposition 5.2.18), we obtain more equivalent formulas where the order is xywz,

xwyz, xwzy, wxyz, wxzy, or wzxy. These formulas are all equivalent as we use the

equivalence relations in obtaining PNF.

Proposition 5.4.5. Every first-order formula can be transformed into an equivalent

PNF.

Proof. By Proposition 5.2.12, renaming quantifiers variable names preserve the

equivalence. The equivalence rules for PNF are terminating (an exercise prob-

lem) and preserve the equivalence. Apply these rules repeatedly, we will obtain the

desired result. 2

5.4.2 Skolemization

Skolemization is the process in which we remove all the quantifiers, both

universal and existential, leaving a formula with only free variables. This process is

made easier by having the original formula in prenex normal form, and we assume

this in this section.

Removing the universal quantifiers while preserving meaning is easy since we

assume that the meaning of a free variable is the same as a universally quantified

variable: The formula will be true for any value of a free variable. We need only to

discard the universal quantifiers from a PNF.

Doing the same for an existentially quantified variable is not possible because

a free variable can have only one meaning. The key idea is to introduce a new

function to replace that variable. These are called Skolem functions. When the

function are nullary they are called Skolem constants.
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Example 5.4.6. Consider the formula ∀x∃y y2 ≤ x ∧ ¬(y + 1)2 ≤ x. This asserts

the existence of a maximal number y whose square is no more than x for any value

of x. We may drop the quantifier ∀ so that x becomes free and keep the meaning

of the formula. The same effect could be achieved by asserting the existence of a

function f , depending on x, satisfying

f(x)2 ≤ x ∧ ¬(f(x) + 1)2 ≤ x.

The function f is indeed a Skolem function. We might then use our knowledge of

algebra to prove that f(x) = b
√
xc, but this is beyond the scope of our present

concerns. 2

In general, the parameters to a Skolem function will be free variables, which

have the same meaning as universally quantified variables, thus allowing a different

value for each different values of free variables.

Algorithm 5.4.7. Sko(A) takes as input a formula A and returns a formula without

a formula without quantifiers. Procedure PrenexNF(A) will return a formula in PNF

and equivalent to A. free(B) returns the list of free variables in B.

proc Sko(A)

1 A := PrenexNF(A);

2 while A has a quantifier do

3 if (A = ∃xB) A := B[x ↼ f(free(B))]; // f is a new Skolem function

4 else if (A = ∀xB) A := B;

5 return A;

In the algorithm Sko(A), we see that a formula is first converted into PNF,

then each quantifier is peeled off from left to right, until they are all eliminated.

Example 5.4.8. In Example 5.4.4, let

A = ∀x∃y∃z∃w p(x, y) ∧ (¬q(z, w) ∨ ¬q(w, z)),

then Sko(A) = p(x, f1(x)) ∧ (¬q(f2(x), f3(x)) ∨ ¬q(f3(x), f2(x))). For

B = ∃z∃w∀x∃y p(x, y) ∧ (¬q(z, w) ∨ ¬q(w, z)),

Sko(B) = p(x, f3(x)) ∧ (¬q(c1, c2) ∨ ¬q(c2, c1)). We know that A ≡ B. Sko(A) 6≡
Sko(B), however, because they contain different function symbols. 2
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The above example illustrates that Skolemization does not preserve the equiv-

alence. The Skolemization process, applied to a formula in prenex normal form,

terminates with a weakly equivalent formula. To see that the process terminates

is easy, since the process of converting a formula into PNF is terminating and the

number of quantifiers is reduced in the body of the while loop of Sko(A). The loop

continues while a quantifier remains at the top of the formula, so the final formula

will have no quantifiers. The input and output formulas are not necessarily equiv-

alent, but their meanings are closely related, and we will capture this relationship

with the notion “equally satisfiable”.

Recall that in propositional logic (Definition 3.3.6), we say two formulas, A

and B, are equally satisfiable, denoted by A ≈ B, ifM(A) = ∅ wheneverM(B) = ∅
and vice versa. This relation is weaker than the logical equivalence, which requires

M(A) =M(B). We will reuse ≈ for first-order formulas.

It is easy to see that elimination of universal quantifiers preserves equivalence.

The difficulties arise with the introduction of Skolem functions/constants.

Lemma 5.4.9. Let A be ∀x∃y B(x, y). Then there exists a function f(x) such that

(a) ∀xB(x, f(x)) |= A; and (b) ∀xB(x, f(x)) ≈ A.

Proof. (a): For any model I of ∀xB(x, f(x)), and for every d ∈ DI , it must be the

case that I(B(x, f(x)), {x ↼ d}) = 1. Let f I(d) = e ∈ DI , where f I : DI −→ DI

is the interpretation of f in I, then I(B(x, y), {x ↼ d, y ↼ e}) = 1. So we have

I(∃y B(x, y), {x ↼ d}) = 1

Since d is arbitrary in DI , I(∀x∃y B(x, y)) = 1. In other words, I is a model of A.

(b): Since (a) says “if ∀xB(x, f(x)) is satisfiable, so is A”, we need only to

show that if A is satisfiable, so is ∀xB(x, f(x)). Suppose I = (D,R,G) is a model

of A. Then for any d ∈ D, there exists e ∈ D such that

I(B(x, y), {x ↼ d, y ↼ e}) = 1

Let g : D −→ D such that f(d) = e, and I ′ = (D,R,G ∪ {g}) with g = f I′ . Then

I ′ is a model of ∀xB(x, f(x)). 2

Corollary 5.4.10. Let A = ∀x1∀x2 · · · ∀xk∃y B(x1, x2, ..., xk, y). Then there exists

a function f(x1, x2, ..., xk) such that

(a) ∀x1∀x2 · · · ∀xk B(x1, x2, ..., xk, f(x1, x2, ..., xk)) |= A; and

(b) ∀x1∀x2 · · · ∀xk B(x1, x2, ..., xk, f(x1, x2, ..., xk)) ≈ A.

Proof. Replace x by x1, x2, ..., xk in the proof of Lemma 5.4.9. 2
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Theorem 5.4.11. (a) Sko(A) |= A; and (b) Sko(A) ≈ A.

Proof. Since a free variable and a universally quantified variable have the same inter-

pretation, drop a universal quantifier does not change the semantics of a formula.

When we remove an existential quantifier, we introduce a Skolem function. By

Corollary 5.4.10, the resulting formula is equally satisfiable to the original formula.

Applying Corollary 5.4.10 to every existential quantifier, we have the desired result.

2

By Corollary 5.4.10 (a), A is a logical consequence of Sko(A), i.e., Sko(A) |=
A, but not A |= Sko(A). However, we have A ≈ Sko(A), this is what we mean by

“weakly equivalent”, and we will see that it is sufficient for our purposes.

5.4.3 Skolemizing Non-Prenex Formulas

Although Skolemization is easy to explain and justify on formulas in PNF, it

can actually be applied directly to any formula. The process involved is not easily

explained as in the case of PNF. Instead we will provide a recursive algorithm for

Skolemization which takes two parameters: The first parameter is a formula to

be Skolemized, which must be in NNF (negation normal form), and the second

parameter is the list of free variables collected so far.

Algorithm 5.4.12. Skol(A, V ) takes as input a formula A which is in NNF and a

list V of variables which are free in A, and returns a formula without quantifiers.

proc Skol(A, V )

1 if A is a literal or A = > or A = ⊥ return A; // base case

2 if (A = B op C) return Skol(B, V ) op Skol(C, V ); // op is either ∧ or ∨
3 if (A = ∃xB) return Skol(B[x ↼ f(V )], V ); // f is a new Skolem function

4 if (A = ∀xB) return Skol(B, V ∪ {x});

When A is a literal, i.e., either an atom, or the negation of an atom, A is

returned. When the topmost operator is ∨ or ∧, the situation is simple: Skol is

merely called recursively on each of the arguments of the operator. If the topmost

symbol is ∃, Skol introduces a new Skolem function f (a Skolemn constant if V is

empty) and replace every occurrence of x by f(V ). If the topmost symbol is ∀, the
variable x is collected in the second parameter for the recursive call on B. Assuming

computing B[x ↼ f(V )] takes linear time, Skol will take quadratic time in terms

of the size of the input formula.



197

Example 5.4.13. Let A be the first NFF in Example 5.4.4

A = (∀x∃y p(x, y)) ∧ (∃z∃w¬q(z, w) ∨ ¬q(w, z))

2

Then Skol(A, ( )) calls Skol on the two arguments of ∧:

• Skol(∀x∃y p(x, y), ∅) calls Skol(∃y p(x, y)), (x)) and returns p(x, f(x));

• Skol(∃z∃w¬q(z, w) ∨ ¬q(w, z), ∅) returns ¬q(c1, c2) ∨ ¬q(c2, c1).

Hence Skol(A) returns p(x, f(x)) ∧ (¬q(c1, c2) ∨ ¬q(c2, c1)).

Theorem 5.4.14. (a) Skol(A) |= A, and (b) Skol(A) ≈ A.

The proof of the above theorem is similar to that of Theorem 5.4.11 and is

omitted here. As pointed out in Example 5.4.4, we have many different PNFs for

the same formula and each PNF may give us a different result after Skolemization.

All PNFs of the same formula are logically equivalent and all Skolemized formulas

of the same formula are equally satisfiable.

In practice, we wish to produce Skolemized formulas where Skolem functions

have minimal number of arguments, so that the ground terms of these formulas

will be simpler to deal with. Note that the equivalence rules for obtaining PNFs

try to extend the scope of each quantified variable. To obtain Skolem functions

with minimal number of arguments, we may need to use these equivalence rules

backward.

5.4.4 Clausal Form

By CNF, we meant that the formula is a conjunction of clauses, and a clause

is a disjunction of literals. To obtain CNF, a formula A goes through the following

stages:

• stage 1: Convert A into NNF A′;

• stage 2: Skolemize A′ into quantifier-free B;

• stage 3: Convert B into CNF C.

Stage 3 converts Skolemized NNF B into clauses, as we did in propositional

logic to convert NNF into clauses. That is, use the distribution law A ∨ (B ∧C) ≡
(A ∨ C) ∧ (A ∨ C) repeatedly, until it no longer applies.

Stages 1 and 3 preserve the logical equivalence, ≡, and stage 2 preserves only

a weak equivalence, ≈. Thus, we have A ≡ A′, A′ ≈ B, and B ≡ C. As a result,

A ≈ C. So A is satisfiable iff C is satisfiable.
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Example 5.4.15. Consider the following formulas and their intended meanings:

• A = ∀xhuman(x)→ mortal(x): every human is mortal.

• B = ∀x iowan(x)→ human(x): every Iowan is human.

• C = ∀x iowan(x)→ mortal(x): every Iowan is mortal.

To show A ∧B |= C, we convert A ∧B ∧ ¬C into a set S of four clauses, where c1
comes from A, c2 from B, and c3 and c4 from ¬C:

c1 : (¬human(x) | mortal(x)),
c2 : (¬iowan(y) | human(y)),
c3 : (iowan(c)),
c4 : (¬mortal(c))

An instance of c1 is c′1 = (¬human(c) | mortal(c)), and an instance of c2 is c′2 =

(¬iowan(c) | human(c)). Resolution between c3 and c′2, we obtain c5 = (human(c)).

Resolution between c5 and c′1, we obtain the empty clause ( ). 2

Our formulas are now in clausal form, and this is the normal form required

by the resolution rule. Keep in mind the variables in a clause are assumed to be

free and have the same semantics as the universally quantified variables, so that

they can be renamed. These variables are different from clauses to clauses, even

though they use the same name. A practice is to give different names for variables

in different clauses. For example, in clause Ci, we use xi, yi, zi, etc. This way, we

ensure that no variable appears in more than one clause.

Stage 3 may blow up the sizes of the output formulas, while stage 2 outputs

a formula of the linear size of the input formula. In propositional logic, to obtain a

set of clauses of linear size of the original formula, we may introduce new variables

for each occurrence of binary operators and the resulting clauses are 3CNF, which

are not equivalent, but are equally satisfiable, to the original formula. We may do

the same in stage 3 so that the final clauses are of linear size of the original formula.

Clausal form might seem a highly constrained and unnatural representation

for mathematical knowledge, and it has been criticized on those grounds. We will

see that it is in fact surprisingly natural in many cases. In fact, a problem can be

expressed as a set of constraints over some variables, such as constraint satisfaction

problems (CSP). A constraint can be expressed in CNF and a set of constraints give

us a set of clauses.

We have seen that any predicate calculus formula can be converted into an

equally satisfiable formula in CNF, which is useful for proving theoretical results by

resolution.
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5.4.5 Herbrand Models for CNF

When we consider interpretations for a set of formulas, there are simply too

many ways to choose a set as the universe, too many ways to choose a relation for

a predicate symbol, too many ways to choose a function for a function symbol, and

use the elements of each universe in all possible ways for variables. We can improve

on this considerably because there is a class of interpretations, called Herbrand

interpretations, which can stand for all the others. The Herbrand interpretations

share the same universe, called the Herbrand universe. What must this universe

contain? For each n-ary function, f , in the formula (including constants) and n

elements, t1, t2, ..., tn, in the universe, it must contain the result of applying f to

these n elements. This can be achieved by a simple syntactic device; we put all

the ground terms in the universe and let each term denote the result of applying its

function to its parameters. We will call this syntactic device “self-denotation”. This

way, function symbols are bounded to a unique interpretation over the universe.

Definition 5.4.16. Given a CNF formula A in a first-order language L = (P, F,X,Op),

the Herbrand universe of A consists of all the ground terms, i.e., the set T (F ); the

Herbrand base is the set of all ground atoms, denoted by B(P, F ). A Herbrand

interpretation is a mapping I : B(P, F ) −→ {1, 0}.

Note that T (F ) is the set of variable-free terms that we can make from the

constants and functions in the formula. If there are no constants in F , T (F ) would

be empty. To avoid this case, we assume that there must exist at least one constant

in F , say a. From now on it will be useful to distinguish the constants from non-

constant functions, so by “function” we mean non-nullary function. If F does not

contain function symbols, then T (F ) will be a finite set of constants.

The Herbrand base B(P, F ) consists of all the atoms like p(t1, t2, ..., tn), where

p is an n-ary predicate symbol in P and ti ∈ T (F ). If n = 0 for all predicates, then

B(P, F ) = P , reduced to propositional logic. Otherwise, B(P, F ) is finite iff T (F )

is finite. For convenience, we may represent I by a set H of ground literals such

that for any g ∈ B(P, F ), g ∈ H iff I(g) = 1 and g ∈ H iff I(g) = 0.

Example 5.4.17. In Example 5.2.13, we showed that the set S has no finite models:

S = {∀x∃y p(x, y), ∀x¬p(x, x), ∀x∀y∀z p(x, y) ∧ p(y, z)→ p(x, z)}.

Note that S has no function symbols. Converting S to CNF, we obtain the following

set S ′ of clauses:

S ′ = {c1 : (p(x, f(x)), c2 : (p(x, x)), c3 : (p(x, y) | p(y, z) | p(x, z))}.
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Adding a constant a, F = {f, a} and P = {p}, then the Herbrand universe of S ′ is

T (F ) = {a, f(a), f(f(a)), ..., f i(a), ...},

where f 0(a) = a and f i+1(a) = f(f i(a)). The Herbrand base of S ′ is

B(P, F ) = {p(a, a), p(a, f(a)), p(f(a), a), p(a, f(f(a))), ..., p(f i(a), f j(a)), ...}.

A Herbrand interpretation of S ′ is

H = {p(f i(a), f j(a)) | 0 ≤ i < j} ∪ {p(f i(a), f j(a)) | 0 ≤ j ≤ i}.

2

Proposition 5.4.18. A Herbrand interpretation defines a unique interpretation for

a formula in CNF.

Proof. Let A be a formula in CNF and H is a Herbrand interpretation. Define

interpretation I = (D,R,G), where D = T (F ) (the Herbrand universe),

R = {rp | p ∈ P, rp = {〈t1, ..., tn〉 | H(p(t1, ..., tn)) = 1}}

and G = {gf | f ∈ F, gf (t1, ..., tn) = f(t1, ..., tn)}, then I is an interpretation as

defined in Definition 5.2.1 and is uniquely defined by H. 2

Since D and G are fixed in I, H is the only part which affects I. That is, the

only way in which Herbrand interpretations differ from one to another is over the

meanings of predicate symbols. The above proposition gives us the justification for

calling H “an interpretation”.

Once we have an interpretation, we can compute the truth value of a formula

A in this interpretation using a procedure like eval (Procedure 5.2.3). If A is true

under a Herbrand interpretation H, we say H is a Herbrand model. Since a CNF A

can be represented by a set S of clauses, and the variables in each clause have the

same meaning as universally quantified variables, for any interpretation I, I(A) =

I(S) =
∩

C∈S I(C), and for each clause C, I(C) = I(∀x1...∀xk C), where x1, ..., xk

are the free variables of C.

The definition of Herbrand interpretation gives us a convenient way of ex-

pressing these meanings by assigning the truth value to each ground atom in the

Herbrand base. Of course, the truth values of some atoms are irrelevant if these

atoms cannot be instances of any predicate in the formula, as the truth of the for-

mula does not depend on these atoms. From now on, when we say “a set of clauses

has a model” we meant “it has a Herbrand model”.
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5.5 Exercise Problems

1. Using a first-order language with variables ranging over people, and predi-

cates trusts(x, y), politician(x), crazy(x), know(x, y), and related(x, y), and

rich(x), write down first-order sentences asserting the following:

(a) Nobody trusts a politician.

(b) Anyone who trusts a politician is crazy.

(c) Everyone knows someone who is related to a politician.

(d) Everyone who is rich is either a politician or knows a politician.

2. Let the meaning of taken(x, y) be “student x has taken CS course y”. Please

write the meaning of the following formulas:

(a) ∃x∃y taken(x, y)

(b) ∃x∀y taken(x, y)

(c) ∀x∃y taken(x, y)

(d) ∃y∀x taken(x, y)

(e) ∀y∃x taken(x, y)

3. Let c(x) mean “x is a criminal” and let s(x) mean “x is sane”. Then formalize

each of the following sentences.

(a) All criminals are sane.

(b) Every criminal is sane.

(c) Only criminals are sane.

(d) Some criminals are sane.

(e) There is a criminal that is sane.

(f) No criminal is sane.

(g) Not all criminals are sane.

4. Given the predicates male(x), female(x), parent(x, y) (x is a parent of y),

define the following predicates in terms of male, female, parent, or other pred-

icates defined from these three predicates, in first-order logic:

(a) father(x, y): x is the father of y.

(b) mother(x, y): x is the mother of y.



202

(c) ancesotor(x, y): x is an ancestor of y.

(d) descendant(x, y): x is an descendant of y.

(e) son(x, y): x is a son of y.

(f) daughter(x, y): x is a daughter of y.

(g) sibling(x, y): x is a sibling of y.

5. Let Set be defined by the following BNF:

〈Set〉 ::= ∅ | adjoin(〈Any〉, 〈Set〉)

where adjoin(e, s) adjoins an element e into the set s. Please define the

following predicates in terms of ∅ and adjoin in first-order logic:

(a) isSet(x): x is an object of Set.

(b) member(x, s): x is a member of set s.

(c) subset(s, t): s is a subset of set t.

(d) equal(s, t): s and t contain the same elements.

6. Decide if the following formulas are valid, not valid but satisfiable, or unsat-

isfiable, using the definition of interpretations:

(a) p(a, a) ∨ ¬∃x p(x, a)

(b) ¬p(a, a) ∨ ∃x p(x, a)

(c) ¬q(a) ∨ ∀x q(x)

(d) ¬(∃x q(x)) ∨ ∀x q(x)

(e) ∃x q(x) ∨ ¬∀x q(x)

7. Prove the following equivalence relations:

(a) ¬∃x p(x) ≡ ∀x¬p(x)

(b) ∃x p(x) ∨ q(x) ≡ (∃x p(x)) ∨ (∃x q(x))

(c) (∃x p(x)) ∧ q ≡ ∃x (p(x) ∧ q)

(d) ∃x∃y r(x, y) ≡ ∃y∃x r(x, y)

(e) ∃x p(x)→ q(x) ≡ (∀x p(x))→ (∃x q(x))

8. Prove that the following entailment relations are true, but the converse of the

relation is not true.
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(a) (∀x p(x)) ∨ (∀x q(x)) |= ∀x p(x) ∨ q(x)

(b) ∃x p(x) ∧ q(x) |= (∃x p(x)) ∧ (∃x q(x))

(c) (∀x p(x))→ (∀x q(x)) |= ∀x p(x)→ q(x)

(d) (∃x p(x))→ (∃x q(x)) |= ∃x p(x)→ q(x)

(e) (∃x p(x))→ (∀x q(x)) |= ∀x p(x)→ q(x)

(f) ∀x p(x)→ q(x) |= (∃x p(x))→ (∃x q(x))

(g) ∀x p(x)→ q(x) |= (∀x p(x))→ (∃x q(x))

(h) ∀x p(x)↔ q(x) |= (∀x p(x))↔ (∀x q(x))

(i) ∀x p(x)↔ q(x) |= (∃x p(x))↔ (∃x q(x))

9. Use the semantic tableau method to show the entailment relations are true in

the previous problem.

10. Provide the pseudo-code for the algorithm PrenexNF(A) and show that it runs

in O(n) time when A is in NNF, where n is the size of A.

11. Show that the algorithm Sko(A) runs in O(n2) time, where A is in NNF and

n is the size of A.

12. Show that the algorithm Skol(A) runs in O(n2) time, where A is in NNF and

n is the size of A.

13. Convert each one of the following formulas into a set of clauses:

(a) ¬((∀x p(x)) ∨ (∀x q(x))→ ∀x p(x) ∨ q(x))

(b) ¬((∃x p(x) ∧ q(x))→ (∃x p(x)) ∧ (∃x q(x)))

(c) ¬(((∀x p(x))→ (∀x q(x)))→ (∀x p(x)→ q(x)))

(d) ¬(((∃x p(x)→ q(x))→ (∃x p(x)))→ (∃x q(x)))

(e) ¬((∃x p(x))→ (∀x q(x))→ (∀x p(x)→ q(x)))

(f) ¬(((∀x p(x)→ q(x))→ (∃x p(x)))→ (∃x q(x)))

(g) ¬((∀x p(x)→ q(x))→ ((∀x p(x))→ (∃x q(x))))

(h) ¬(((∀x p(x)↔ q(x))→ (∀x p(x)))↔ (∀x q(x)))

(i) ¬(((∀x p(x)↔ q(x))→ (∃x p(x)))↔ (∃x q(x)))
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14. Given a set S of clauses, S = {(p(f(x), c)), (¬p(f(w), z) | p(f(f(w)), f(z))),
(¬p(y, f(y)))}, please answer the following questions: (a) What is the Her-

brand universe of S? (b) What is the Herbrand base of S? (c) What is the

minimum Herbrand model of S (no subset of this model is a model)? (d)

What is the maximum Herbrand model of S (no superset of this model is a

model)?
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CHAPTER 6

UNIFICATION AND RESOLUTION

Resolution is known to be a refutational proof method from Chapter 3. By

refutational method, we meant that the method will show that the input formula is

unsatisfiable. If we would like to show that formula A is valid, we need to convert

¬A into clauses and show that the clauses are unsatisfiable. To show that A |= B,

we need to convert A ∧ ¬B into CNF and show that the clauses are unsatisfiable.

Note that A and B must be closed formulas. For example, if we want to express

that p(x, y) is a commutative relation, we may use the formula p(x, y) → p(y, x),

where x and y are assumed to be arbitrary values. The negation of this formula

is ¬(∀x∀y p(x, y) → p(y, x)), not ¬(p(x, y) → p(y, x)). The CNF of the former

is p(a, b) ∧ ¬p(b, a), where a and b are Skolem constants; the CNF of the latter

is p(x, y) ∧ ¬p(y, x). We can substitute y by x in this CNF and obtain two unit

clauses (p(x, x)) and (p(x, x)). These two clauses will generate the empty clause

by resolution. The process of finding a substitution to make two atoms identical

is called “unification”, which is needed in the definition of the resolution rule for

first-order formulas.

6.1 Unification

In Example 5.4.15, when we apply the resolution rule on two clauses, we need

to find their instances such that one instance contains A and the other instance

contains ¬A, where A is an atom. A clause has infinite many instances and the

unification process helps us to find the right instances for resolution.

6.1.1 Substitutions and Unifiers

Given a first-order language L = (P, F,X), a mapping σ : X −→ T (F,X) is

said to be a substitution. If σ(x) 6= x, we say x is affected by σ. If σ(x) is a distinct

variable for every affected x, σ is said to be a renaming.

When displaying σ, we only display the pair x ↼ σ(x) for affected variable x,

i.e., when x 6= σ(x). For example, if X = {x, y], then x is affected by σ1 = [x ↼

f(y)] and σ2 = [x ↼ f(x)]; both x and y are affected by σ3 = [x ↼ f(y), y ↼ a].

A substitution σ : X −→ T (F,X) can be extended to be a mapping σ :

T (F,X) −→ T (F,X) such that if t = x, then σ(t) = σ(x); if t = f(t1, t2, ..., tk),
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then σ(t) = f(σ(t1), σ(t2), ..., σ(tk)). In a similar way, σ can be extended to be a

mapping from formulas to formulas.

We used p(t) to denote an instance of p(x), i.e., p(t) = p(x)[x ↼ t], where

every occurrence of x is replaced by term t. Here, σ = [x ↼ t] is a substitution and

p(t) = σ(p(x)) = p(x)σ, as we are free to write either p(x)σ or σ(p(x)).

Definition 6.1.1. (idempotent substitution) σ is said be idempotent if for any

term t, tσ = (tσ)σ.

For example, σ1 = [x ↼ f(y)] is idempotent; σ2 = [x ↼ f(x)] is not idempo-

tent, because xσ2 = f(x) and (xσ2)σ2 = f(f(x)). Neither σ3 = [x ↼ f(y), y ↼ a],

because xσ3 = f(y) and (xσ3)σ3 = f(a)). Note that σ3 can be modified to make it

idempotent: σ′
3 = [x ↼ f(a), y ↼ a], while σ2 cannot.

Proposition 6.1.2. A substitution σ is idempotent iff for every x ∈ X, either

σ(x) = x or x does not appear in σ(y) for any y ∈ X.

Proof. Given any σ, if an affected x appears in σ(y) = t(x), suppose σ(x) = c, then

yσ = t(x) and (yσ)σ = t(c), so σ is not idempotent. Otherwise, for any term s, sσ

does not contain any variable affected by σ, so (sσ)σ = sσ and σ is idempotent. 2

Definition 6.1.3. (unifier) Let s, t be either two terms of T (F,X) or two atoms.

We say s and t are unifiable, if there exists an idempotent substitution σ : X −→
T (F,X) such that sσ = tσ; σ is said to be a unifier of s and t.

A set S of pairs of terms or atoms is unifiable if there exists a substitution σ

such that for every pair (si, ti) ∈ S. siσ = tiσ and σ is said to be a unifier of S.

Example 6.1.4. Let s = f(x, g(y)) and t = f(g(z), x), then s and t are unifiable

with unifier σ = [x ↼ g(z), y ↼ z], because

sσ = f(x, g(y))[x ↼ g(z), y ↼ z] = f(g(z), g(z)) = f(g(z), x)[x ↼ g(z), y ↼ z] = tσ.

In fact, s and t have infinite many unifiers like

[x ↼ g(k), y ↼ k, z ↼ k]

for any k ∈ T (F,X). 2

In the above example, we see that a pair of terms may have multiple unifiers.

How do you compare these unifiers? We need some relation over unifiers and this

relation is based on the composition of substitutions.
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6.1.2 Combining Substitutions

Definition 6.1.5. (composition of substitution) Given two substitutions σ and θ,

the composition of σ and θ is the substitution γ, written γ = σ · θ, or simply σθ,

where

γ = [x ↼ tθ | (x ↼ t) ∈ σ] ∪ [y ↼ s | y = yσ, (y ↼ s) ∈ θ]

We will assume that tσθ = (tσ)θ = θ(σ(t)). To denote the composition σθ on

t, we write t(σθ).

Example 6.1.6. Given σ = [x ↼ f(y), z ↼ f(u), v ↼ u] and θ = [y ↼ g(a), u ↼

z, v ↼ f(f(a))], then

σθ = [x ↼ f(g(a)), y ↼ g(a), z ↼ f(z), u ↼ z, v ↼ z]

p(x, y, z, u, v)σθ = p(f(y), y, f(u), u, u)θ
= p(f(g(a)), g(a), f(z), z, z)
= p(x, y, z, u, v)(σθ)

2

Note that the composition does not necessarily preserve the idempotent prop-

erty as both σ and θ are idempotent but z ↼ f(z) appears in σθ in the above

example.

Proposition 6.1.7. For any substitutions σ and θ, and any term t, tσθ = t(σθ).

Proof. For any x ∈ X, if x is affected by σ, say σ(x) = s, then xσθ = sθ = x(σθ).

If x is unaffected by σ, then xσθ = xθ = x(σθ). 2

The above proposition states the property that applying two substitutions to

a term in succession produces the same result as applying the composition to the

term.

The composition operation is not commutative in general. For example, if

σ = [x ↼ a] and θ = [x ↼ b], then σθ = σ and θσ = θ. Thus, σθ 6= θσ. By

definition, if x is affected by both σ and θ, then the pair x ↼ θ(x) is ignored in σθ

and the pair x ↼ σ(x) is ignored in θσ.

Proposition 6.1.8. The composition is associative, i.e., for any substitutions σ, θ,

and γ, (σθ)γ = σ(θγ).

The proof is left as an exercise.
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6.1.3 Rule-Based Unification

Definition 6.1.9. (most general unifier) Let σ and θ be unifiers of s and t. We

say σ is more general than θ, if there exists a substitution γ such that θ = σγ. σ is

a most general unifier (mgu) of s and t, if σ is more general than any unifier of s

and t.

Example 6.1.10. In Example 6.1.4, σ = [x ↼ g(z), y ↼ z] is a mgu of s = f(x, g(y)

and t = f(g(z), x). For any unifier θ = [x ↼ g(t′), y ↼ t′, z ↼ t′], θ = σγ, where

γ = [z ↼ t′]. Another mgu of s and t is σ′ = [x ↼ g(y), z ↼ y], σ = σ′[y ↼ z] and

σ′ = σ[z ↼ y]. 2

As illustrate by the above example, there are more than one mgu for a pair of

terms; these mgus differ by the renaming of variables. We can say the most general

unifier if the renaming of variables is considered.

Given a pair s and t of terms, how to decide if s and t are unifiable? If they

are, how to compute their mgu? These questions will be answered by unification

algorithms.

Let s
.
= t denote that “s and t are unifiable”. Suppose s = f(s1, s2, ..., sm)

and t = g(t1, t2, ..., tn). If f 6= g or m 6= n, then s
.
= t is false, i.e., s and t are not

unifiable. This is called clash failure.

If s
.
= t is true, so are si

.
= ti for 1 ≤ i ≤ m = n. In other words, if si

.
= ti is

false for some i, then s
.
= t is false. If for some i, si = x and ti = f(x) (x occurs

in ti) then there exists no substitution σ such that xσ = f(x)σ. Hence x
.
= f(x)

must be false. This is called occur-check failure, as x occurs in f(x). If we accept

x ↼ f(x), then the unifier cannot be idempotent.

Rule-based unification algorithm uses a set of rules which transform s
.
= t

into a substitution σ through a set of pairs {si
.
= ti} and each rule preserves the

unifiability of s
.
= t. These rules are given below.

Definition 6.1.11. The unification rules for the rule-based unification algorithm

are given below:

• decompose: 〈S ∪ {f(s1, s2, ..., sm)
.
= f(t1, t2, ..., tm)}, σ〉 −→ 〈S ∪ {si

.
= ti |

1 ≤ i ≤ m}, σ〉.

• clash: 〈S ∪ {f(s1, s2, ..., sm)
.
= g(t1, t2, ..., tn)}, σ〉 −→ 〈S, fail〉.

• occur-check: 〈S ∪ {x .
= t | x 6= t, x occurs in t}, σ〉 −→ 〈S, fail〉.

• redundant: 〈S ∪ {t .
= t}, σ〉 −→ 〈S, σ〉.

• orient: 〈S ∪ {t .
= x | t is not variable}, σ〉 −→ 〈S ∪ {x .

= t}, σ〉.
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• substitute: 〈S∪{x .
= t | x does not occur in t}, σ〉 −→ 〈S[x ↼ t], σ · [x ↼ t]〉

Algorithm 6.1.12. The algorithm unify(s, t) takes two terms s and t, and returns

either fail or σ, a mgu of s and t.

proc unify(s, t)

1 S := {s .
= t}; σ = ∅;

2 while (true) do

3 〈S, σ〉 := apply one unification rule on 〈S, σ〉;
4 if (σ = fail) return fail;

5 if (S = ∅) return σ;

Example 6.1.13. Given s = p(f(x, h(x), y), g(y)) and t = p(f(g(z), w, z), x), then

unify(s, t) will transform 〈{s .
= t}, ∅〉 into 〈∅, σ〉 as follows:

{s .
= t}, ∅

decompose −→ {f(x, h(x), y) .
= f(g(z), w, z), g(y)

.
= x}, ∅

orient −→ {f(x, h(x), y) .
= f(g(z), w, z), x

.
= g(y)}, ∅

substitute −→ {f(g(y), h(g(y)), y) .
= f(g(z), w, z)}, [x ↼ g(y)]

decompose −→ {g(y) .
= g(z), h(g(y))

.
= w, y

.
= z}, [x ↼ g(y)]

substitute −→ {g(z) .
= g(z), h(g(z))

.
= w}, [x ↼ g(z), y ↼ z]

redundant −→ {h(g(z)) .
= w}, [x ↼ g(z), y ↼ z]

orient −→ {w .
= h(g(z))}, [x ↼ g(z), y ↼ z]

substitute −→ ∅, [x ↼ g(z), y ↼ z,w ↼ h(g(z))]

2

The algorithm unify(s, t) does not specify the order of rules, so we may use

these rules in any order when they are applicable. However, none of these rules can

be applied forever. Hence unify(s, t) will terminate eventually.

Lemma 6.1.14. Given any pair s and t, unify(s, t) will terminate with either fail

or σ.

Proof. At first, we like to point out that the substitute rule may increase the sizes

of terms in S but it moves variable x from S into σ, that is, x disappears from S,

so this rule can be applied no more than the number of variables.

For the rules used between two applications of the substitute rule, if the

clash rule or the occur-check rule apply, the process ends with fail immediately.

Otherwise, the decompose rule removes two occurrences of f . The orient rule

switches t
.
= x to x

.
= t, where t is not a variable. The redundant rule removes

t
.
= t. None of these rule can be used forever. In the end, S becomes empty and σ

will be returned. 2



210

Lemma 6.1.15. If 〈S ′, σ′〉 is the result of applying the substitute rule on 〈S, σ〉
and θ′ is a mgu of S ′, then θ = [x ↼ t] · θ′ is a mgu of S.

Proof. By the definition of the substitute rule, S ′ = (S − {x .
= t})[x ↼ t] and

σ′ = σ · [x ↼ t], where x is not affected by σ. By the assumption, S ′ is unifiable

with a mgu θ′. Since x does not appear in S ′, θ = [x ↼ t] ·θ′ is a mgu of S ′∪ [x .
= t].

It is easy to check that θ is also a mgu of S. 2

Theorem 6.1.16. The algorithm unify(s, t) will return a mgu of s and t iff s and

t are unifiable.

Proof. Lemma 6.1.14 ensures that unify(s, t) will terminate. Inside unify(s, t),

when 〈S, σ〉 is transformed to 〈S ′, σ′〉, we can check for each rule that S is unifiable

(σ does not affect the unifiability of S) iff σ′ 6= fail and S ′ is unifiable. That is,

when σ′ is fail, S cannot be unifiable. When S ′ = ∅, S ′ is trivially unifiable, so S

must be unifiable.

Before the substitute rule moves x
.
= t from S, x is not affected by σ; x is

affected by σ′ = σ · [x ↼ t] = σ[x ↼ t] ∪ [x ↼ t], where t does not contain x.

Since S[x ↼ t] and σ[x ↼ t] remove all the occurrences of x in S and σ, x has a

unique occurrence in σ′ and that is also true for all affected variables in σ. Thus, σ

is idempotent by Proposition 6.1.2.

Now assume s and t are unifiable. Let S0 = {s .
= t}, σ0 = ∅, and σi =

σi−1 · [xi ↼ ti] records every application of the substitute rule for 1 ≤ i ≤ m. Let

the corresponding S be S1, S2, ..., Sm, respectively, where Sm = ∅. Since the mgu of

Sm is θm = ∅. So by Lemma 6.1.15,

θm−1 = [xm ↼ tm]θm = [xm ↼ tm]

is a mgu of Sm−1. Again by Lemma 6.1.15,

θm−2 = [xm−1 ↼ tm−1]θm−1 = [xm−1 ↼ tm−1, xm ↼ tm],

is a mgu of Sm−2, and so on. Finally,

θ0 = [x1 ↼ t1]θ1 = [x1 ↼ t1, xm−1 ↼ tm−1, xm ↼ tm] = σm

is a mgu of S0 = {s
.
= t}. 2

Example 6.1.17. Consider the following pair of terms:

s = f(f(f(f(a, x1), x2), x3), x4),
t = f(x4, f(x3, f(x2, f(x1, a)))).
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{s .
= t}, ∅

decompose −→ {f(f(f(a, x1), x2), x3)
.
= x4, x4

.
= f(x3, f(x2, f(x1, a)))}, ∅

substitute −→ {f(f(f(a, x1), x2), x3)
.
= f(x3, f(x2, f(x1, a)))},

[x4 ↼ f(x3, f(x2, f(x1, a)))]
decompose −→ {f(f(a, x1), x2)

.
= x3, x3

.
= f(x2, f(x1, a))},

[x4 ↼ f(x3, f(x2, f(x1, a)))]
substitute −→ {f(f(a, x1), x2)

.
= f(x2, f(x1, a))},

[x4 ↼ f(f(x2, f(x1, a)), f(x2, f(x1, a))), x3 ↼ f(x2, f(x1, a))]
decompose −→ {f(a, x1)

.
= x2, x2

.
= f(x1, a)}, [x4 ↼ ..., x3 ↼ f(x2, f(x1, a))]

substitute −→ {f(a, x1)
.
= f(x1, a)}, [x4 ↼ ..., x3 ↼ ..., x2 ↼ f(x1, a)]

decompose −→ {a .
= x1, x1

.
= a}, [x4 ↼ ..., x3 ↼ ..., x2 ↼ f(x1, a)]

substitute −→ {a .
= a}, [x4 ↼ ..., x3 ↼ ..., x2 ↼ f(a, a), x1 ↼ a]

redundant −→ ∅, [x4 ↼ ..., x3 ↼ ..., x2 ↼ f(a, a), x1 ↼ a]

Let t1 = a, t2 = f(t1, t1), t3 = f(t2, t2), t4 = f(t3, t3), then the mgu of s
.
= t is

[xi ↼ ti | 1 ≤ i ≤ 4].

In general, if s and t are the following pair of terms,

s = f(f(f(...f(f(a, x1), x2), ...), xn−1), xn)
t = f(xn, f(xn−1, f(..., f(x2, f(x1, a))...)))

then the mgu of s and t is σ = [xi ↼ ti | 1 ≤ i ≤ n], where t1 = a and ti+1 = f(ti, ti).

The sizes of s and t are the same, i.e., 2n+1. However, the size of tn is 2n− 1. 2

The above example illustrates that unify(s, t) will take O(2n) time and space

for the input terms of size O(n). This high cost cannot be avoided if we use trees

to represent terms. Using the data structure of directed graphs for terms, identical

subterms can be shared, so we do not need a space of exponential size.

6.1.4 Practically Linear Time Unification Algorithm

Corbin and Bidoit (1983) improved Robinson’s unification algorithm to a

quadratic one by using directed graphs. Ruzicka and Privara (1989) further im-

proved it to an almost linear one, by using the union/find data structures and

postponing the occur-check at the end of unification. The union/find data struc-

ture stores a collection of disjoint sets, each of the sets represents an equivalence

class. Thus, the disjoint sets represent an equivalence relation and are a partition

of the involved elements. The Union operation will merge two sets into one, and

the Find operation will return a representative member of a set, so that it allows

to find out efficiently if any two elements are in the same or different sets.

In the following, we introduce an almost-linear time unification algorithm

different from that of Ruzicka and Privara.
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Given two terms s and t, the term graph for s and t is the directed acyclic

graph G = (V,E) obtained by combining the formula trees of s and t with the

following operation: All the nodes labeled with the same variable in s and t is

merged into a single node of G.

The graph G has the following features:

• Each node v of G is labeled with a symbol in s or t, denoted by label(v).

• The roots of the formula trees are the two nodes in G with zero in-degree; the

other non-variable nodes’ in-degrees are one. The in-degree of variable nodes

is the sum of the occurrences of that variable in s and t.

• The leaf nodes of the formula trees are the nodes with zero out-degree in G,

which are labeled with variables or constants.

• If a node is labeled with a function symbol f whose arity is k, then this node

has k ordered successors. We will use child(v, i) to refer to the ith successor

of v.

The term associated with each node n of G can be recursively defined as

follows:

1. If label(n) is a variable or constant, term(n) = label(n);

2. If label(n) is a function f other than a constant, term(n) = f(s1, s2, ..., sk),

where si = term(child(n, i)) for 1 ≤ i ≤ arity(f).

We say term(n) is the term represented by n in G.

The unification algorithm will work on G = (V,E) and is divided into two

stages: In stage 1, unify1 checks if s and t have no clash failure; in stage 2, postOc-

curCheck returns true iff they have no occur-check failure.

In stage 1, the algorithm unify1 takes the two nodes representing s and t,

respectively, and visits G in tandem by depth-first search. During the search, we

will assign to each node v of G another node u as the representative of v, denoted

by up(v) = u. Initially, up(v) = v for every node of G. If up(v) = u and v 6= u,

it means the terms represented by v and u, respectively, are likely unifiable (no

clash failure) and we use u as the representative of v in the rest of the search. At

the end of the search, unify1 returns true if no clash failure was found. In this

case, the relation R defined by up, i.e., R = {(u, up(u)) | u ∈ V }, can generate an

equivalence relation E (i.e., E is the reflexive, symmetric and transitive closure of

R). The relation E partitions V into equivalence classes and the nodes in the same

equivalent class represent the terms which must be unifiable if s and t are unifiable.
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Figure 6.1.1: The term graphs for t and s

Example 6.1.18. Given t = f(f(f(a, x1), x2), x3) and s = f(x3, f(x2, f(x1, a))),

their term graph is shown in Figure 6.1.1. The up relation is initialized as up(v) = v.

The algorithm unify1(t, s) starts the depth-first search in tandem and goes to

the first children of (t, s), i.e., (v1, x3). Since x3 is a variable node, unify1(v1, x3)

will do up(x3) := v1 and backtrack. The second children of (t, s) are (x3, v2). Since

up(x3) = v1, we use v1 for x3 and call unify1(v1, v2). Since v1 and v2 have the same

label, the search goes to their children. The first children of (v1, v2) are (v3, x2).

Since x2 is a variable node, we do up(x2) := v3 and backtrack. The second children

of (v1, v2) are (x2, v4). Using v3 for x2 and call unify1(v3, v4). Since v3 and v4
have the same label, the search goes to their children. The first children of (v3, v4)

are (v5, x1). We do up(x1) := v5 and backtrack. The second children of (v3, v4)

are (x1, v6). Using v5 for x1 and call unify1(v5, v6). Since (v5, v6) have the same

constant label, the search backtracks after doing up(v6) := v5. Now, all children of

(v3, v4) are done. After up(v4) := v3, the search backtracks. Similarly, all children

of (v1, v2) are done, and we backtrack after doing up(v2) := v1. Finally, all children

of (t, s) are done and unify1(t, s) finishes with up(s) := t.

The content of up(v) after the termination of unify1(t, s) is shown below:

node s t v1 v2 v3 v4 v5 v6 x1 x2 x3

up t t v1 v1 v3 v3 v5 v5 v5 v3 v1

The equivalence relation E generated by (v, up(v)) can be represented by the fol-

lowing partition of V :

{s, t}, {v1, v2, x3}, {v3, v4, x2}, {v5, v6, x1}

2
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It is clear from the above example that each node of V is in a singleton set

initially. When the terms represented by the two nodes are unifiable, the sets con-

taining the two nodes are merged into one thorough the assignment up(v) := u, i.e.,

we obtain “union” of the two sets containing u and v, respectively. To know which

node is represented by which node, we need the “find” operation. Thus, we may

employ the well-known union/find data structure to support the implementation of

unify1.

In view of the union/find data structure, each disjoint set is represented by

a tree: up(v) = u means the parent of v is u in the tree if v 6= u. If up(u) = u,

then u is the root of the tree, which also serves as the name of the set. Find(u)

will find the name of the set containing u and will compress the tree if necessary.

Union(u, v) will merge the two sets whose names are u and v, respectively. A typical

implementation of Union will let the root of shorter/smaller tree point to the root

of a taller/larger tree and can be done in constant time.

As stated earlier, the algorithm unify1 takes the two nodes representing s and

t, respectively, and visits G in tandem by depth-first search. unify1 will first replace

the current two nodes by their set names, which are also the nodes in G. If the

two set names are the same, backtrack; If one of them is a variable node, make

the other as its parent in the union/find tree, and backtrack. If both are function

nodes and their labels are different, report clash failure; otherwise, recursively visit

their children. If no failure is found from the children, merge the two sets named

by the current two nodes and backtrack. During the depth-first search, we also use

a marking mechanism to detect if a cycle is created because a variable is unified

with a term; if yes, an occur-check failure happened. Only a portion of occur-check

failures can be found this way. The pseudo-code of the unify algorithm is given

below.

Algorithm 6.1.19. The algorithm lunify(s, t) will take terms s and t, as input,

create the formula graph G = (V,E) from s and t, merging all the nodes of the same

variable into one, and call unify1(vs, vt), where vs and vt are the nodes representing

s and t, respectively. If unify1(vs, vt) return true, call postOccurCheck(vs, vt), which

returns true iff there exist no cycles in G = (V,E) by the depth-first search.

proc lunify(s, t): Boolean

1 G = createGraph(s, t); // up(v) = v for each v in G

2 if unify1(vs, vt) // vs, vt represent s, t in G

3 return postOccurCheck(vs, vt)

4 else return false;
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proc unify1(v1, v2) : Boolean

1 s1 := Find(v1); s2 := Find(v2);

2 if s1 = s2 return true; // already unified

3 if (label(s1) and label(s2) are variables) Union(s1, s2); return true;

4 if (label(s1) is variable) up(s1) := s2; return true;

5 if (label(s2) is variable) up(s2) := s1; return true;

6 if label(s1) 6= label(s2) return false // clash failure

// use mark(s) to detect if G has a cycle

7 for i := 1 to arity(label(s1)) do

8 c1 := child(s1, i); c2 := child(s2, i);

9 if (marked(c1) or marked(c2)) return false // occur-failure

10 mark(c1);mark(c2);

11 if unify1(c1, c2) = false return false;

12 unmark(c1);unmark(c2);

13 Union(s1, s2);

14 return true;

proc Union(s1, s2)

// Initially, for any node s, h(s) = 0, the height of a singleton tree.

1 if h(s1) < h(s2) up(s1) := s2; return ;

2 up(s2) := s1; // the parent of s2 is s1
3 if h(s1) = h(s2) h(s1) := h(s1) + 1;

proc Find(v)

1 r := up(v); // look for the root of the tree containing v

2 while (r 6= up(r)) r := up(r); // r is root iff r = up(r)

3 if (r 6= v) // compress the path from v to r

4 while (r 6= v) up(v) := r; v := up(v);

5 return r;

As said earlier, in the union-find data structure, each set of the nodes is

represented by a tree (defined by up(v) = u, where the parent of v is u) and the

root of the tree is the name of the set. The union operation implements the “union

by height”, making the root of the higher tree as the parent of the root of the shorter

tree. Find(v) will return the name of the set, i.e., the root of the tree containing

v; this is done by the first while loop. For the efficiency of future calls to Find, the

path from v to the root is compressed after the root is found; this is completed by

the second while loop.
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There are two parent-child relations used in the above algorithms. The pro-

cedure unify1 uses the depth-first search based on the parent-child relation defined

by the formula graph, not the parent-child relation defined by up(v) = u. The later

induces an equivalence relation and is used by Find and Union.

Example 6.1.20. Let s = f(x, x) and t = f(y, a). A graph G = (V,E) will be

created with V = {vs, vt, vx, vy, va} and E = {(vs, vx)1, (vs, vx)2, (vt, vy)1, (vt, va)2},
where the subscripts are the order of children. unify1(vs, vt) will call unify1(vx, vy),

which changes up(vx) = vy, and unify(vx, vy), which changes up(vy) = va. After

the two recursive calls, unify1(vs, vt) will change up(vs) = vt and return true. V is

partitioned into two sets: {vs, vt} and {vx, vy, va}. 2

In algorithm unify1, the graph G = (V,D) never changes; only up(v) changed.

The value of up(v) defines the equivalence relation in the union/find data structure:

v and up(v) are in the same disjoint set. The value of up(v) is changed indirectly

either by Find (called at line 1 of unify1; up(v) is changed at line 4 of Find), or

by Union (called at lines 3 and 13; up(v) is modified at lines 1 and 2 of Union),

or directly at lines 4 and 5 of unify1, which are special cases of Union: a variable

node’s parent is set to be a function node (not the other direction). Thus, the

algorithm uses only linear space. The algorithm uses almost linear time because of

the following observations:

• Let G = (V,E) be the term graph of s and t, and n = |V | is bound by the

total size of s and t.

• The number of find operations performed in unify1 is twice of the number of

recursive calls of unify1.

• Each union operation reduces the number of node sets by one, thus the number

of union operations is bound by n.

• Once two subterms are shown to be unifiable, the two nodes representing them

are put into the same set, thus we never try to unify again the same pair of

subterms and the number of recursive calls of unify1 is bound n.

• The total cost of O(n) finds and unions is O(nα(n)), where α(n) is the inverse

of Ackermann function and grows very, very slow. In fact, α(n) is practically

a constant function, e.g., α(109) ≤ 4.

• The special unions performed at lines 4 and 5 of unify1 do not affect the almost

linear complexity, because the total cost of such unions between a variable

node and a non-variable is bounded by the number of variable nodes.



217

• The procedure postOccurCheck will check if G = (V,E) contains a cycle and

can be implemented in O(n) by the depth-first search.

Theorem 6.1.21. The algorithm lunify(s, t) takes O(nα(n)) time, where n is the

total sizes of s and t, and α(n) is the inverse of Ackermann function; lunify(s, t)

returns true iff s and t are unifiable.

The algorithm lunify tells us if two terms expressions are unifiable or not.

However, this is different from knowing what their unifiers actually are. We leave

the problem of finding the mgu of s and t after lunify(s, ) returns true as an exercise.

Since lunify does not change the term graph of s and t, we may wonder how

to get the term tσ from G if σ is the mgu of s and t. The term tσ, which is equal

to sσ, can be obtained by term′(vs) (or term
′(vt)), where term′ can be recursively

defined as follows: For any node v of G:

1. If label(v) is a variable and up(v) 6= v, term′(v) = term′(up(v));

2. If label(v) is a constant or a variable and up(v) = v, term′(v) = label(v);

3. If label(v) is a function f other than a constant, term′(v) = f(s1, s2, ..., sk),

where si = term′(child(v, i)) for 1 ≤ i ≤ arity(f).

It is easy to check that term′(v) = term(v) before the execution of lunify as at that

time, up(v) = v for any v. We may view {(v, up(v)) | up(v) 6= v} as a new set of

edges added to G = (V,E) during the execution of lunify. This set of edges defines

not only the equivalence relation represented by the union/find data structure, but

also the mgu σ when s and t are unifiable.

The contrived examples in Table 6.1.1 illustrate behavior of lunify. The size

of a term is the total number of symbols in the term, excluding parentheses and

commas. The column visited gives the number of nodes visited before a result is

returned.

In P1, the two terms are unifiable, and the occur-check can be awfully expen-

sive if we do not postpone the check. In P2, the first occur-check (on z ↼ g(z))

will fail; though lunify will not know it until postOccurCheck is called. In P3,

the last occur-check will fail. It is interesting to notice that unify1 will report this

failure by the marking mechanism in a constant number of steps, after visiting only

8 nodes of the term graph. In P4, a clash-failure takes place at the bottom of the

depth-first-search. P5 is similar to P3, though an occur-check failure can be found

only after a thorough search. P6 is similar to P1, though the last occur-check will

locate the failure.
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pair of terms size failure visited

P1 f(f(...f(f(a, x1), x2), ...), xn) 4n+ 2 no 4n+ 2
f(xn, f(xn−1, f(..., f(x1, a)...)))

P2 f(z, gn(x)) n+ 3 occur n+ 3
f(g(z), gn(y))

P3 h(x, f(x, f(x, ..., f(x, f(x, x))...)), x) 8n+ 3 occur 8
h(f(y, ..., f(y, f(y, y))...), y, y)

P4 f(f(...f(f(a, x1), x2), ...), xn) 4n+ 2 clash 4n+ 2
f(xn, f(xn−1, f(..., f(x1, b)...)))

P5 h(x, gn(x), x) 2n+ 8 occur 2n+ 8
h(gn(y), y, y)

P6 f(f(f(...f(f(a, x1), x2), ...), xn), z) 4n+ 7 occur 4n+ 7
f(f(xn, f(xn−1, f(..., f(x1, a)...))), g(z))

Table 6.1.1: The last column gives the number of visited nodes by unify1 in the
term graph for each example.

6.2 Resolution

6.2.1 The Resolution and Factoring Rules

Definition 6.2.1. (resolution) Suppose clause C1 is (A | α) and C2 is (¬B | β),
where A and B are atoms, α and β are the rest literals in C1 and C2, respectively,

resolution is the following inference rule:

(A | α) (¬B | β)
(α | β)σ

where σ is the mgu of A and B. The clause (α | β)σ produced by the resolution rule

is called resolvent of the resolution; C1 and C2 are the parents of the resolvent. We

use resolve(C1, C2) to denote the clause (α | β)σ.

This resolution rule is also called binary resolution, as it involves two clauses

as premises.

Example 6.2.2. Given a pair of clauses (p(f(x1)) | q(x1)) and (p(x2) | q(g(x2))).

The resolution on p will generate the resolvent (q(x1) | q(g(f(x1)))) with the mgu

[x2 ↼ f(x1)]; the resolution on q will generate the resolvent (p(f(g(x2))) | p(x2))

with the mgu [x1 ↼ g(x2)]. 2
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Proposition 6.2.3. The resolution rule is sound, that is, C1∧C2 |= resolve(C1, C2).

Proof. Suppose C1 is (A | α) and C2 is (¬B | β), A and B are unifiable and their

mgu is σ. Then resolve(C1, C2) = (α, β)σ. For any model I of C1 ∧ C2, I is also a

model of C1σ = Aσ ∨ ασ and C2σ = ¬Bσ ∨ βσ, because free variables are treated

as universally quantified variables. Since σ is a unifier of A and B, ασ = βσ. If Aσ

is false in I, then ασ must be true in I, otherwise C1σ will be false in I; If Aσ is

true in I, then ¬Bσ is false in I, so βσ must be true in I. In both cases, either ασ

or βσ is true in I, so (α ∨ β)σ is true in I. 2

By the above proposition, every resolvent is a logical consequence of the input

clauses, because the entailment relation is transitive. If the empty clause is gen-

erated, then we know that the input clauses are unsatisfiable. In other words, we

may use the resolution rule to design a refutation prover. Suppose we have some

axioms, A, and we want to see if some conjecture, B, is a logical consequence of

A. By the refutational strategy, we want to show that A ∧ ¬B is unsatisfiable, by

putting it into clausal form and finding a contradiction through resolution. We wish

the following properties hold.

• B is a logical consequence of A, i.e., A |= B, iff

• A ∧ ¬B is unsatisfiable, iff

• S, the clause set derived from A ∧ ¬B, is unsatisfiable, iff

• The empty clause can be generated by resolution from S.

Unfortunately, the last “iff” does not hold in first-order logic. Indeed, when

S is satisfiable, resolution will never generate the empty clause. If the empty clause

can be generated, we can claim that S is unsatisfiable, because resolution is sound.

However, when S is unsatisfiable, resolution may not generate the empty clause.

Example 6.2.4. Let S = {(p(x1) | p(y1)), (p(x2) | p(y2))}. From the first clause,

we have an instance of (p(a) | p(a)), which can be simplified to (p(a)); from the

second clause, we have an instance (p(a) | p(a)), which is simplified to (p(a)). A

resolution between (p(a)) and (p(a)) will generate the empty clause. This shows

that S is unsatisfiable.

One resolvent of the two clauses in S is p(x3) | p(y3))}, and we may add it

into S. Any other resolvent from S will be a renaming of the three clauses. In other

words, resolution alone cannot generate the empty clause from S. 2
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In propositional logic, we defined a proof system which uses the resolution

rule as the only single inference rule and showed that this proof system is a decision

procedure for propositional logic. In first-order logic, we do not have such a luck.

To get rid of the problem illustrated in the above example, we need the fol-

lowing inference rule:

Definition 6.2.5. (factoring) Let clause C be (A | B | α), where A and B are

literals and α are the rest literals in C. factoring is the following inference rule:

(A | B | α)
(A | α)σ

where σ is the mgu of A and B.

For the clause (p(x1) | p(y1)) in the previous example, factoring will generate

(p(x1)); for (p(x2) | p(y2)), factoring will generate (p(x2)). Now resolution will

generate the empty clause from (p(x1)) and (p(x2)).

Proposition 6.2.6. The factoring rule is sound, that is, C |= C ′, where C ′ is the

clause generated by factoring from C.

Proof. C ′ is an instance of C, i.e., C ′ = Cσ, where σ is the unifier used in factoring.

Any instance of a formula is a logical consequence of the formula. 2

Armed with resolution and factoring, now we can claim the following result

without a proof.

Theorem 6.2.7. (refutational completeness of resolution) A set S of clauses

is unsatisfiable iff the empty clause can be generated by resolution and factoring.

Though factoring is needed for the completeness of resolution, in practice,

factoring is rarely needed.

6.2.2 A Refutational Proof Procedure

For propositional logic, we introduced three deletion strategies for deleting

clauses without worrying about missing a proof:

• pure literal deletion: Clauses containing pure literals are discarded.

• tautology deletion: Tautology clauses are discarded.

• subsumption deletion: Subsumed clauses are discarded.
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The pure literal deletion and tautology deletion can be used without modification.

For the subsumption deletion, the rule is modified as follows:

Definition 6.2.8. (subsumption) Clause C1 subsumes clause C2 if there exists a

substitution σ such that every literal of C1σ appears in C2.

For example, (p(x, y) | p(y, x)) subsumes (p(a, b) | p(b, a) | q(a)) with σ =

[x ↼ a, y ↼ b].

The above deletion strategies can be integrated into the algorithm resolution

as follows.

Procedure 6.2.9. The procedure resolution(C) takes a set C of clauses and returns

false iff C is unsatisfiable. It uses preprocessing(C) to simplify the input clauses C.

The procedure subsumedBy(A, S) checks if clause A is subsumed by a clause in S.

The procedure factoring(A) takes clause A as input and generates the set of results

from the factoring rule on A, including A itself.

proc resolution(C)

1 G :=preprocessing(C); // G: given clauses

2 K := ∅; // K: kept clauses

3 while G 6= ∅ do
4 A := pickClause(G); // heuristic for picking a clause

5 G := G− {A};
6 N := ∅; // new clauses from A and K by resolution

7 for B ∈ K if resolvable(A,B) do

8 D := resolve(A,B);

9 if D = ( ) return false; // the empty clause is found

10 if subsumedBy(D,G ∪K) continue;

11 N := N ∪ factoring(D);

12 K := K ∪ {A};
13 for A ∈ G if subsumedBy(A,N) do G := G− {A};
14 for B ∈ K if subsumedBy(B,N) do K := K − {B};
15 G := G ∪N ;

16 return true; // K is saturated by resolution

The above procedure is almost identical to Algorithm 3.3.26 with two dif-

ferences: (a) factoring is used (line 11); (b) the termination of the procedure is

not guaranteed as it may generate an infinite number of new clauses. Thus, it is

not an algorithm. Despite of this, this procedure is a base for many resolution
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theorem provers, including McCune’s Otter and its successor Prover9, which will

be introduced shortly. In Prover9, the subsumption check at line 10 is called for-

ward subsumption and the subsumption checks at lines 13 and 14 are called back

subsumption.

Prover9 also uses another simplification rule called unit deletion.

Definition 6.2.10. (unit deletion) Unit deletion is the simplification rule that

deletes literal B from clause C if there exists a unit clause (A) and a substitution

σ such Aσ = ¬B (or ¬Aσ = B).

Unit deletion is sound because by the requirement, there is a resolution be-

tween (A) and C and the resolvent of this resolution will subsume C. For example,

if we have a unit clause (p(x, b)), then the literal p(a, b) in (p(a, b) | q(a)) can be

deleted to get a new clause (q(a)), which subsumes (p(a, b) | q(a)).
Unit deletion can be used at line 10, so that the new clause D is simplified by

the unit clauses in G ∪K. This is called forward unit deletion. Back unit deletion

can be inserted at lines 13 and 14 when the unit clauses in N are used to simplify

clauses in G ∪K.

6.3 Ordered Resolution

In section 3.3.2, we listed some well-known resolution strategies which add

restrictions to the use of the resolution rule: unit resolution, input resolution, or-

dered resolution, positive resolution, negative resolution, set of support, and linear

resolution. They can be carried over to first-order logic without modification, with

the exception of ordered resolution. The procedure resolvable(A,B) (line 7 of reso-

lution) is the place where various restrictions are implemented so we can use these

restricted resolution strategies.

For unit resolution and input resolution, they are still incomplete in general,

but are equivalent in the sense that there is a resolution proof for one strategy, then

there exists a resolution proof for the other strategy.

6.3.1 Simplification Orders

To use ordered resolution in first-order logic, we need a partial order to com-

pare atoms. We call this order as “term order”, although atoms, literals, and clauses

are not terms, the term orders we present here apply to those objects as well.

There are several requirements on the term orders used for ordered resolution

and we term it as “simplification order”.
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Definition 6.3.1. (stable and monotonic relation) A binary relation R over

T (F,X) is said to be stable if for any term s and t, R(s, t) implies R(sσ, tσ) for

any substitution σ : X −→ T (F,X). R is said to be monotonic if R(s, t) implies

R(f(..., s, ...), f(..., t, ...)) for any function or predicate symbol f .

For a stable order �, we cannot have f(y) � x because f(y)σ � xσ does not

hold for σ = [x ↼ f(y)].

Definition 6.3.2. (simplification order) The order � is called a simplification

order if it is well-founded, stable and monotonic. We write s ≺ t if t � s; s � t if

s � t or s ≈ t ( i.e., s and t are equivalent in the order).

The reason we stick to well-founded orders because well-founded orders allow

us to use mathematical induction. Let S be a set with a well-found order �. To

show a property P (x) holds for every x ∈ S, we need to do two things:

• For every minimal element m ∈ S, P (m) is true.

• Prove that P (x) is true, assuming P (x′) is true for every x′ and x � x′.

The above is called the well-founded induction principle.

There are many well-founded orders over different sets. For example, > over

the set of natural numbers is well-founded; > on the set of integers is not well-

founded. Any partial order over a finite set is well-founded.

There are many ways to obtain well-found orders. A multiset or bag over a set

S of elements is a modification of the concept of a subset of S, that, unlike a set,

allows for multiple instances for each of its elements from S. The union, intersection,

and subtraction operations can be extended over multisets. For example, let S1 =

{a, b, c} and S2 = {a, a, b, b}, then S1 ∪ S2 = {a, a, a, b, b, b, c, c}, S1 ∩ S2 = {a, b, c},
and S1 − S2 = {a}. If there exists an order over the elements of S, we may extend

this order to compare the multisets of S.

Proposition 6.3.3. Let � be a well-founded order over a set S. The order �mul

over the multisets of S is well-founded, where, for any multisets S1, S2 over S,

S1 �mul S2 iff for any y ∈ S2 − S1, there exists x ∈ S1 − S2, x � y.

For example, if c � b � a, then S1 �mul S2 for S1 = {a, b, b, c} and S2 =

{a, a, b, c}, because S1 − S2 = {b}, S2 − S1 = {a}, and b � a.

One popular way is to use lexicographic combination from well-found orders

of simpler sets.
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Proposition 6.3.4. Let �i be a well-founded order over the set Si, 1 < i ≤ n.

The lexicographic order �lex over S1 × S2 × · · · × Sn is well-founded, where for any

〈x1, x2, ..., xn〉, 〈y1, y2, ..., yn〉 ∈ S1 × S2 × · · · × Sn, 〈x1, x2, ..., xn〉 �lex 〈y1, y2, ..., yn〉
iff there exists k, 1 ≤ k ≤ n, such that xi �i yi for 1 ≤ i < k and xk �k yk.

The lexicographic combination can be extended to compare two sequences

of different lengths, assuming a non-empty sequence is greater than the empty

sequence, like the dictionary order.

Given a first-order language L = (P, F,X,Op), let Σ = P ∪ F ∪ Op. We say

� is a precedence if � is a well-founded total order over Σ. Note that if Σ is finite,

� is trivially well-founded. For any term t ∈ T (F,X), let var(t) denote the set of

variables appearing in t. We may extend any precedence to terms, as well as to

atoms and literals, by several different ways.

• LPO (Lexicographic Path Order). The term order is determined entirely by

the symbol precedence.

• RPO (Recursive Path Order). The term order is determined entirely by the

symbol precedence.

• KBO (Knuth-Bendix Order). This order uses a weighting function on symbols

as well as the symbol precedence. The weighting function is used first, and

the symbol precedence breaks ties.

The formal definitions of LPO, RPO, and KBO are here:

Definition 6.3.5. (�lpo) The lexicographical path order �lpo over T (F,X) is de-

fined recursively as follows: s �lpo t if s 6= t and either t ∈ var(s) or s =

f(s1, ..., sm) �lpo t = g(t1, ..., tn) by one of the following conditions:

1. f � g and s �lpo ti for 1 ≤ i ≤ n, or

2. f ≈ g, [s1, ..., sm] �lex
lpo [t1, ..., tn], and s �lpo ti for 1 ≤ i ≤ n, or

3. f ≺ g and there exists j, 1 ≤ j ≤ m, sj �lpo t.

Example 6.3.6. Let ∗ � +, s be x∗ (y+ z) and t be (x∗ y)+ (x∗ z). Then s �lpo t

by condition 1, because ∗ � +, s �lpo x∗y, x∗z, both by condition 2. That is, from

[x, (y + z)] �lex
lpo [x, y], [x, z], we have s �lpo x ∗ y, x ∗ z. 2

Proposition 6.3.7. �lpo is a simplification order and is total on ground terms, if

the precedence � is a well-founded total order.
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Definition 6.3.8. (�rpo) The recursive path order �rpo over T (F,X) is defined

recursively as follows: s �rpo t if s 6= t and either t ∈ var(s) or s = f(s1, ..., sm) �rpo

t = g(t1, ..., tn) by one of the following conditions:

1. f � g and s �rpo ti for 1 ≤ i ≤ n, or

2. f ≈ g and {s1, ..., sm} �mul
rpo {t1, ..., tn}, or

3. f ≺ g and there exists j, 1 ≤ j ≤ m, sj �rpo t.

Proposition 6.3.9. �rpo is a simplification order, if the precedence � is a well-

founded total order.

Example 6.3.10. Let s = (x ∗ y) ∗ z and t = x ∗ (y ∗ z), then s �lpo t because of

condition 2: [x∗y, z] �lex
lpo [x, y ∗ z]. However, �rpo cannot compare these two terms,

because {x ∗ y, z} and {x, y ∗ z} are not comparable by �mul
rpo . Moreover, �rpo treats

(a ∗ a) ∗ a and a ∗ (a ∗ a) as “equal terms”. 2

By definition, a partial order is an antisymmetry, transitive, and reflexive

relation. Since �rpo violates the antisymmetry condition, it is sometimes called

“quasi-order”. We can easily modify �rpo so that when {s1, ..., sm} ≈rpo {t1, ..., tn},
we may compare them using �lex

rpo, so that �rpo can be a total order on ground

terms.

Because �rpo cannot compare s = x∗(y∗z) and t = (x∗y)∗z, and is neither a

partial order nor a total order on ground terms in the strict sense, it is less popular

than �lpo in practice.

The Knuth-Bendix order (�kbo) uses the weights first to compare terms. When

two terms have the same weight, the precedence relation is used to break ties. Using

the weights gives us flexibility as well as complexity.

Definition 6.3.11. (weight function) A function w : X ∪ Σ −→ N is said be a

weight function if it satisfies (i) w(c) > 0 for every constant c ∈ Σ, and (ii) there

exists at most one unary function symbol f ∈ Σ such that w(f) = 0 and f must

maximal in the precedence if w(f) = 0.

The weight function w can be extended a function over terms or formulas as

follows:
w(x) = w0 for any variable x;

w(f(t1, ..., tn)) = w(f) + w(t1) + · · ·+ w(tn)

where w0 denotes the minimal weight of all constants.
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Definition 6.3.12. (�kbo) Let w be a weight function and mv(t) be the multiset

of variables appearing in t. The Knuth–Bendix order �kbo over T (F,X) defined

recursively as follows: s �kbo t if w(s) ≥ w(t) and mv(s) ⊇ mv(t); s �kbo t if

s �kbo and (a) w(s) > w(t) or (b) s = f(s1, ..., sm), t = g(t1, ..., tn), and one of the

following conditions is true:

1. f � g, or

2. f ≈ g and [s1, ..., sm] �lex
kbo [t1, ..., tn], or

3. f ≺ g and there exists j, 1 ≤ j ≤ m, sj �kbo t.

We like to point out that the condition mv(s) ⊇ mv(t) is necessary. Let

s = f(g(x), y) and t = f(y, y). If w(g) > 0, then w(s) > w(t), but mv(s) = {x, y} ⊇
{y, y} = mv(t) does not hold. If we ignore the condition mv(s) ⊇ mv(t), then

s �kbo t would imply sθ �kbo tθ for θ = [y ↼ f(x)], where sθ = tθ = f(g(x), g(x)).

Example 6.3.13. Let w(f) = w(a) = 1, w(b) = 2, then f(x, b, a) �kbo f(a, a, b) by

condition (b.2), because x �kbo a and b �kbo a. Note that neither �lpo nor �rpo can

compare p(x, b, y) and p(a, a, y). 2

Proposition 6.3.14. �kbo is a simplification order and is total on ground terms,

if the precedence � is a well-founded total order.

Example 6.3.15. Let the precedence relation be b/1 � a/1 � e/0, where a and b

are unary function symbols and e is a constant. We will write a(a(b(a(e)))) as aaba

for brevity. Let w(e) = 1 and the weights of a and b, as well as the least twelve

terms (ignoring e), with the exception of the last row, are listed (in the order of

≺kbo) in the following table:

w(a) w(b) the least 12 terms in the order of ≺kbo

1 1 a, b, aa, ab, ba, bb, aaa, aab, aba, abb, baa, bab, ...
2 1 b, a, bb, ab, ba, bbb, aa, abb, bab, bba, bbbb, abb, ...
2 3 a, b, aa, ab, ba, aaa, bb, aab, aba, baa, aaaa, abb, ...
2 0 b, bb, ..., bi, ..., a, ab, ..., abi, ..., ba, bab, babb, ...

On the other hand, the least terms under �lpo or �rpo are

a, ..., ai, ..., b, ab, ..., aib, ..., ba, aba, ..., aiba, ..., baa, abaa, ..., aibaa, ...

2
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The above example shows the flexibility of �kbo, which provides various ways

of comparing two terms by changing weight functions as needed. However, �kbo

lacks the flexibility of comparing terms like x ∗ (y+ z) and x ∗ y+ x ∗ z. We cannot

make x ∗ (y + z) �kbo x ∗ y + x ∗ z, while x ∗ (y + z) �lpo x ∗ y + x ∗ z if ∗ � + and

x ∗ y + x ∗ z �lpo x ∗ (y + z) if + � ∗.
Now when we say to use a simplification order �, we could use either �lpo,

�rpo, or �kbo.

Example 6.3.16. Let the operators ↔,⊕,→,¬,∨,∧ be listed in the descending

order of the precedence �, then all the right sides of the following equivalence

relations are less than their left sides by either �lpo or �rpo.

A⊕B ≡ (A ∨B) ∧ (¬A ∨ ¬B);
A↔ B ≡ (A ∨ ¬B) ∧ (¬A ∨B);
A→ B ≡ ¬A ∨B;
¬¬A ≡ A;

¬(A ∨B) ≡ ¬A ∧ ¬B;
¬(A ∧B) ≡ ¬A ∨ ¬B;

A ∨ (B ∧ C) ≡ (A ∨B) ∧ (A ∨ C).

These equivalence relations are used to translate a formula into CNF. Thus, the term

orderings like �rpo and �lpo can be used to show the termination of the process of

converting a formula into CNF. 2

If we want to convert formulas into DNF, then the precedence relation should

be ∧ � ∨, so that the termination of converting a formula into DNF can be shown

by �rpo and �lpo.

6.3.2 Completeness of Ordered Resolution

Let � be a simplification order, which is a well-found, stable partial order over

the set of atoms and total over the set of ground atoms, we will use � in ordered

resolution. Given �, an atom A ∈ S is said to be maximal if there is no B ∈ S such

that B � A. A is said to be minimal if there is no B ∈ S such that A � B. S may

have several minimal or maximal atoms. In fact, an atom A can be both minimal

and maximal in S if A cannot be compared by � with any other atom of S. Literals

are compared by comparing their atoms. Since a clause is represented by a set of

literals, we may say a literal is maximal or minimal in a clause. For example, the

three atoms in (p(x, y) | p(y, z) | p(x, z)) are not comparable under any stable �,
so each atom is both minimal and maximal.
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Definition 6.3.17. (ordered resolution) Given a simplification order � over the

set of atoms, the ordered resolution is the resolution with the condition that A is a

maximal atom in α and B is a maximal atom in β:

(A | α) (¬B | β)
(α | β)σ

Given a set S of clauses, let S∗ denote the set of clauses saturated by ordered

resolution and factoring. That is, any resolvent from ordered resolution on any two

clauses of S∗ is in S∗ and any clause from factoring on any clause in S∗ is also in

S∗. Let GC be the set of all ground instances of S∗.

Lemma 6.3.18. GC is saturated by ordered resolution.

Proof. Suppose (g | α) and (g | β) are in GC, where g is the maximal atom in

both clauses. The resolvent of the two clauses is (α | β). We need to show that

(α | β) ∈ GC.

Let (g | α) be an instance of (A | α′) ∈ S∗, i.e., g = Aθ and α = α′θ for some

substitution θ. We assume that A is the only literal in (A | α′) such that Aα = g;

otherwise, we use factoring to achieve this condition. Similarly, let (g | β) be an

instance of (B | β′) ∈ S∗, i.e., g = Bγ and β = β′γ for some γ, and B is the only

literal in (B | β′) such that Bγ = g.

Since g = Aθ = Bγ is maximal, A and B must be unifiable and maximal in

(A | α′) and (B | β), respectively. Let λ be the mgu of A and B, then the resolvent

of (A | α′) and (B | β′) by ordered resolution is (α′ | β′)λ, which must be in S∗.

Since θ = λθ′ and γ = λγ′ for some θ′ and γ′, we must have (α | β) = (α′ | β′)λθ′γ′,

which is an instance of (α′ | β′)λ. Hence, (α | β) ∈ GC. 2

Theorem 6.3.19. (refutational completeness of ordered resolution) S is

unsatisfiable iff the empty clause is in S∗.

Proof. If the empty clause is in S∗, since S |= ⊥, S must be unsatisfiable.

If the empty clause is not in S∗, we will construct a Herbrand model for S

from GC, which is the set of all ground instances of S∗. Obviously, the empty

clause is not in GC. Let GA be the set of ground atoms appearing in GC. By the

assumption, � is a well-founded total order over GA.

We start with an empty model H in which no atoms have a truth value. We

then add ground literals into H one by one, starting from the minimal atom, which

exists because < is well-founded. Let g be any atom in GA, and

pc(g) = {(g | α) | g is maximal in (g | α) ∈ G}
nc(g) = {(g | β) | g is maximal in (g | β) ∈ G}

upto(g) =
∪

g′∈GA,g′≤g(pc(g
′) ∪ nc(g′))
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That is, pc(g) contains all the clauses which contains g as its maximal literal; pc(g)

contains all the clauses which contains g as its maximal literal; and upto(g) contains

all the clauses from GC whose maximal literals are less or equal to g.

We claim that after g or g is added into H, the following the property is true:

Claim: H is a model of upto(p) after g or g is added into H.

Let g1 be the minimal atom of GA. We cannot have both (g1) and (g1) ∈ GC;

otherwise the empty clause will be generated from (g1) and (g1). By Lemma 6.3.18,

the empty clause will appear in S∗, a contradiction. If (g1) ∈ GC, we add g1 into

H (it means H(g1) = 1); otherwise, we add g1 into H (it means H(g1) = 0). It is

trivial to check that H is a model of upto(g1), so the claim is true for g1. This is

the base case of the induction based on <.

Let g be the minimal atom in GA which has no truth value in H. Assume as

the induction hypothesis that the claim is true for all g′ < g. If there exists a clause

(g | α) ∈ pc(g) such that H(α) = 0, we add g into H; otherwise, add g into H.

Suppose g is added into H, then every clause in pc(g) will be true under H.

If there is exists a clause (g | β) ∈ nc(g) such that H(β) = 0, then there exists an

ordered resolution between (g | α) and (g | β), and their resolvent is (α | β). By

Lemma 6.3.18, (α | β) ∈ GC. Since every literal g′ of (α | β) is less than g, by

the induction hypothesis, (α | β) is true in H. If H(α) = 0, then H(β) = 1. That

means no clause in nc(g) will be false in H.

Now suppose g is added into H, the above analysis still holds by changing the

role of p and p. In both cases, all clauses in pc(g) and nc(g) are true in H after

adding g or g into H. Thus the claim is true for every g ∈ GA. Once every atom

in GA are processed, we have found a model H of GC by the claim. Since GC is

the set of all ground instances of S∗, H is also a model of S∗ or S. In other words,

S is satisfiable. 2

Note that the model construction in the above proof is not algorithmic, be-

cause GC is infinite in general. The induction is sound because it is based on the

well-founded order �.
Now it is easy to prove Theorem 6.2.7: If the empty clause is generated from

S, then S must be unsatisfiable; if S is unsatisfiable, then the empty clause will be

generated by ordered resolution, which is a special case of resolution.

A traditional proof of Theorem 6.2.7 uses Herbrand’s Theorem:

Theorem 6.3.20. (Herbrand’s Theorem) A set S of clauses is unsatisfiable iff

there exists a finite, unsatisfiable, ground instances of S.

A proof of Theorem 6.2.7 goes as follows:
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1. If S is unsatisfiable, then by Herbrand’s Theorem, there exists a finite set G

of ground instances of S.

2. Resolution for propositional logic will find a proof from G, treating each

ground atom in G as a propositional variable.

3. This ground resolution proof can be lifted to a general resolution proof in S,

using a lemma similar to Lemma 6.3.18.

6.4 Prover9: A Resolution Theorem Prover

Prover9 is a full-fledged automated theorem prover for first-order logic based

on resolution. Prover9 is the successor of the Otter prover; both Otter and Prover9

are created by William McCune (1953-2011).

6.4.1 Input Formulas to Prover9

Prover9 has a fully automatic mode in which the user simply gives it formulas

representing the problem. A good way to learn about Prover9 is to browse and

study the example input and output files that are available with the distribution of

Prover9. Let us look at an example.

Example 6.4.1. Once we can specify the following puzzle in first-order logic, it is

trivial to find a solution by Prover9:

Jack owns a dog. Every dog owner is an animal lover. No animal lover

kills an animal. Either Jack or Curiosity killed the cat, who is named

Tuna. Did Curiosity kill the cat?

The following first-order formulas come from the statements of the puzzle:

(1) ∃x(dog(x) ∧ owns(Jack, x))
(2) ∀x(∃y(dog(y) ∧ owns(x, y))→ animalLover(x))
(3) ∀x(animalLover(x)→ (∀y(animal(y)→ −kills(x, y))))
(4) kills(Jack, Tuna) ∨ kills(Curiosity, Tuna)
(5) cat(Tuna)
(6) ∀x(cat(x)→ animal(x))

The goal is to show that kills(Curiosity, Tuna). The above formulas can be written

in Prover9’s syntax as follows:
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exists x (dog(x) & owns(Jack, x)).

all x (exists y (dog(y) & owns(x, y)) -> animalLover(x)).

all x (animalLover(x) -> (all y (animal(y) -> -kills(x, y)))).

kills(Jack, Tuna) | kills(Curiosity, Tuna).

cat(Tuna).

all x (cat(x) -> animal(x)).

2

From this example, we can see that each formula in Prover9 is ended with

“.”, and we use “->” for →, “|” for ∨, “&” for ∧, “−” for ¬, “all” for ∀, and
“exists” for ∃. In fact, the top most “all” is optional as free variables are assumed

to universally quantified. Prover9 will convert formulas in the “assumptions” list

and the negation of the formulas in the “goals” list into clauses before resolution is

called.

Note that Prover9 uses a different precedence for the quantifiers “all” and

“exists”; they are higher than other Boolean operators. For instance,

exists x dog(x) & owns(Jack, x)

represents the formula (∃x dog(x))∧owns(Jack, x), not ∃x(dog(x)∧owns(Jack, x))
as assumed in this book. To avoid confusions, insert a pair of parentheses when you

are uncertain about the scope of a quantified variable.

Prover9 implements the procedure resolution (Procedure 6.2.9) with bells and

whistles. The given list is called the “sos” (set of support) list and the kept list is

called the “usable” list. If you already have a set of clauses ready, you may use the

“usable” list and the “sos” list as follows:

formulas(usable). % the kept list

...

end_of_list.

formulas(sos). % the given list

...

end_of_list.

.

The resolution is always done between a clause from the sos list (the given

list) and some clauses from the usable list (the kept list).

A basic Prover9 command on a linux machine will look like
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prover9 -f Tuna.in > Tuna.out

or

prover9 < Tuna.in > Tuna.out

where the file named “Tuna.in” contains the input to Prover9 and the file named

“Tuna.out” contains the output of Prover9. If the file “Tuna.in” contains the for-

mulas in Example 6.4.1, then the file “Tuna.out” will contain the following proof:

========================== PROOF =============================

% -------- Comments from original proof --------

% Proof 1 at 0.03 (+ 0.05) seconds.

% Length of proof is 19.

% Level of proof is 6.

% Maximum clause weight is 6.

% Given clauses 0.

1 (exists x (dog(x) & owns(Jack,x))). [assumption].

2 (all x ((exists y (dog(y) & owns(x,y))) -> animalLover(x))).

[assumption].

3 (all x (animalLover(x) -> (all y (animal(y) -> -kills(x,y)))))

[assumption].

4 (all x (cat(x) -> animal(x))). [assumption].

5 kills(Curiosity,Tuna). [goal].

6 -dog(x) | -owns(y,x) | animalLover(y). [clausify(2)].

7 dog(c1). [clausify(1)].

8 -owns(x,c1) | animalLover(x). [resolve(6,a,7,a)].

9 owns(Jack,c1). [clausify(1)].

10 animalLover(Jack). [resolve(8,a,9,a)].

11 -animalLover(x) | -animal(y) | -kills(x,y). [clausify(3)].

12 -cat(x) | animal(x). [clausify(4)].

13 cat(Tuna). [assumption].

14 animal(Tuna). [resolve(12,a,13,a)].

15 -animal(x) | -kills(Jack,x). [resolve(10,a,11,a)].

16 kills(Jack,Tuna) | kills(Curiosity,Tuna). [assumption].

17 -kills(Curiosity,Tuna). [deny(5)].

18 -kills(Jack,Tuna). [resolve(14,a,15,a)].

19 $F. [back_unit_del(16),unit_del(a,18),unit_del(b,17)].
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========================== end of proof ======================

In Prover9, the empty clause is denoted by $F. In each clause, the literals are

numbered by a, b, c, .... For example, to generate clause 18, -kills(Jack, Tuna),

from

14 animal(Tuna). [resolve(12,a,13,a)].

15 -animal(x) | -kills(Jack,x). [resolve(10,a,11,a)].

Prove9 performed a resolution on the first literal (a) of clause 14 and the first literal

(a) of clause 15, with the mgu x ↼ Tuna, and the resolvent is

18 -kills(Jack,Tuna). [resolve(14,a,15,a)].

The message followed by each clause can be checked by either human or machine,

to ensure the correctness of the proof.

6.4.2 Inference Rules and Options

There are two types of parameters in Prover9: Boolean flags and numeric

parameters. To change the default values of the former type, use set(flag) or

clear(flag). The latter can be changed by assign(parameter, value). For

example, the default automatic mode is set by

set(auto).

Turning “auto” on will cause a list of other flags to turn on, including setting

up “hyper-resolution” as the main inference rule for resolution. Hyper-resolution

reduces the number of intermediate resolvents by combining several resolution steps

into a single inference step.

Definition 6.4.2. (hyper-resolution) Positive hyper-resolution consists of a se-

quence of positive resolutions between one non-positive clause (called nucleus) and a

set of positive clauses (called satellites), until a positive clause or the empty clause

is produced.

The number of positive resolutions in a hyper-resolution is equal to the number

of negative literals in the nucleus clause.

Example 6.4.3. Let the nucleus clause be (p(x) | q(x) | r(x)), and the satellite

clauses be (q(a) | r(b)) and (p(a) | r(c)). The first resolution between the nucleus
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and the first satellite produces (p(a) | r(a) | r(b)). The second resolution between

the resolvent and the second satellite produces the second resolvent (r(a) | r(b) |
r(c)), which is the result of positive hyper-resolution between the nucleus and the

satellites. 2

Negative hyper-resolution can be defined similarly by replacing “positive” by

“negative”. Hyper-resolution means both positive hyper-resolution and negative

hyper-resolution.

Example 6.4.4. In section 3.2.2, we discussed the Hilbert system which consist of

three axioms and one inference rule, i.e., Modus Ponens. To prove x → x in the

Hilbert system, we may use the following input: 2

op(400, infix_right, ["->"]). % infix operator

formulas(usable).

P((n(y) -> n(x)) -> (x -> y)).

-P(x) | -P(x -> y) | P(y).

end_of_list.

formulas(sos).

P(x -> (y -> x)).

P((x -> (y -> z)) -> ((x -> y) -> (x -> z))).

-P(a -> a).

end_of_list.

Prover9 will produce the following proof:

1 -P(x) | -P(x -> y) | P(y). [assumption].

2 P(x -> y -> x). [assumption].

3 P((x -> y -> z) -> (x -> y) -> x -> z). [assumption].

4 -P(a -> a). [assumption].

5 P(x -> y -> z -> y). [hyper(1,a,2,a,b,2,a)].

7 P((x -> y) -> x -> x). [hyper(1,a,2,a,b,3,a)].

15 P(x -> x). [hyper(1,a,5,a,b,7,a)].

16 $F. [resolve(15,a,4,a)].

The hyper-resolution is the default inference rule for the automatic mode. If you

like to see a binary resolution proof, you have to turn off “auto” and turn on

“binary resolution”:
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clear(auto).

set(binary_resolution).

Turning off hyper-resolution, Prover9 will produce the following proof:

1 -P(x) | -P(x -> y) | P(y). [assumption].

2 P(x -> y -> x). [assumption].

3 P((x -> y -> z) -> (x -> y) -> x -> z). [assumption].

4 -P(a -> a). [assumption].

5 -P(x) | P(y -> x). [resolve(2,a,1,b)].

6 -P(x -> y -> z) | P((x -> y) -> x -> z). [resolve(3,a,1,b)].

10 P((x -> y) -> x -> x). [resolve(6,a,2,a)].

19 P(x -> (y -> z) -> y -> y). [resolve(10,a,5,a)].

20 -P(x -> y) | P(x -> x). [resolve(10,a,1,b)].

45 P(x -> x). [resolve(20,a,19,a)].

46 $F. [resolve(45,a,4,a)].

Definition 6.4.5. Unit-resulting resolution consists of a sequence of unit resolu-

tions between one non-unit clause (called nucleus) and a set of unit clauses (called

electrons), until a unit clause or the empty clause is produced.

Since positive resolution is complete and unit resolution is not complete,

hyper-resolution is complete and unit-resulting resolution is not complete. To use

“unit-resulting resolution”, use the command

set(ur_resolution).

To use “hyper-resolution” in Prover9, use the command

set(hyper_resolution).

This option will cause the flags pos hyper resolution and neg hyper resolution

to be true.

The resolution inference rules provided by Prover9 include “binary resolution”,

“hyper resolution”, “ordered resolution”, and “unit-resulting resolution”. To use

“ordered resolution”, use the command

set(ordered_res).

This option puts restrictions on the binary and hyper-resolution inference

rules. It says that resolved literals in one or more of the parents must be maximal

in the clause. Continuing from the previous example, if we turn on the ordered

resolution flag, the proof generated by Prover9 will be the following.
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1 -P(x) | -P(x -> y) | P(y). [assumption].

2 P(x -> y -> x). [assumption].

3 P((x -> y -> z) -> (x -> y) -> x -> z). [assumption].

4 -P(a -> a). [assumption].

5 -P(x) | P(y -> x). [resolve(2,a,1,b)].

6 -P(x -> y -> z) | P((x -> y) -> x -> z). [resolve(3,a,1,b)].

8 P(x -> y -> z -> y). [resolve(5,a,2,a)].

9 P(x -> y -> z -> u -> z). [resolve(8,a,5,a)].

10 P(x -> y -> z -> u -> w -> u). [resolve(9,a,5,a)].

14 P((x -> y) -> x -> x). [resolve(6,a,2,a)].

19 -P(x -> y) | P(x -> x). [resolve(14,a,1,b)].

21 P(x -> x). [resolve(19,a,10,a)].

22 $F. [resolve(21,a,4,a)].

6.4.3 Simplification Orders in Prover9

Prover9 has several methods available for comparing terms or literals. The

term orders are partial (and sometimes total on ground terms), and they are used to

decide which literals in clauses are admissible for application of ordered resolution.

Several of the resolution rules require that some of the literals be maximal in their

clause.

The symbol precedence is a total order on function and predicate symbols (in-

cluding constants). The symbol weighting function maps symbols to non-negative

integers. Prover9 supports three term orders: LPO (Lexicographic Path Order),

RPO (Recursive Path Order), and KBO (Knuth-Bendix Order), which are intro-

duced in secton 6.3.1.

Here is the command for choosing a simplification order.

assign(order, string). % default string=lpo, range [lpo,rpo,kbo]

This option is used to select the primary term order to be used for determining

maximal literals in clauses. The choices are “lpo” (Lexicographic Path Order),

“rpo” (Recursive Path Order), and “kbo” (Knuth-Bendix Order).

The default symbol precedence (for LPO, RPO, and KBO) is given by the

following rules (in order).

• function symbols < non-equality predicate symbols;

• for function symbols: c/0 < f/2 < g/1 < h/3 < i/4 < ..., where c is any

constant, f is any function of arity 2, g is any function of arity 1, ... (note the

position of g/1);
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• for predicate symbols: lower arity < higher arity;

• non-Skolem symbols < Skolem symbols;

• for Skolem symbols, the lower index is the lesser;

• for non-Skolem symbols, more occurrences < fewer occurrences;

• the lexical ASCII order (UNIX strcmp() function).

The function order and predicate order commands can be used to change

the default symbol precedence. They contain lists of symbols ordered by increasing

precedence. For example,

predicate_order([=, <=, P, Q]). % = < <= < P < Q

function_order([a, b, c, +, *, h, g]). % a < b < c < + < * < h < g

We need two separate commands for defining the precedence, because we assume

that predicate symbols are always greater than function symbols in the precedence.

The used symbol precedence for a problem is always printed in the output file (in

the section PROCESS INPUT).

6.5 Exercise Problems

1. Let θ = [x ↼ u, y ↼ f(g(u)), z ↼ f(u)] and σ = [u ↼ x, x ↼ f(u), y ↼

a, z ↼ f(u)]. Compute θσ and σθ. Among θ, σ, θσ, and σθ, which substitu-

tions are idempotent?

2. Use the rule-based unification algorithm unify to decide if the following pairs

of terms are unifiable or not, and provide each state in unify after applying a

transformation rule.

(a) p(x, a)
.
= p(f(y), y)

(b) p(x, f(x))
.
= p(f(y), y)

(c) p(f(a), g(x))
.
= p(y, y)

(d) q(x, y, f(y))
.
= q(u, h(v, v), u)

(e) q(a, x, f(g(y)))
.
= q(z, f(z), f(u))

3. How to modify unify(s, t) so that it can be used to decide if a set S of terms

are unifiable? That is, find an idempotent substitution σ and a term t such

that such that sσ = t for every s ∈ S.
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4. Find the mgu of s = f(f(...f(f(a, x1), x2), ...), xn) and

t = f(xn, f(xn−1, f(..., f(x1, a)...))) for n = 5.

5. Create the term graph G = (V,E) for each of the following pairs of terms:

(a) s = p(x, a) and t = p(f(y), y)

(b) s = p(x, f(x)) and t = p(f(y), y)

(c) s = q(x, y, f(y)) and t = q(u, h(v, v), u)

(d) s = q(a, x, f(g(y))) and t = q(z, f(z), f(u))

(e) s = f(f(f(f(a, x1), x2), x3), x4) and t = f(x4, f(x3, f(x2, f(x1, a))))

and show the equivalence classes of V after calling unify1 with a success.

6. Provide the pseudo code for the procedure postOccurCheck used in lunify.

What is the complexity of your algorithm?

7. Design an efficient algorithm and provide its pseudo code for creating the

mgu when the procedure lunify returns true. What is the complexity of your

algorithm?

8. Show that all the left side s of each equivalence relation in Example 6.3.16 is

greater than their right side t by �lpo, and explain what precedence is used

and what conditions of �lpo are used for s �lpo t.

9. Show that all the left side s of each following equation is greater than their

right side t by �lpo, and explain what precedence is used and what conditions

of �lpo are used for s �lpo t.

x× (y + z) = (x× y) + (x× z)
(y + z)× x = (y × x) + (z × x)
(x× y)× z = x× (y × z)

Can you use �rpo or �kbo to achieve the same result? Why?

10. Choose with justification a simplification order from �lpo, �rpo and �kbo such

that the left side s is greater than the right side t for each of the following

equations (which defines the Ackermann’s function):

A(0, y) = s(y)
A(s(x), 0) = A(x, s(0))

A(s(x), s(0)) = A(x,A(s(x), y))
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11. Given the following statements:

Tony, Tom and Liz belong to the Hoofers Club. Every member of

the Hoofers Club is either a skier or a mountain climber or both.

No mountain climber likes rain, and all skiers like snow. Liz dislikes

whatever Tony likes and likes whatever Tony dislikes. Tony likes

rain and snow.

The “Hoofers Club problem” asks for the solution of the following question:

“Is there a member of the Hoofers Club who is a mountain climber but not a

skier?” Please find the following resolution proofs for “Hoofers Club problem”:

(a) unit, (b) input, (c) positive, (d) negative, and (e) linear resolutions.

12. Use Prover9 to answer the question in the “Hoofers Club problem” of the

previous problem. Please prepare the input to Prover9 and turn in the output

file of Prover9.

13. Use binary resolution, hyper-resolution and ur-resolution, respectively, of Prover9

to answer the question that “Is John happy?” from the following statements:

Anyone passing his logic exams and winning the lottery is happy.

But anyone who studies or is lucky can pass all his exams. John did

not study but he is lucky. Anyone who is lucky wins the lottery.

14. Use hyper-resolution and ur-resolution, respectively, of Prover9 to show that

“the sprinklers are on” from the following statements:

Someone living in your house is wet. If a person is wet, it is because

of the rain, the sprinklers, or both. If a person is wet because of

the sprinklers, the sprinklers must be on. If a person is wet because

of rain, that person must not be carrying any umbrella. There is

an umbrella in your house, which is not in the closet. An umbrella

that is not in the closet must be carried by some person who lives

in that house. Nobody are carrying any umbrella.

Please prepare the input to Prover9 and turn in the output file of Prover9.

15. Following the approach illustrated in Example 6.4.4, use Prover9 to prove that
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the following properties are true in the Hilbert system:

(a) (x→ y)→ ((y → z)→ (x→ z))
(b) (x→ (y → z))→ (y → (x→ z))
(c) ¬x→ (x→ y)
(d) x→ (¬x→ y))
(e) ¬¬x→ x
(f) x→ ¬¬x
(g) (x→ ¬x)→ ¬x
(h) (¬x→ x)→ x
(i) (x→ y)→ (¬y → ¬x)
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CHAPTER 7

EQUATIONAL LOGIC

There are many equivalence relations in logic. When looking at a semantic

level, we have logical equivalence and equal satisfiability, which are denoted by the

symbols ≡ and ≈, respectively, for both propositional and first-order logics. When

looking at a syntactic level, we have the logical operator ↔ to express the equality

between two statements. Since a first-order language has two types of objects, i.e.,

formulas and terms, ↔ is used for the formulas, the conventional symbol for the

equality of terms is “=”, which is a predicate symbol. Instead, we have been using

“=” as a syntactical relation outside of the logical languages.

7.1 Equality of Terms

The equality is an omnipresent and important relation in every field of the

mathematics. For example, how would you specify that “for every x, there exists

a unique y such that the relation p(x, y) holds”? For example, if the meaning of

p(x, y) is “x is the mother of y”, then how would you state in first-order logic that

“everybody has a unique mother”? If the meaning of p(x, y) is f(x) = y, then how

would you state that “the function f(x) has a unique value”? Using =, the answer

is easy:

∀x∃y p(x, y) ∧ (∀z p(x, z)→ y = z)

The above formula is often denoted by ∀x∃!y p(x, y) in mathematics. In fact, when

we translate a first-order formula into a propositional formula for searching a finite

model, we used the formula

(f(x1, ..., xk) 6= y1 | f(x1, ..., xk) 6= y2 | y1 = y2),

which states that f(x1, ..., xk) has a unique value. Using “=” gives us higher ex-

pressive power to specify statements.

• We can express “there are at least two elements x such that A(x) holds” as

∃x∃y x 6= y ∧ A(x) ∧ A(y).

• We can express “there are at most two elements x such that A(x) holds” as

∀x∀y∀z (A(x) ∧A(y) ∧A(z))→ x = y ∨ y = z ∨ x = z) This states that if we

have three elements a for which A(a) holds, then two of them must be equal.
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• We can express “there are exactly two elements x such that A(x) holds” as

the conjunction of the above two statements.

7.1.1 Axioms of Equality

The axioms of the equality consist of five types of formulas, each is sufficiently

famous to have earned itself a name. The variables appearing in the formulas are

assumed universally quantified.

• reflexivity:

x = x. That is, an object is always equal to itself.

• symmetry:

(x = y)→ (y = x). That is, it does not matter how the parameters of = are

ordered.

• transitivity:

(x = y) ∧ (y = z)→ (x = z). That is, the equality relation can be inherited.

• function congruence:

xi = yi → f(..., xi, ...) = f(..., yi, ...). That is, if the arguments of a function

are pair-wisely equal, the composed term will be equal.

• predicate congruence:

xi = yi ∧ p(..., xi, ...) → p(..., yi, ...). That is, if the augments of a predicate

are pair-wisely equal, then the resulting atoms are logically equivalent.

The first three axioms together say that “=” is an equivalence relation. The

fourth and fifth are very similar and share the name congruence. The first congru-

ence rule governs terms and the second congruence rule governs formulas. Both of

them assert that having equal arguments ensures equal results. In fact, these are

axiom schemata as we need a version for each function f of arity k and for each

value i, 1 ≤ i ≤ k. The similar requirement applies to each predicate p. For exam-

ple, if the predicate p is the equality =, we obtain two axioms from the predicate

congruence:
x1 = y1 ∧ (x1 = x2)→ (y1 = x2),
x2 = y2 ∧ (x1 = x2)→ (x1 = y2).

Of course, these two axioms can be easily deduced from the symmetry and transi-

tivity of =. In other words, the predicate congruence is needed for predicates other

than =. We will need different versions of the fourth and fifth axioms in different
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first-order languages. These congruence axioms are not to be confused with the

substitution rule, which allows the congruence of terms for variables.

All the five axioms can be easily converted into clauses so that we can use

resolution to prove theorems involving =.

Example 7.1.1. Let f(a) = b and f(b) = a, prove that f(f(a)) = a. Since

resolution is a refutational prover, we need to add the negation of f(f(a)) = a,

f(f(a)) 6= a, into the clauses from the equality axioms and the premises, and show

the clause set is unsatisfiable. 2

1 (f(a) = b) premise
2 (f(b) = a) premise
3 (f(f(a)) 6= a) negation of the goal
4 (x 6= y | y 6= z | x = z) transitivity
5 (x 6= y | f(x) = f(y)) congruence
6 (f(f(a)) = f(b)) resolvent from 1 and 5
7 (f(b) 6= z | f(f(a)) = z) resolvent from 6 and 4
8 (f(f(a)) = a) resolvent from 2 and 7
9 ( ) resolvent from 3 and 8

The above example shows clearly that without equality axioms, we cannot

have a resolution proof of f(f(a)) = a.

7.1.2 Semantics of “=”

The equality symbol is meant to model the equality of objects in a domain.

For example, when we say “2 + 0 = 2”, or add(s(s(0)), 0) = s(s(0)), we meant that

“2+0” and “2” represent the same object in a domain. That is, s = t is true if s and

t represent “equal” or “identical” objects in any domain. We are asserting that two

different descriptions refer to the same object. Because the notion of identity can

be applied to virtually any domain of objects, the equality is often assumed to be

omnipresent in every logic. However, talk of “equality” or “identity” raises messy

philosophical questions. “Am I the same person I was three days ago?”

We need a simple and clear way to define the meaning of =. For a first-

order language L = (P, F,X,Op), a Herbrand model for a CNF A can be simply

represented by a set H of ground atoms such that only those atoms in H are

interpreted to be true. Because of the existence of the equality axioms, the set H

must hold some properties.

Definition 7.1.2. (congruence) A relation =m over the set of terms T (F,X) is
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called a congruence if =m is an equivalence relation satisfying the congruence:

f(s1, ..., sk) =m f(s2, ..., sk) if for any 1 ≤ i ≤ k, si =m ti)

for every function f/k.

Proposition 7.1.3. Let H be a Herbrand model of A which is in CNF and contains

all the equality axioms. Define s =H t iff (s = t) ∈ H for every s, t ∈ T (F ). Then

=H is a congruence over T (F ).

Proof. The first three equality axioms ensure that =H is an equivalence relation and

the fourth axiom ensures that =H is monotonic. 2

For any congruence relation =m, since =m is an equivalence relation, we may

partition T (F ) into equivalence classes such that each class contains equivalent

objects. For every s ∈ T (F ), let

[s] = {t | s =m t, t ∈ T (F )},

the congruence class of s. Let

T (F )/=m = {[s] | s ∈ T (F )},

the set of all congruence classes, which is also called the Herbrand base modulo =m.

Example 7.1.4. Let F = {0, s(1)} and A contains s(s(s(x))) = x and the equality

axioms. Let H be a Herbrand model of A in which (0 = s(0)) /∈ H, then 2

T (F ) = {0, s(0), s(s(0)), s(s(s(0))), s4(0), ...},
[0] = {0, s(s(s(0))), s6(0), s9(0), ...},

[s(0)] = {s(0), s4(0), s7(0), s10(0), ...},
[s(s(0))] = {s(s(0)), s5(0), s8(0), s11(0), ...},

T (F )/=H = {[0], [s(0)], [s(s(0))]}.
Now, it is easy to check if two ground terms s and t are equal or not under H:

(s = t) ∈ H iff t ∈ [s] (or s ∈ [t]), i.e., s =H t. In fact, when we define a Herbrand

model for a formula with equality, at first we can define a congruence =m, and then

regard T (F )/=m as the domain of the Herbrand model with equality: (s = t) ∈ H

iff s =m t. This way, we do not have to concern about the equality axioms explicitly.
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7.1.3 Theory of Equations

A set of equations is simply a set of positive unit clauses where the only

predicate symbol is “=”.

Example 7.1.5. In modern algebra, a group is G = (S, ∗), where S is a set of ele-

ments and ∗ is a binary operator ∗ satisfying the properties that (a) ∗ is associative
and closed on S; (b) there exists an identity element in S; and (c) every element

of S has an inverse in S. Using the equational approach, the identity is denoted

by e, for each x ∈ S, the inverse of x is denoted by i(x), with the following three

equations as axioms:

1 x ∗ e = x e is the identity element
2 x ∗ i(x) = e i(x) is the inverse of x
3 (x ∗ y) ∗ z = x ∗ (y ∗ z) ∗ is associative

From these three equations, we may prove many interesting properties of the group

theory, such as i(i(x)) = x. 2

Definition 7.1.6. Given a set E of equations, the relation =E is recursively defined

as follows:

1 s =E t if s = t ∈ E;
2 t =E t for any t ∈ T (F,X);
3 s =E t if t =E s;
4 s =E t if s =E r, r =E t;
5 f(..., si, ...) =E f(..., ti, ...) if si =E ti for any f ∈ F ;
6 sσ =E tσ if s =E t for any σ : X −→ T (F,X).

Recall that every binary relation R, including =E, can be regarded as a set of

pairs of items, i.e., {(s, t) | R(s, t)}. Similarly, E can be also regarded as a set of

pairs of terms.

Definition 7.1.7. Given a binary relation R over T (F,X), R is said to be closed

under

• reflexivity if (t, t) ∈ R for any t ∈ T (F,X);

• symmetry if (t, s) ∈ R whenever (s, t) ∈ R;

• transitivity if (r, t) ∈ R whenever (r, s), (s, t) ∈ R;

• congruence if (f(..., s, ...), f(..., t, ...)) ∈ R whenever (s, t) ∈ R;
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• instantiation if (sσ, tσ) ∈ R whenever (s, t) ∈ R for any σ : X −→ T (F,X).

The transitive closure is the minimum superset of R that is closed under transitive;

the equivalence closure is the minimum superset of R that is closed under reflexiv-

ity, symmetry and transitivity; the congruence closure is the minimum equivalence

closure of R that is closed under congruence.

Proposition 7.1.8. For any set E of equations, =E is a minimum stable congruence

containing E and closed under instantiation.

Proof. Let us check the conditions for s =E t to be true: Condition 1 says E ⊂=E;

condition 2 says (t, t) ∈=E. Conditions 3-6 says =E is closed under symmetry,

transitivity, congruence, and instantiation. 2

Example 7.1.9. Using F from Example 7.1.4, let E = {s(s(s(x))) = x} and

X = {x}. Since =E is a congruence, we can check that T (F )/=E = T (F )/=H =

{[0], [s(0)], [s(s(0))]}, [x] = {x, s(s(s(x))), s6(x), ...}, and

T (F,X)/=E = {[0], [s(0)], [s(s(0))], [x], [s(x)], [s(s(x))]}.

2

Proposition 7.1.10. Given E, let Eax be the equality axioms associated with E,

then for every (s, t) ∈=E, E ∪ Eax |= (s = t).

Proof. (Sketch) Check all the six conditions for s =E t: Condition 1 is sound because

A |= A. Conditions 2-5 are sound because of Eax. Condition 6 is sound because the

free variables are assumed to universally quantified. 2

Since =E contains all the equations that are logical consequence of E and the

equality axioms, we call = E the theory of E.

Example 7.1.11. Let E be the three equations in Example 7.1.5, we may show

that e ∗ x =E x, i(x) ∗ x =E e, i(e) =E e, i(i(x)) =E x, i(x ∗ y) =E i(y) ∗ i(x), etc.
The proofs will be provided in the next section. 2

Given any two terms, say s and t, does s =E t? This is an important decision

problem with many applications in mathematics. In computation theory, all com-

putable functions can be constructed by equations. Unfortunately, it is undecidable

in general to answer (s, t) ∈=E, in other words we do have an algorithm which

takes E, s, and t as input and returns yes if s =E t.

In computer science, the congruence closure problem refers to the problem of

deciding s =E t when E is a set of ground equations. This is a decidable problem
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and there exist efficient algorithms, some of them are based on the union-find data

structures we used for the unification algorithm. There are a number of applications

using congruence closures. The detailed discussion on this topic can be found in

Chapter 12.

7.2 Rewrite Systems

In Example 7.1.1, we showed how to prove f(f(a)) = a from f(a) = b and

f(b) = a, using resolution and the equality axioms. A straightforward proof is to

replace f(a) in f(f(a)) = a by b to get f(b) = a, and then replace f(b) by a to

get a = a. In this simple example, we treat f(a) = b and f(b) = a as two rewrite

rules and each replacement is one application of a rewrite rule, called rewriting.

To replace “equal” by “equal” is a common practice in mathematics and logics.

For example, we used equivalence relations as rewrite rules to simplify formulas to

normal forms. rewrite rules are not only a common inference system in everyday

mathematics, but also a very efficient computational technique, as they can involve

very little search. We will devote this section to a brief study of them, including a

discussion of some interesting theoretical results.

7.2.1 Rewrite Rules

Definition 7.2.1. A rewrite rule is an ordered pair of terms (l, r), often denoted

by l → r, where l is the left side and r is the right side of the rule. A term t is

rewritten to t′ by l → r, denoted by t ⇒ t′, if there exists a substitution σ and a

position p of t such that lσ = t/p and t′ = t[p ↼ rσ], where t/p denotes the subterm

of t at position p.

To rewrite t by l → r, we have to find a subterm of t at position p and a

substitution σ such that t/p = lσ. In this case, we say l matches t/p and σ is

the matching. Matching is one-way unification and finding matching is easier than

finding a unifier as the variables in t cannot be affected by σ. If we treat the

variables of t as constants, then finding a matching is the same as finding a unifier

of t/p and l.

Once the matching is found, we need to replace the matched subterm in t by

the matched right side. Note that t[p ↼ s] denote the term where the subterm at

position p, t/p, (ref. Definition 5.1.4) is replaced by s. For example, if g(x)→ h(x)

is a rewrite rule, then term t = f(a, g(b)) can be rewritten to t′ = f(a, h(b)), because

t/1 = g(b) = g(x)σ and t′/1 = h(x)σ, where σ = [x ↼ b].

Definition 7.2.2. A rewrite system R is a set of rewrite rules. A term t is written
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to t′ by R, denoted by t ⇒R t′, or simply t ⇒ t′, if there exists a rewrite rule in R

which rewrites t to t′.

As a convention, we will use ⇒+ and ⇒∗ to denote the transitive closure and

the reflexive and transitive closure of ⇒, respectively. That is, s ⇒∗
R t means that

s is rewritten to t by R using any number of rewriting.

While our major use of R is to represent a stable congruence relation, R can

be used for representing any transitive, stable and monotonic relation. This might

be inequality (like > or ≥) or implication.

Example 7.2.3. In Chapter 1 (section 1.3.4.1), we have seen that the functions

can be constructed by equations. For instance, we used equations to define the

predecessor, addition, subtraction, and multiplication functions over the natural

numbers. We may treat these equations as rewrite rules. 2

pre(0) → 0;
pre(s(x)) → x.

add(0, y) → y;
add(s(x), y) → s(add(x, y)).

sub(x, 0) → x;
sub(x, s(y)) → sub(pre(x), y)).

mul(0, y) → 0;
mul(s(x), y) → add(mul(x, y), y).

To compute 2 × 2 = 4, we rewrite mul(s(s(0)), s(s(0))) to s(s(s(s(0)))). We

give below also the positions for each rewriting and you may find out which rule is

used for each rewriting.

mul(s(s(0)), s(s(0))) at ϵ
⇒ add(mul(s(0), s(s(0))), s(s(0))) at 1
⇒ add(add(mul(0, s(s(0))), s(s(0))), s(s(0))) at 1.1
⇒ add(add(0, s(s(0))), s(s(0))) at 1
⇒ add(s(s(0)), s(s(0))) at ϵ
⇒ s(add(s(0), s(s(0)))) at 1
⇒ s(s(add(0, s(s(0))))) at 1.1
⇒ s(s(s(s(0))))

In this language, if a term is a ground, it is not hard to prove by induction

that the rewriting process will eventually terminate with a specific number, i.e. a

term made only from 0 and s. Using this rewrite system, we can do all the addition,

subtraction, and multiplication over the natural numbers by rewriting, if we do not

care about the speed.
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7.2.2 Termination of Rewrite Systems

A nice property of many rewrite systems, including the previous example, is

that the application of rules to terms, ground or not, cannot go on forever; it will

eventually terminate.

Definition 7.2.4. A rewrite system R is said to be terminating if there exists no

infinite sequences of terms t0, t1, ..., ti, ... such that ti ⇒ ti+1.

To prove a rewrite system R is terminating, we may use a simplification order

� (ref. section 6.3.1).

Proposition 7.2.5. Let � be a simplification order and R a rewrite system. If

l � r for all every l→ r in R, then R is terminating.

Proof. By definition, � is a well-founded, stable and monotonic order on terms. If

ti ⇒ ti+1 by l → r, then ti � ti+1, because l � r, and � is stable and monotonic.

If there exists an infinite sequence, t0, t1, ..., ti, ... such that ti � ti+1, then � cannot

be well-founded. 2

The above proposition provides a sufficient condition for the termination of

a rewrite system. In section 6.3.1, we discussed lexicographic path order (LPO),

recursive path order (RPO), and Knuth-Bendix order (KBO). These orders are

simplification orders and can be used to prove the termination of R.

Example 7.2.6. To show the termination of R in Example 7.2.3, we may use the

lexicographic path order �lpo with the precedence s ≺ pre ≺ add ≺ sub ≺ mul and

every binary operator has the left-to-right status, with the exception of sub: sub

must have the right-to-left status, as we want [s(y), x] �lex [y, pre(x)]. 2

In general, how to show that the rewriting process using R will terminate?

Unfortunately, this is an undecidable problem. That is, we do not have an algorithm

to answer this question for general R.

Definition 7.2.7. Given a rewrite system R, if s⇒∗
R t and there exists no t′ such

that t⇒R t′, we say t is a normal form of s.

Why is termination an important property of a rewrite system? the ter-

mination of R ensures that there exists a normal form for every term. Without

termination, we will have hard time to control rewriting. In computation theory,

termination is a divider for telling whether a decision problem is decidable or not.

Some equations, such as the commutativity of + or ∨, can never be made into a

terminating rule. It is undecidable to tell if a rewrite system is terminating or not.
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7.2.3 Confluence of Rewriting

Termination is one important property of a set of rewrite rules. Other impor-

tant properties are being confluent and being canonical.

Example 7.2.8. In Example 7.1.5, we used three equations to specify a group

(S, ∗). These equations can be made as a rewrite system R:

1 e ∗ x → x
2 i(x) ∗ x → e
3 (x ∗ y) ∗ z → x ∗ (y ∗ z)

2

Let t = (i(x) ∗ x) ∗ y, and there are two ways for R to rewrite t:

(i(x) ∗ x) ∗ y ⇒
⟨

(3) i(x) ∗ (x ∗ y)
(2) e ∗ y ⇒ (1) y

That is, there are more than one way to rewrite a term. For t, we have two normal

forms: i(x) ∗ (x ∗ y) and y.

Definition 7.2.9. A rewrite system R is said to be confluent if, for any term s, if

s ⇒∗
R t1 and s ⇒∗

R t2, then there exists a term t′ such that t1 ⇒∗
R t′ and t2 ⇒∗

R t′.

R is said to be canonical if R is both terminating and confluent.

That is, if R is confluent, it does not matter how you go about applying

the rules to a term, you will get the same result. There are several concepts of

“confluence” proposed in the literature. They are equivalent for terminating rewrite

systems. The termination of R ensures the existence of a normal form for every term;

the confluence of R ensures the uniqueness of normal forms. When R is canonical,

you do not need to worry about at which positions and choose which rule to rewrite

a term. Any choices can be made and the end result will be the same. Let us denote

the unique normal form of t in a canonical rewrite system by t ↓R, the canonical

form of t.

Definition 7.2.10. A canonical rewrite system R is a decision procedure for a set

E of equations if for any two terms s and t, s =E t iff s ↓R = t ↓R.

We say R is a decision procedure for E because the computation of t ↓R is

terminating and the following theorem is true.

Theorem 7.2.11. Let R be a canonical rewrite system satisfying the following

conditions:
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1. For each rewrite rule l→ r of R, l =E r;

2. For each equation s1 = s2 of E, s1 ↓R = s2 ↓R.

Then R is a decision procedure for E.

Proof. For each rule l → r of R, since l =E r, if s ⇒ t by l → r, then s =E t by

applying the instantiation and congruence rules on l =E r. Applying this result to

each rewriting, we have s =E s ↓R and t =E t ↓R. If s ↓R = t ↓R, then s =E t.

If s =E t, check all the six conditions for obtaining s =E t: If s =E t because

s = t ∈ E, then s ↓R = t ↓R. If s =E t because t =E s, then t ↓R = s ↓R implies

s ↓R = t ↓R. If s =E t because s =E r and r =E t, then s ↓R = r ↓R = t ↓R. If

s = f(..., si, ...) =E f(..., ti, ...) = t because si =E ti, then si ↓R = ti ↓R implies

s ↓R = t ↓R. If s = s′σ =E t′σ = t because s′ =E t′, then s′ ↓R = t′ ↓R implies

s ↓R = t ↓R. In all cases, we have s ↓R = t ↓R if s =E t. 2

Even when a rewrite system is canonical we may still want to exercise carefully

our choices of rules and positions in a term to apply rules, in order to minimize the

amount of computational effort required to find the canonical form. We may want

to explore only the shortest rewriting steps. For instance, choosing a position for

rewriting, we may use an outermost-position-first strategy or an innermost-position-

first strategy. A careful inspection of the rules to be applied may reveal that which

strategy works better.

7.2.4 The Knuth-Bendix Completion Procedure

In Example 7.2.8, we have seen that term t = (i(x) ∗ x) ∗ y has two normal

forms, i.e., i(x) ∗ (x ∗ y) and y. The rewrite system in the example is not confluent.

Knuth and Bendix suggested a procedure which takes a set of equations and a

simplification order, and each equation is oriented into rewrite rules according to

the simplification order. So-called critical pairs are then computed from the rewrite

rules. If all the critical pairs have the same normal form, we obtain a canonical

rewrite system. If not, such critical pairs are added into the set of equations and

continue.

Definition 7.2.12. Given two rewrite rules which share no variables and may differ

only by variable names, say l1 → r1 and l2 → r2, a critical pair of the two rules is

a pair of terms s = t, where s = r1σ, t = l1[p ↼ r2]σ, p is a non-variable position

of l1, and σ is the mgu of l1/p and l2. We say l2 is superposed at p of l2 to produce

the critical pair and this process is called superposition.
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In Example 7.2.8, we are given three rewrite rules. If we rename the variables

in rule 3 as (x3 ∗ y3) ∗ z3 → x3 ∗ (y3 ∗ z3), we can compute a critical pair from rule 3

and rule 2, by superposing l2 = i(x) ∗ x at position 1 of l3, that is, unifying l2 and

l3/1 = x3∗y3 with the mgu σ = [x3 ↼ i(x), y3 ↼ x, z3 ↼ y] and generate the critical

pair (i(x) ∗ (x ∗ y), e ∗ y) from l3σ = (i(x) ∗ x) ∗ y as illustrated in Example 7.2.8.

During the computation of a critical pair, applying the mgu σ to l1, l1σ can

be rewritten to r1σ by l1 → r1. At the same time, since l1/pσ = l2σ, l1σ contains an

instance of l2 at position p, so l1σ can be also rewritten to l1[p ↼ l2]σ by l2 → r2.

In other words, the critical pair is obtained by two rewritings on l1σ using the two

rules, respectively:

l1σ ⇒
⟨

r1σ by l1 → r1
l1[p ↼ r2]σ by l2 → r2

Lemma 7.2.13. If l1 =E r1 and l2 =E r2, and (s, t) is a critical pair from them,

then s =E t.

Proof. From l1 =E r1, we have l1σ =E r1σ. From l2 =E r2 and l1/pσ = l2σ, we have

l1σ =E l1[p ↼ r2]σ. Hence s = r1σ =E l1[p ↼ r2]σ = t. 2

Example 7.2.14. We will show to obtain a canonical rewrite system from the three

rewrite rules in Example 7.2.8: 2

1 e ∗ x → x
2 i(x) ∗ x → e
3 (x ∗ y) ∗ z → x ∗ (y ∗ z)

The lexicographical path order is used with the precedence e ≺ ∗ ≺ i. When

computing a critical pair of the two rules, we assume that the variables in one of

the rules are implicitly subscribed by the rule number. For example, the third rule

is (x3 ∗ y3) ∗ z3 → x3 ∗ (y3 ∗ z3).
The first critical pair is i(x) ∗ (x ∗ y) = e ∗ y, which, after rewriting e ∗ y to y,

will be oriented into the fourth rewrite rule:

4 i(x) ∗ (x ∗ y) → y

A critical pair comes from rule 4 and itself, and the mgu of l4/2 and l4 is

σ = [x4 ↼ i(x), y4 ↼ x ∗ y]:

i(i(x)) ∗ (i(x) ∗ (x ∗ y)) ⇒
⟨

(4) x ∗ y
(4) i(i(x)) ∗ y

The critical pair is x ∗ y = i(i(x)) ∗ y, which produces the fifth rule:
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5 i(i(x)) ∗ y → x ∗ y

A critical pair comes from rule 4 and rule 2, and the mgu of l4/2 and l2 is

σ = [x4 ↼ i(x), y4 ↼ x]:

i(i(x)) ∗ (i(x) ∗ x) ⇒
⟨

(4) x
(2) i(i(x)) ∗ e→ (5) x ∗ e

The critical pair is x = x ∗ e, which produces the sixth rule:

6 x ∗ e → x

A critical pair comes from rule 6 and rule 2 with σ = [x6 ↼ i(e)] and generates

the seventh rule:

7 i(e) → e

A critical pair comes from rule 5 and rule 2 with σ = [x2 ↼ i(x), y ↼ i(x)]:

i(i(x)) ∗ i(x) ⇒
⟨

(5) x ∗ i(x)
(2) e

and generates the eighth rule:

8 x ∗ i(x) → e

A critical pair comes from rule 6 and rule 5 with σ = [x6 ↼ i(i(x)), y ↼ e]:

i(i(x)) ∗ e ⇒
⟨

(6) i(i(x))
(5) x ∗ e→ (6) x

and generates the ninth rule:

9 i(i(x)) → x

A critical pair comes from rule 4 and rule 3, and the mgu of l4/2 and l3 is

σ = [x4 ↼ x ∗ y, y4 ↼ z]:

i(x ∗ y) ∗ ((x ∗ y) ∗ z) ⇒
⟨

(4) z
(3) i(x ∗ y) ∗ (x ∗ (y ∗ z))

and generates the tenth rule:

10 i(x ∗ y) ∗ (x ∗ (y ∗ z)) → z
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A critical pair comes from rule 10 and rule 8, and the mgu of l10/2.2 and l9 is

σ = [x9 ↼ y, z ↼ i(y)]:

i(x ∗ y) ∗ (x ∗ (y ∗ i(y))) ⇒
⟨

(10) i(y)
(8) i(x ∗ y) ∗ (x ∗ e)⇒ (6) i(x ∗ y) ∗ x

and generates the eleventh rule:

11 i(x ∗ y) ∗ x → i(y)

A critical pair comes from rule 11 and rule 4, and the mgu of l11/1.1 and l4 is

σ = [x11 ↼ i(x), y11 ↼ x ∗ y]:

i(i(x) ∗ (x ∗ y)) ∗ i(x) ⇒
⟨

(11) i(x ∗ y)
(4) i(y) ∗ i(x)

and generates the twelfth rule:

12 i(x ∗ y) → i(y) ∗ i(x)

The final critical pair comes from rule 4 and rule 5, and generates the thir-

teenth rule:

13 x ∗ (i(x) ∗ y) → y

Since rules 5, 10, and 11 can be rewritten to the identity i.e., t = t, by rules

5 and 12, the final set of rewrite rules are

1 e ∗ x → x
2 i(x) ∗ x → e
3 (x ∗ y) ∗ z → x ∗ (y ∗ z)
4 i(x) ∗ (x ∗ y) → y
6 x ∗ e → x
7 i(e) → e
8 x ∗ i(x) → e
9 i(i(x)) → x
12 i(x ∗ y) → i(y) ∗ i(x)
13 x ∗ (i(x) ∗ y) → y

All the critical pairs from this set of 10 rules can be reduced to the identity.

These 10 rules are sufficient to solve the word problem for a free group with no other

properties. The word problem is to find a decision procedure to decide whether any

two terms are equal, according to the axioms of group theory. The above rewrite

system can serve as a decision procedure by checking if the two terms have the same

canonical form.

The above example illustrates the execution of the Knuth-Bendix completion

procedure, which is described by the following pseudo-code.
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Procedure 7.2.15. The procedure KnuthBendix(E,�) takes a set E of equations

and a simplification order �, and generates a canonical rewrite system from E when

it succeeds. It calls four procedures:

• pickEquation(E) will pick an equation from E;

• NF (t, R) returns a normal form of term t by R.

• rewritable(t, r) will check if rewrite rule r can rewrite term t;

• criticalPairs(r, R) will return the set of all critical pairs between rule r and

every rule in R.

proc KnuthBendix(E,�)
1 R := ∅
2 while (E 6= ∅) do
3 (s, t) := pickEquation(E); E := E − {(s, t)}
4 s := NF (s,R); t := NF (t, R) // normalize s and t by R

5 if (s = t) continue // identity is discarded

6 else if (s � t) r := (s→ t)

7 else if (t � s) r := (t→ s)

8 else return “failure” // s and t are not comparable by �
9 R := R ∪ {r}; // add new rule into R

10 for (s→ t) ∈ R− {r} do // inter-reduction

11 if rewritable(s, r) R := R− {(s, t)};E := E ∪ {(s, t)}
12 if rewritable(t, r) R := R− {(s, t)} ∪ {(s,NF (t, R)}
13 E := E ∪ criticalPairs(r, R)

14 return R;

The procedure is not an algorithm because it may go on forever due to ever-

growing set of rules and critical pairs. Note that the procedure may fail if an

equation cannot be oriented into a rewrite rule. There are many attempts to reduce

the cases of failures. For instance, if an equation like f(x, g(x)) = h(y, g(y)) cannot

be oriented, we may introduce a new constant c to make two equations f(x, g(x)) = c

and h(y, g(y)) = c. In general, if we have an equation s(x, z) = t(y, z), where x

does not appear in t and y does not appear in s, we may introduce a new function

h(z) to create two new equations: s(x, z) = h(z) and t(y, z) = h(z). For the

axioms AC = {(x ∗ y) ∗ y = x ∗ (y ∗ z), x ∗ y = y ∗ x}, we may consider the

rewriting over T (F,X)/=AC , the so-called rewriting modulo AC (associativity and

commutativity).
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Definition 7.2.16. A rewrite system R is said to be inter-reduced if for any rule

l→ r ∈ R, l and r are not rewritable by R− {l→ r}.

Lemma 7.2.17. If KnuthBendix(E,�) returns R, then R is inter-reduced.

Proof. Line 11 (resp. 12) ensures the left (resp. right) side of each rule in R is not

rewritable by any other rule. 2

When KnuthBendix terminates successfully, we obtain an inter-reduced canon-

ical rewrite system.

Theorem 7.2.18. If KnuthBendix(E,�) returns R, then R is inter-reduced and

canonical.

Proof. R is inter-reduced by the above lemma. For canonicality, at first, R is

terminating, because for every l→ r of R, l � r, where � is a simplification order.

Secondly, all the critical pairs of R are computed and each pair is rewritten to the

same term by R (if not, a new rule will be added into R).

To show that R is confluent, we do induction on t based on �. As a base case,

if t is not rewritable by R, then R is confluent trivially at t. Suppose, for i = 1, 2,

t⇒ ti by li → ri ∈ R at position pi of t, i.e., ti = t[p ↼ riσi].

Case 1: If p1 and p2 are disjoint positions, then both t1 and t2 can be written

to a common term t′ = t[p1 ↼ r1σ1, p2 ↼ r2σ2].

Case 2: If p1 and p2 are not disjoint positions, without loss of generality,

assume p1 = ϵ, then t = l1σ1, and t/p2 = l1σ1/p2 = l2σ2. There are two subcases to

consider:

Case 2.1: If p2 is a non-variable position of l1, then l1σ1/p2 = l1/p2σ1 = l2σ2,

that is, l1/p2 and l2 are unifiable. Thus, there exists a critical pair (s1, s2) between

the two rules such that t1 = s1θ and t2 = s2θ for some substitution θ. Since s1 and

s2 are rewritten to the same term by R, so are t1 and t2.

Case 2.2: When p2 is not a non-variable position of l1, finding a common

successor of t1 and t2 is left as an exercise. Note that in this case there must exist

a variable position p of l1 such that p is a prefix of p2.

By induction hypotheses, R is confluent at t1 and t2, respectively, because

t1 � t and t2 � t. Now we have shown that t1 and t2 are rewritten to a common

term in all cases, R must be confluent at t. 2

Example 7.2.19. To illustrate case 2.2 in the above proof, let t = i(i(i(z)))∗i(i(z))
and R be the ten rules in Example 7.2.14. Then t can be rewritten to e by rule

2 and to i(z) ∗ i(i(z)) by rule 9 at position 1.1. i(z) ∗ i(i(z)) can be rewritten to

i(z) ∗ z by rule 9 at position 2, and to e by rule 2. Note that both 1.1 and 2 are

variable positions of t. 2
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Theorem 7.2.20. If KnuthBendix(E,�) returns R, then R is a decision procedure

for E.

Proof. (sketch) The previous theorem tells us that R is canonical. In light of The-

orem 7.2.11, the condition 1 is ensured by Lemma 7.2.13; the condition 2 holds

because every equation is either made into a rule or simplified to identity. 2

In conclusion, rewrite systems can be used to put terms in normal form and

to prove terms equal, equivalent or some transitive monotonic relations. Their ap-

plication represents a powerful method of mathematical reasoning, because they

can sometimes overcome the combinatorial explosions caused by other proof proce-

dures, e.g. resolution. The desirable properties of rewrite systems are: termination

and confluence. Rewrite systems can be shown to terminate with the aid of sim-

plification orders and be confluent by looking at critical pairs formed from pairs of

rules.

7.2.5 Rewrite Systems for Ground Equations

A ground equation is a pair of ground terms, i.e., no variables appear in the

equation. The Knuth-Bendix procedure can be greatly simplified on ground equa-

tions because of the following:

• There exists a total simplification order for ground terms. This can be achieved

by defining a total precedence over the function symbols and then applying

one of the known simplification orderings, such as the Knuth-Bendix order

(KBO), to terms.

• The critical pair computation is not needed if the rewrite system is inter-

reduced. That is, if there exists a critical pair between two rewrite rules, then

one rule can rewrite the left side of the other rule.

Example 7.2.21. Let f 3a and f 5a denote f(f(f(a))) and f(f(f(f(f(a))))), respec-

tively. Feeding E = {f 5a = a, f 3a = a} to the Knuth-Bendix procedure, the rewrite

rules made from E should be {(1) f 5a → a, (2) f 3a → a}. Since f 5a = f 2f 3a,

the critical pair from (1) and (2) is f 2a = a, and this is the same as we rewrite (1)

to f 2s = s by (2). In fact, rewriting happens first (line 11) in the Knuth-Bendix

procedure. From f 2a = a, we have (3) f 2 → a, which rewrites (2) to f 1a = a. The

Knuth-Bendix procedure halts with {f 1a→ a}. 2

Theorem 7.2.22. For any set E of ground equations, there exists a canonical

rewrite system R serving as a decision procedure of E.
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We leave the proof of this theorem as an exercise.

7.3 Inductive Theorem Proving

In Example 7.2.3, we converted a set E of equations into rewrite rules, where

add is defined using two equations: E = {add(0, y) = y, add(s(x), y) = s(add(x, y))}.
It is easy to prove by induction on i that add(si(0), sj(0)) = si+j(0) = add(sj(0), si(0)).

Since add(si(0), sj(0)) = add(sj(0), si(0)), it is natural to state that add(x, y) =

add(y, x) for all ground terms x and y. Obviously, add(x, y) = add(y, x) is not a

logical consequence of E and Eax (the equality axioms), because E ∪Eax may have

models in which add(x, y) = add(y, x) does hold. It is known that some properties

of a first-order formula cannot be proved by deduction or contradiction; they can be

proved only by induction. That is why we call these properties inductive theorems,

add(x, y) = add(y, x) is just one of them.

Mathematical induction is a fundamental and powerful rule of inference. In-

ductive theorem proving has important applications in formal verification and has

been used to prove the correctness of computer architecture or algorithms. Like

the previous chapters, we are particularly interested in inductive proving methods

which can be automated in a computer.

7.3.1 Inductive Theorems

Definition 7.3.1. Given a first-order language L = (P, F,X,Op), a quantifier-free

formula B is said to be an inductive theorem of A, if for all substitution σ : X −→
T (F ), A |= Bσ.

In other words, a quantifier-free formula is an inductive theorem of A if all

its ground instances are logical consequence of A. We can show that add(x, y) =

add(y, x) and add(add(x, y), z) = add(x, add(y, z)) are inductive theorems of E =

{add(0, y) = y, add(s(x), y) = s(add(x, y))}. Typically, A is also quantifier-free,

with the understanding that all free variables act as universally quantified variables.

To prove an inductive theorem, we need an induction inference rule, which

has many different versions.

Example 7.3.2. In Example 7.2.3, we convert a set E of equations into a rewrite
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system so that the computation can be carried out by rewriting.

1 pre(0) → 0;
2 pre(s(x)) → x.

3 add(0, y) → y;
4 add(s(x), y) → s(add(x, y)).

5 sub(x, 0) → x;
6 sub(x, s(y)) → sub(pre(x), y)).

7 mul(0, y) → 0;
8 mul(s(x), y) → add(mul(x, y), y).

2

In the above example, the function symbols are F = {0, s, pre, add, sub,mul},
which can be divided into two parts: C = {0, s} and D = {pre, add, sub,mul}. For
each function in D, we have a complete definition over 0 and s:

• pre(0) = 0 and pre(si(0)) = si−1(0) for i > 0;

• add(si(0), sj(0)) = si+j(0) for any i, j ≥ 0;

• sub(si(0), sj(0)) = 0 if i ≤ j and pre(si(0), sj(0)) = si−j(0) for i > j;

• mul(si(0), sj(0)) = si∗j(0) for any i, j ≥ 0;

It is easy to check that T (F )/=E = {[0], [s(0)], ..., [si(0)], ...}, which is the domain

of the Herbrand model with equality. We say T (F )/=E and T (C) are isomorphic

because there is a one-to-one mapping between T (F )/E and T (C). C is called

constructors and D is called defined functions (or interpreted functions). Inductive

theorems are about properties of defined functions.

7.3.2 Structural Induction

One basic induction rule is called the structural induction rule, which is based

on the structure of terms built up by the constructors.

Structural Induction Rule

B(0) B(y)→ B(s(y))

B(x)

where B(x) stands for an inductive theorem to be inducted on x.
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The above rule states that to prove an inductive theorem B(x), we need to

prove two formulas B(0) and B(x) → B(s(x)). Its soundness is based on the

condition that the isomorphic relation of T (F )/=E and T (C).

Example 7.3.3. Let B(x) be add(x, 0) = x. Applying the structural induction on

this one, we need to prove (1) add(0, 0) = 0 and (2) add(x, 0) = x→ add(s(x), 0) =

s(x). (1) is trivial; (2) is simplified by rule 4, the definition of add, to: add(x, 0) =

x→ s(add(x, 0)) = s(x), or

(2′) (add(x, 0) 6= x | s(add(x, 0)) = s(x)),

which is true by equality crossing, as described below. 2

Equality Crossing

(s 6= t | A(s))
(s 6= t | A(t))

For instance, let s 6= t be add(x, 0) 6= x in (2′) of the above example, then

s(add(x, 0)) = s(x) is simplified to s(x) = s(x). In other words, we used the

induction hypothesis add(x, 0) = x to show that s(add(x, 0)) = s(x) is ture.

Equality crossing, called crossing fertilization by Boyer and Moore, is a sim-

plification rule in the presence of equality axioms, due to the following result.

Proposition 7.3.4. (soundness of equality crossing) Eax |= (s 6= t | A(s)) ↔
(s 6= t→ A(t)), where Eax is the equality axioms.

Proof. From the congruence of equality, i.e., xi = yi ∧ p(..., xi, ...)→ p(..., yi, ...), we

can deduce (s = t) ∧ A(s)→ A(t), whose clausal form is

(s 6= t | A(s) | A(t))

The resolvent of this clause with (s 6= t | A(s)) is (s 6= t | A(t)). Switching s and t,

the other implication also holds. 2

The fundamental difference between using an inference rule like resolution and

using an induction rule is not that a well-founded order, e.g. s(x) � x, is needed

when applying induction. When using resolution for theorem proving by refutation,

the empty clause is the goal and the resolution rule is used to derive this goal from

the input clauses. When using an induction rule for theorem proving, the goal is

the formula to be proved. However, we never try (and it is almost impossible) to
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derive this goal from the input formulas by the induction rule. Instead, we try to

generate subgoals from the goal by using the induction rule backward. That is,

to prove B(x) by induction, we generate two subgoals B(0) and B(y) → B(s(y))

from B(x) and try to establish the validity of these subgoals. Remember that when

T (F )/=E is isomorphic to T (C), every defined function is completely defined on the

constructors and these definition equations ensure the soundness of the induction

rule from these equations.

Example 7.3.5. Continuing from Example 7.3.2, let us prove that sub(add(x, y), y)

= x. If we do induction on x, the proof would not go through. On the other hand,

we can do induction on y. By inspecting the definitions of add and sub, we see that

x is the induction position for add and y is the induction position for sub.

The base case is sub(add(x, 0), 0) = x, which is simplified to true by rules 3

and 5. The inductive case is

sub(add(x, y), y) = x→ sub(add(x, s(y)), s(y)) = x

To simplify add(x, s(y)), we need add(x, s(y)) = s(add(x, y)), which is also an induc-

tive theorem and its proof is left as an exercise. Suppose this theorem is available

to us, then

sub(add(x, s(y)), s(y))
= sub(s(add(x, y)), s(y)) by add(x, s(y)) = s(add(x, y)),
= sub(pre(s(add(x, y)), y) by rule 6,
= sub(add(x, y), y) by rule 2,
= x by equality crossing.

2

7.3.3 Induction on Two Variables

The previous example shows that we need to choose the right variable to do

the induction. Sometimes, we need to do induction on multiple variables.

Example 7.3.6. Adding the following two predicates to Example 7.3.2:

11 y < 0 → ⊥;
12 0 < s(x) → >;
13 s(y) < s(x) → y < x.
14 0 ≤ y → >;
15 s(x) ≤ 0 → ⊥;
16 s(x) ≤ s(y) → x ≤ y.

To prove (x ≤ y) = ¬(y < x) by structural induction, neither induct on x alone nor

on y alone will work. We need an induction on two variables. 2
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Structural Induction Rule on Two Variables

B(0, y) B(s(x), 0) B(x, y)→ B(s(x), s(y))

B(x, y)

where B(x, y) stands for an inductive theorem to be inducted on both x and y.

This is not the only induction rule for the two variables. Why should we

use this rule for (x ≤ y) = ¬(y < x)? The clue is in the definitions of ≤ and

<: For (x ≤ y), we defined ≤ on 〈0, y〉, 〈s(x), 0〉 and 〈s(x), s(y)〉 with a recursive

call on 〈x, y〉. For (y < x), we also defined < on 〈0, y〉, 〈s(x), 0〉, 〈s(x), s(y)〉 with
a recursive call on 〈x, y〉 (the positions of x and y are switched here). In other

words, the definition equations of these two predicates tell us what cases needed to

consider: the base cases come from the definition equations without recursion; the

inductive cases come from the definition equations with recursion. This is the major

induction heuristic in Boyer and Moore’s computational logic, where lisp functions

are used instead of equational definitions.

Now back on the proof of (x ≤ y) = ¬(y < x), by the above induction rule,

we need to prove three subgoals:

1 (0 ≤ y) = ¬(y < 0), which can be easily proved by showing 0 ≤ y = > by

rule 14 and ¬(y < 0) = ¬(⊥) = > by rule 11.

2 (s(x) ≤ 0) = ¬(0 < s(x)), which can be proved by showing (s(x) ≤ 0) = ⊥
by rule 15 and ¬(0 < s(x)) = ¬(>)) = ⊥ by rules 12.

3 (x ≤ y) = ¬(y < x) → (s(x) ≤ s(y)) = ¬(s(y) < s(x)). Proof of 3 is also

easy: s(x) ≤ s(y) is simplified to x ≤ y by rule 16 and ¬(s(y) < s(x)) to ¬(y < x)

by rule 13, then 3 becomes a trivial implication: (x ≤ y) = ¬(y < x)→ (x ≤ y) =

¬(y < x).

7.3.4 Multi-Sort Algebraic Specifications

By far, we have focused on the natural number functions based on the con-

structors 0 and s. In many applications, we need other data structures, such as lists,

trees, etc., which have their own constructors. Multi-sort algebraic specification will

provide a convenient tool for such applications. For example, to work on the lists of

natural numbers, we need two types: natural numbers and lists, and their domains

can be specified as follows:

〈nat〉 ::= 0 | s(〈nat〉)
〈list〉 ::= nil | cons(〈nat〉, 〈list〉)
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where the constructors for nat are 0 : nat and s : nat −→ nat and the constructors

for list are nil : list and cons : nat, list −→ list. We have seen the functions on

nat; the functions over list can be also defined using equations.

Example 7.3.7. The append and reverse operations of lists can be defined as fol-

lows:
app : list, list −→ list

1 app(nil, y) → y;
2 app(cons(x, y), z) → cons(x, app(y, z)).

rev : list −→ list
3 rev(nil) → nil;
4 rev(cons(x, y)) → app(rev(y), cons(x, nil)).

2

To prove rev(app(y, z)) = app(rev(z), rev(y)) for all lists y and z, we need the

following rule:

Structural Induction Rule for List

B(nil) B(y)→ B(cons(x, y))

B(y)

where B(y) stands for an inductive theorem to be inducted on y.

The above rule reduces rev(app(y, z)) = app(rev(z), rev(y)) to two subgoals:

G1 rev(app(nil, z)) = app(rev(z), rev(nil))
G2 rev(app(y, z)) = app(rev(z), rev(y))→

rev(app(cons(x, y), z)) = app(rev(z), rev(cons(x, y)))

We can simplify G1 by rules 1 and 3 to rev(z) = app(rev(z), nil), which sug-

gests a more general property: app(y, nil) = y. This heuristic is called generalization

and can be implemented automatically. Indeed, app(y, nil) = y is an inductive the-

orem and its proof is left as an exercise. Using this lemma, rev(z) = app(rev(z), nil)

becomes true.

For G2, we can simplify

rev(app(cons(x, y), z)) = app(rev(z), rev(cons(x, y)))

by rule 2 to rev(cons(x, app(y, z)) = app(rev(z), rev(cons(x, y))), then to

app(rev(app(y, z)), cons(x, nil)) = app(rev(z), app(rev(y), cons(x, nil)))
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by rule 4. Using equality crossing, rev(app(y, z)) is rewritten to app(rev(z), rev(y)),

and we are facing

app(app(rev(y), rev(z)), cons(x, nil)) = app(rev(z), app(rev(y), cons(x, nil)))

A generalization of the above formula is the associativity of app:

app(app(x, y), z) = app(x, app(y, z))

which can be shown to be an inductive theorem separately. Once this is done, the

proof of G2 is complete.

The above example illustrates an interesting feature of inductive theorem prov-

ing: In order to prove rev(app(y, z)) = app(rev(z), rev(y)), we need to prove extra

lemmas: app(y, nil) = y and app(app(x, y), z) = app(x, app(y, z)). These lemmas

can sometimes be generated automatically, and sometimes need to be provided by

the user. For rigorousness, they are needed to be proved before they are used in a

proof.

Let us prove another theorem rev(rev(y)) = y by the same induction rule. The

induction rule reduces rev(rev(y)) = y to two subgoals: G3 : rev(rev(nil)) = nil,

which is easy to prove to be true by rule 2, and

G4 : rev(rev(y)) = y → rev(rev(cons(x, y))) = cons(x, y).

Applying rule 4, we rewrite rev(rev(cons(x, y))) to rev(app(rev(y), cons(x, nil))),

which is then simplified to app(rev(cons(x, nil)), rev(rev(y))). Since rev(cons(x, nil))

is rewritten to cons(x, nil) by rules 4, 3 and 1, so app(rev(cons(x, nil)), rev(rev(y)))

is rewritten cons(x, rev(rev(y))) by rules 2 and 1. Thus G4 becomes

G4 : rev(rev(y)) = y → cons(x, rev(rev(y))) = cons(x, y)

Applying equality crossing, rev(rev(y)) is replaced by y and G4 becomes true.

We have shown how use the language of algebraic specification of abstract

data types to write axioms (definitions of functions and predicates), theorems or

lemmas (intermediate inferences), etc. for inductive reasoning. In particular, we

require that the axioms as well as theorems in an algebraic specification be expressed

as a set of (conditional) equations. In other words, we are interested in automatic

methods which can prove equations from equations by mathematical induction.
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Example 7.3.8. We may define the insertion sort algorithm using equations.

isort : list −→ list
5 isort(nil) → nil;
6 isort(cons(x, y)) → insert(x, isort(y)).

insert : nat, list −→ list
7 insert(x, nil) → cons(x, nil);
8 insert(x, cons(y, z)) → cons(x, cons(y, z)) if x ≤ y;
9 insert(x, cons(y, z)) → cons(y, insert(x, z)) if ¬(x ≤ y);

sorted : list −→ boolean
10 sorted(nil) → >;
11 sorted(cons(x, nil)) → >;
12 sorted(cons(x, cons(y, z))) → (x ≤ y) ∧ sorted(y, z);

where ≤ is defined in Example 7.3.6. 2

We may prove that sorted(isort(x)) is an inductive theorem (an exercise prob-

lem). If we define perm(x, y) to be true iff x is a permutation of y, then we may

also prove that perm(x, isort(x)) is an inductive theorem. Both theorems ensure

the correctness of the insertion sort algorithm. These inductive theorems can be

easily proved by today’s inductive theorem prover. Many algorithms can be formally

verified automatically using this approach.

7.4 Resolution with Equality

Up to this point in this chapter, our focus was on equations, which are positive

unit clauses with the equality as the only predicate. Equations are expressive enough

to describe all the computations. For instance, all Turing machines can be expressed

as a set of equations. On the other hand, it is more convenient to express axioms

and theorems in general clauses. The Knuth-Bendix completion procedure suggests

that we do not need the equality axioms explicitly if we have an inference like

superposition which computes critical pairs from two rewrite rules. This is also true

in resolution-based proving as Robinson and Wos suggested the paramodulation

rule, shortly after the invention of the resolution rule.

7.4.1 Paramodulation

Definition 7.4.1. (paramodulation) Suppose clause C1 is (s = t | α) and C2 is

(A | β), where A is a literal and p is a non-variable position of A, α and β are the

rest literals in C1 and C2, respectively, the paramodulation rule is defined by the
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following schema:
(s = t | α), (A | β)
(A[p ↼ t] | α | β)σ

where σ is the mgu of s and A/p. The clause (A[p ↼ t] | α | β)σ produced by

the paramodulation rule is called paramodulant of the paramodulation; C1 and C2

are the parents of the paramodulant. We use paramod(C1, C2) to denote the clause

(A[p ↼ t] | α | β)σ.

Example 7.4.2. Let C1 be (f(g(y)) = a | r(y) and C2 be (p(g(f(x))) | q(x)),
then f(g(y)) and p(g(f(x)))/1.1 = f(x) are unifiable with σ = [x ↼ g(y)]. The

paramodulant of this paramodulation is (p(g(a)) | q(g(y)) | r(y). 2

Proposition 7.4.3. (soundness of paramodulation) For any clauses C1 and

C2, if paramod(C1, C2) exists, then Eax ∪ {C1, C2} |= paramod(C1, C2), where Eax

is the equality axioms.

Proof. Let σ be the mgu used in the paramodulation, C1σ is (s′ = t′) | α′ and C2σ

is (A′[s′] | β′, then paramod(C1, C2) is (A
′[t′] | α′ | β′).

From the monotonic axiom, we can deduce (s′ = t′) ∧ A′(s′) → A′(t′), whose

clausal form is C3 : (s′ 6= t′ | A′(s′) | A′(t′)). resolve(C1σ,C3) = (A′(s′) | A′(t′) |
α′), named as C4. resolve(C2σ,C4) = (A′(t′) | α′ | β′), which is the same as

paramod(C1, C2). 2

Using paramodulation, we do not need most of the equality axioms. It can

be shown that any consequence from the equality axioms can be deduced from

paramodulation, with the only exception of the reflexivity: x = x. The axiom

x = x is indispensable in showing that A = {f(x) 6= f(y)} is unsatisfiable. We may

introduce the following inference rule which makes the axiom x = x redundant.

Definition 7.4.4. (reflexing) Suppose clause C is (s 6= t | α), reflexing is an

inference rule defined by the following schema:

(s 6= t | α)
(α)σ

where σ is the mgu of s and t.

Reflexing works in the same way as factoring: factoring removes one literal by

unifying two literals; reflexing removes s 6= t by unifying s and t.

Paramodulation combined with resolution, factoring and reflexing is refuta-

tionally complete for theorem proving with equality. That is, if A ∪ Eax is unsatis-

fiable, where Eax is the equality axioms, then the empty clause can be derived from
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A by paramodulation, resolution, factoring, and reflexing. It remains complete with

any complete resolution strategies, such as positive resolution or ordered resolution.

We may add restrictions on paramodulation as we put restrictions on resolution,

without sacrificing the refutational completeness.

Definition 7.4.5. (ordered paramodulation) Given a simplification order �,
suppose s = t is maximal in clause C1 (s = t | α), s 6≺ t, and literal A is maximal in

C2 (A | β), p is a non-variable position of A, α and β are the rest literals in C1 and

C2, respectively. The ordered paramodulation rule will generate the paramodulant

(A[p ↼ t] | α | β)σ, where σ is the mgu of s and A/p.

The paramodulation in Example 7.4.2 is an ordered paramodulation if f(g(y)) =

a is maximal in C1 and p(g(f(x))) is maximal in C2.

Using the same simplification order, ordered paramodulation can be combined

with ordered resolution without losing the refutational completeness. When a set

of clauses is just a set of equations (and regarded as a set of rewrite rules), ordered

paramodulation is reduced to superposition. Robinson and Wos’s work on paramod-

ulation preceded, but apparently did not influence, the work of Knuth and Bendix,

who independently formulated superposition and rewriting, called paramodulation

and demodulation by Robinson and Wos, and then applied them to the notion of a

canonical rewrite system in their 1970 paper.

7.4.2 Simplification Rules

For a theorem prover based on resolution and paramodulation, huge number of

new clauses are generated and we need to control redundancy in large search spaces.

Restricted strategies for using resolution and paramodulation are effective to reduce

redundant clauses, deleting unnecessary clauses in the search for the empty clause

is also important to control the search space. As shown before, we may apply the

following deletion strategies in a resolution-based theorem prover:

• pure literal deletion: Clauses containing pure literals are discarded.

• tautology deletion: Tautology clauses are discarded.

• subsumption deletion: Subsumed clauses are discarded.

• unit deletion: Those literals which are the negation of instances of some

unit clauses are discarded from a clause.
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Simplification strategies allow us to keep clauses in simplified forms so that

multiple copies of equivalent clauses are not needed. For instance, if a clause con-

tains a term s, say (p[s] | q), and we have a rewrite rule s→ t or simply s = t, then

this clause can be rewritten to (p[t] | q) by s = t. Rewriting is not the only way to

obtain (p[t] | q), because paramodulation can generate it from (p[s] | q) and s = t.

However, there is no need to keep both (p[s] | q) and (p[t] | q), because both are

logically equivalent under equality. In other words, when (p[s] | q) is rewritten to

(p[t] | q), we keep the latter and throw the former away. That is why we call this

kind of strategies a simplification strategy.

To work with ordered resolution and paramodulation, we may put a restriction

on equality crossing as a simplification rule: Ordered Equality Crossing

(s 6= t) | A(s)
(s 6= t) | A(t)

if s � t for the simplification order � used in the ordered paramodulation.

Its soundness follows from Proposition 7.3.4.

Definition 7.4.6. (contextual rewriting) Given a clause C1 : (s = t | α), where
s � t, clause C2 : (A | β) can be rewritten by C1 if p is a position of A, and there

exists a substitution σ such that A/p = sσ, and ασ ⊆ β. The result of this rewriting

is C ′
2 : (A[p ↼ tσ] | β).

Example 7.4.7. Let C1 be (f(g(y)) = a | q(y) and C2 be (p(f(g(b))) | q(b)), then
C1 can rewrite C2 to (p(a) | q(b) because p(f(g(b)))/1 = f(g(b)) = f(g(y))σ, where

σ = [y ↼ b], and q(y)σ appears in C2. 2

Note that if α is empty, then C1 is a positive unit clause and contextual

rewriting is reduced ordinary rewriting.

Proposition 7.4.8. (soundness of contextual rewriting) If C1 rewrites C2 to

C ′
2 by contextual rewriting, then Eax ∪ {C1} |= C2 ↔ C ′

2, where Eax is the equality

axioms.

Proof. Suppose C1 is (s = t | α), s � t, C2 is (A[s] | β), and C ′
2 is (A[s] | β). Then

C ′
2 can be obtained from C1 and C2 by paramodulation. Switching the role of s and

t, C ′
2 can also be obtained from C1 and C ′

2 by paramodulation. The soundness of

paramodulation ensures the equivalence of C2 and C ′
2 under C1 and Eax. 2

There are two possible extensions to contextual rewriting. In contextual

rewriting, clause C1 (s = t | α) serves as a conditional rewrite rule s → t if ¬α.
If the second clause C2 contains a term s′ such that s′ = sσ for some substitution
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σ, assuming C2 is (A[s′] | β), then s′ is replaced by tσ if the condition ¬α is true

by enforcing ασ ⊆ β. This condition can be replaced by the condition ¬β |= ¬ασ,
where ¬β is called the context of ¬ασ.

The second extension of contextual rewriting is to treat non-equality literals as

rewrite rules. That is, if C1 is (A | α), where A is a maximal non-equality literal in

C1, then we regard C1 as a rewrite rule A = > if ¬α if A is positive; or B = ⊥ if ¬α
if A = ¬B. Then C1 can rewrite atoms in other clauses to > or ⊥. If the literals in
the other clauses are rewritten to >, this is equivalent to subsumption. If they are

rewritten to false, the other clauses will have one less literal. In particular, if α is

empty, this is equivalent to unit deletion (Definition 6.2.10).

The soundness of contextual rewriting remains true with the two extensions,

thus contextual rewriting can serve as a good simplification rule which covers ordi-

nary rewriting, subsumption, and unit deletion.

Theorem 7.4.9. Ordered paramodulation combined with ordered resolution, fac-

toring, relaxing, contextual rewriting, and ordered equality crossing is refutationally

complete for theorem proving with equality.

The proof of this theorem follows the same proof line of Theorem 3.3.12:

If the empty clause is generated, then the input clauses are unsatisfiable because

all inference and simplification rules are sound. If the empty clause can never be

generated and the clause set is saturated by the inference rules, then a Herbrand

model can be constructed using the simplification order on T (F ).

7.4.3 Equality in Prover9

All the inference and simplification rules discussed in this section have been

implemented in Prover9, with the exception of contextual rewriting. Rewriting using

equations, called demodulation, is supported in Prover9. In fact, most examples

provided in the distribution of Prover9 contain the equality.

Example 7.4.10. In Example 7.1.5, we are given three equations which specify a

free group (S, ∗). Can we reduce the number of equations to one? What is the

minimal size of such a single equation? These are examples of questions interested

by mathematicians. Here is an answer to the first question:

y ∗ i(z ∗ (((u ∗ i(u)) ∗ i(x ∗ z)) ∗ y)) = x

which involves four variables. 2
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Prover9’s input file to this problem is simply the single axiom and the goals

will be the three equations in Example 7.1.5, with the only exception that we use

here y ∗ i(y) for the identity e.

formulas(sos).

y * i(z * (((u * i(u)) * i(x * z)) * y)) = x # label(oneAxiom).

end_of_list.

formulas(goals).

(x * y) * z = x * (y * z) # label(associativity).

x * i(x) = y * i(y) # label(inverse).

x * (y * i(y)) = x # label(identity).

end_of_list.

It took Prover9 less than a half second to find proofs for all the three equations

after generating 1587 clauses. The proof of the associativity is the hardest, which

consists of 48 steps after the proofs of the other equations.

The equality symbol “=” is built in; so is “!=”, which stands for the negation

of equality. The major options involving paramodulation are the following:

clear(ordered_para). % default set

set(ordered_par).

assign(para_lit_limit, n). % default n=-1, range [-1 .. INT_MAX]

If n 6= −1, each parent in paramodulation can have at most n literals. This

option may cause incompleteness of the inference system.

set(para_units_only).

clear(para_units_only). % default clear

This flag says that both parents for paramodulation must be unit clauses. The

only effect of this flag is the same as to assign 1 to the parameter para lit limit.

The major options involving rewriting are the following:

assign(demod_step_limit, n). % default n=1000, range [-1 .. INT_MAX]

This parameter limits the number of rewrite steps that are applied to a clause during

demodulation. If n = −1, there is no limit.

assign(demod_size_limit, n). % default n=1000, range [-1 .. INT_MAX]
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This parameter limits the size (measured as symbol count) of terms as they

are demodulated. If any term being demodulated has more than n symbols, de-

modulation of the clause stops. If n = −1, there is no limit.

set(back_demod).

clear(back_demod). % default clear

If this flag is set, a new rewrite rule will try to rewrite equations in the usable

and sos lists. Prover9 also provides options for non-orientable equations to be

rewrite rules under certain conditions and rewriting using these rules are also re-

stricted.

7.5 Mace4: Finite Model Finding in FOL

Mace4 is a software tool for finite model finding in a first-order language.

Mace4 is distributed together with Prover9 and was created by William McCune.

Prover9 and Mace4 share a first-order language and there is a GUI interface for both

of them. Mace4 searches for finite models satisfying the formulas in a first-order

language based on the DPLL procedure. If the formula is the denial of some conjec-

ture, any model found by Mace4 are counterexamples to the conjecture. Mace4 is a

valuable complement to Prover9, looking for counterexamples before (or at the same

time as) using Prover9 to search for a proof. It can also be used to help debugging

input clauses and formulas for Prover9.

7.5.1 Use of Mace4

For the most part, Mace4 accepts the same input files as Prover9. If the input

file contains commands that Mace4 does not understand, then the argument “-c”

must be given to tell Mace4 to ignore those commands. For example, we can run the

following two jobs in parallel, with Prover9 looking for a proof, and Mace4 looking

for a counterexample.

prover9 -f x2.in > x2.prover9.out

mace4 -c -f x2.in > x2.mace4.out

Most of the options accepted by Mace4 can be given either on the command line or

in the input file. The following command lists the command-line options accepted

by Mace4.

mace4 -help
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Mace4 searches for unsorted finite models only. That is, a model has one

underlying finite set, called the domain (or the universe), and the members are

always 0, 1, ..., n− 1 for a set of size n. The models are the structures which define

functions and relations over the domain, as an interpretation to the function and

predicate symbols in the formula (using the same symbols). By default, Mace4 starts

searching for a structure of domain size 2, and then it increments the size until it

succeeds or reaches some limit. The size of the initial domain or the incremental

size can be specified by the user.

If a formula contains constants that are natural-numbers, {0, 1, ...}, Mace4

assumes they are members of the domain of some structure, that is, they are distinct

objects; in effect, Mace4 operates under the assumptions 0 6= 1, 0 6= 2, and so on.

To Prover9, natural numbers are just ordinary constants. This is a subtle difference

between Prover9 and Mace4. Because Mace4 assumes that natural numbers are

members of the domain, if a formula contains a natural number that is out of range

(≥ n, when searching for a structure of size n), Mace4 will terminate with a fatal

error.

Mace4 and Prover9 have the same restrictions on the goal formulas it accepts.

Mace4 negates the goals and translates them to clauses in the same way as Prover9.

The term “goal” is not particularly intuitive for Mace4 users, because Mace4 does

not prove things. It makes more sense, however, when one thinks of Mace4 as

searching for a counterexample to the goal.

Mace4 uses the following commands to specify the initial domain size, the

maximal domain size, and the increment of the domain size.

assign(domain_size, n). % default n=2, range [2 .. 200]

% command-line -n n

assign(iterate_up_to, n). % default n=10, range [-1 .. 200]

% command-line -N n

assign(increment, n). % default n=1, range [1 .. 200]

% command-line -i n

These three parameter work together to determine the domain sizes to be

searched. The search starts for structures of size domain size; if that search fails,

the size is incremented, and another search starts. This continues up through the

value iterate up to (or until some other limit terminates the process).

Example 7.5.1. In section 4.3.3, we showed how to find a Latin square with special

constraints by a SAT solver. We used the propositional variable px,y,z to represent

the meaning that the cell at row x and column y contains value z. The same relation
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between x, y and z can be equally specified by the predicate p(x, y, z). Thus, the

five sets of propositional clauses can be specified by the five first-order formulas as

follows:

1. ∀x∀y∃z p(x, y, z).

2. ∀x∀y∀z∀w ((z = w) | p(x, y, z) | p(x, y, w)).

3. ∀x∀y∀z∀w ((y = w) | p(x, y, z) | p(x,w, z)).

4. ∀x∀y∀z∀w ((x = w) | p(x, y, z) | p(w, y, z)).

5. ∀x∀y∀z∀w (p(y, x, z) | p(z, y, w) | p(w, y, x)).

These formulas can be easily converted into clauses and can be specified in Mace4

as the following: 2

assign(domain_size, 5).

formulas(assumptions).

p(x, y, f(x, y)).

(z = w) | -p(x, y, z) | -p(x, y, w).

(y = w) | -p(x, y, z) | -p(x, w, z).

(x = w) | -p(x, y, z) | -p(w, y, z).

-p(y, x, z) | -p(z, y, w) | p(w, y, x).

end_of_list.

Note that the function f in the first clause is a Skolem function from ∃z. Mace4

will find a model of size 5 for this input and it displays the value of p(x, y, z) as

a Boolean matrix of 25 rows by 5 column, not a very readable format for a Latin

square. From the meaning of p(x, y, z), we may reconstruct the Latin square as

follows.

0 2 1 4 3

4 1 3 2 0

3 4 2 0 1

1 0 4 3 2

2 3 0 1 4

If we specify the Latin square using x ∗ y = z instead of p(x, y, z), the input

to Mace4 is the following.
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assign(domain_size, 5).

formulas(assumptions).

x * z != y * z | x = y. % Latin square axioms

x * y != x * z | y = z.

x * x = x. % idempotent law

((y * x) * y) * y = x. % special constraint

end_of_list.

Note that x ∗ z! = y ∗ z | x = y specifies that if rows x and y contain the same

value at column z, then x = y; x ∗ z! = y ∗ z | x = y specifies that if column y and

z contain the same value at row x, then y = z. An alternative specification will use

\ and / as the Skolem functions for u and v, respectively, in

∀x, y∃!u, v (x ∗ u = y) ∧ (v ∗ y = x)

where ∃! means “there exists uniquely”. Now Mace4’s input will look like

assign(domain_size, 5).

formulas(assumptions).

% quasigroup axioms (equational)

x * (x \ y) = y.

x \ (x * y) = y.

(x / y) * y = x.

(x * y) / y = x.

((y * x) * y) * y = x. % special constraint

end_of_list.

Mace4 will find the following model:

interpretation( 5, [number=1, seconds=0], [

function(*(_,_), [ function(/(_,_), [ function(\(_,_), [

0, 2, 1, 4, 3, 0, 4, 3, 1, 2, 0, 2, 1, 4, 3,

3, 1, 4, 0, 2, 4, 1, 0, 2, 3, 3, 1, 4, 0, 2,

4, 3, 2, 1, 0, 3, 0, 2, 4, 1, 4, 3, 2, 1, 0,

2, 4, 0, 3, 1, 1, 2, 4, 3, 0, 2, 4, 0, 3, 1,

1, 0, 3, 2, 4 ]), 2, 3, 1, 0, 4 ]), 1, 0, 3, 2, 4 ])

]).
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The Latin square defined by ∗ is different from the one obtained by p(x, y, z). If

we use the command assign(max models, -1), Mace4 will find all the six models

when the domain size is 5; it will find 120 models when the domain size is 7 (you

need to turn off the auto command).

7.5.2 Finite Model Finding by SAT Solvers

The working principle of Mace4 is based on the fact that a set C of first-

order clauses has a finite model if the propositional formula translated from C is

satisfiable. Let D = {0, 1, ..., n− 1} be the domain of the finite model I, we will do

the following to obtain a set of propositional clauses from C.

• For each predicate symbol p/k, define a set of propositional variables qpx1,...,xk
,

xi ∈ D, such that qpx1,...,xk
is true iff pI(x1, ..., xk) is true.

• For each function symbol f/k, define a set of propositional variables qfx1,...,xk,y
,

xi, y ∈ D, such that qfx1,...,xk,y
is true iff f I(x1, ..., xk) = y, and add the following

clause into C:

(f(x1, ..., xk) 6= y1 | f(x1, ..., xk) 6= y2 | y1 = y2)

where s 6= t stands for ¬(s = t).

• For each clause A of C, if f(t1, ..., tk) appears in A and not in the format of

f(x1, ..., xk) = y (or y = f(x1, ..., xk)), then replace A by A[f(t1, ..., tk) ↼ y] |
f(t1, ..., tk) 6= y, where y is a new variable. This step is called flattening. Once

this step stops, every atom in C will be either p(x1, ..., xk) or f(x1, ..., xk) = y,

where x1, ..., xk, y are free variables.

• For each flattened clause A of C, for each variable x of A, for each value d of

D, create all the ground instances of A. Let the set of all ground clauses be

named as G.

• Finally, for each ground clause in G, replace p(d1, ..., dk) by qpd1,...,dk and

f(d1, ..., dk) = d by qfd1,...,dk,d. Let the set of all propositional clause be named

as propo(C).

Example 7.5.2. For the equational specification of the Latin square problem, we

used three function symbols: ∗, \, and /. The propositional variables will be px,y,z
for x ∗ y = z, qx,y,z for x\y = z, and rx,y,z for x/y = z; if |D| = 5, there will be 375
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propositional variables. The flattened clauses from the axioms plus the functional

constraints are

(x\y 6= z | x ∗ z = y) // x ∗ (x\y) = y.
(x ∗ y 6= z | x\z = y) // x\(x ∗ y) = y.
(x/y 6= z | z ∗ y = x) // (x/y) ∗ y = x.
(x ∗ y 6= z | z/y = x) // (x ∗ y)/y = x.
(y ∗ z 6= z | z ∗ y 6= w | w ∗ y = x) // ((y ∗ x) ∗ y) ∗ y = x.
(x ∗ y 6= z) | x ∗ y 6= w | z = w) //“ ∗′′ is a function
(x\y 6= z) | x\y 6= w | z = w) //“\” is a function
(x/y 6= z) | x/y 6= w | z = w) //“/” is a function

If |D| = 5, a clause with three free variables will generate 53 = 125 ground clauses;

a clause with four free variable will generate 54 = 625 ground clauses. The ground

instances of the above clauses are easy to convert to propositional clauses. For the

literal (z = w), its ground instance becomes > if we have zσ = wσ = d and ⊥ if

zσ = d1 6= d2 = wσ. 2

While the conversion from a first-order formula to a set of propositional clauses

uses the equality “=”, the equality axioms (introduced in the first section of this

chapter) are not needed for the conversion because they produce only trivial proposi-

tional clauses. Only the function axiom is needed in the conversion for each function

f :

(f(x1, ..., xk) 6= y1 | f(x1, ..., xk) 6= y2 | y1 = y2)

Proposition 7.5.3. A first-order formula C in CNF has a finite model iff the

propositional formula propo(C) is satisfiable.

Proof. Let C be a CNF formula of (P, F,X,Op) and D = {0, 1, ..., n − 1} be the

finite domain.

If propo(C) is satisfiable, then propo(C) has a model σ and σ defines a relation

Rp over Dk for each predicate symbol p/k:

Rp = {〈d1, ..., dk〉 | σ(qpd1,...,dk) = 1}

and a function fσ : Dk −→ D for each function f/k:

fσ(d1, ..., dk) = d iff σ(qfd1,...,dk,d) = 1.

Then it is ready to check that I = (D, {Rp | p ∈ P}, {fm | f ∈ F}) is a model of C.

On the other hand, if C has a finite model I = (D,R,G), where D is finite,

then we can create the interpretation σI for propo(C) as follows:

σI(q
p
d1,...,dk

) = 1 iff pI(d1, ..., dk) = 1
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and

σI(q
f
d1,...,dk,d

) = 1 iff f I(d1, ..., dk) = d

It is ready to check that σ is a model of propo(C). 2

To use SAT provers to solve a problem of modest difficulty, we need to write

an encoder which generates propositional clauses and then feed these clauses into

a SAT solver. We also need a decoder which translates SAT solver’s solution into

a solution of the problem. Mace4 releases the burden of writing encoders/decoders

by converting automatically the first-order clauses into propositional clauses with

the free variables being substituted by all the values in the finite domain and then

call a SAT solver to find a model; it is then convert the propositional model into a

first-order model.

7.6 Exercise Problems

1. Show that (f(x1, ..., xk) 6= y1 | f(x1, ..., xk) 6= y2 | y1 = y2) from the equality

axioms.

2. Write out in first order logic the statements that there are at least, at most,

and exactly three elements x such that A(x) holds.

3. Given the following set of ground equations,

E = {I = J, K = L, A[I] = B[K], J = A[J ], M = B[L]},

run the Knuth-Bendix completion procedure on E with KBO, assuming B �
A � M � L � K � J � I and show how each rewrite rule is generated by

the procedure.

4. Complete the proof of case 2.2 in Theorem 7.2.18.

5. Given the definition of add in Example 7.3.2, prove by structural induction

that add(x, s(y)) = s(add(x, y)).

6. Given the definition of add in Example 7.3.2, prove by structural induction

that add(x, y) = add(y, x) and mul(x, y) = mul(y, x).

7. Given the definitions of add and mul in Example 7.3.2, prove by structural

induction that add(add(x, y), z) = add(x, add(y, z)) and mul(mul(x, y), z) =

mul(x,mul(y, z)).
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8. Adding the following function to Example 7.3.2:

9 exp(x, 0) → s(0);
10 exp(x, s(y)) → mul(x, exp(x, y).

where exp(x, y) computes xy, the exponential function. Prove by structural

induction that exp(x, add(y, z)) = mul(exp(x, y), exp(x, z)).

9. Adding the following functions to Example 7.3.2:

11 fib(0) → 0;
12 fib(s(0)) → s(0);
13 fib(s(s(x))) → add(fib(s(x)), f ib(x)).

14 sum(0) → 0;
15 sum(s(x)) → add(sum(x), f ib(s(x))).

where fib(x) stands for the Fibonacci number and sum(x) stands for the

summation of the first x Fibonacci numbers. Prove by the structural induction

that sum(x) = pre(fib(s(s(x)))).

10. Adding the following function to Example 7.3.2:

16 A(0, y) → s(y);
17 A(s(x), 0) → A(x, s(0));
18 A(s(x), s(y)) → A(x,A(s(x), y)).

where A(x, y) stands for the Ackermann function. Prove by the structural

induction that A(s(0), y) = s(s(y)) and A(s(s(0)), y) = s(s(s(add(y, y)))).

11. Given the definition of rev in Example 7.3.8, prove that sorted(isort(y)) = >
is an inductive theorem by structural induction.

12. Use Prover9 to obtain the set of 10 rewrite rules from the three equations in

Example 7.2.8.

13. Use Mace4 to decide if there exists Latin squares of size between 4 and 9 for

each of the following constraints (called “short conjugate-orthogonal identi-

ties”), respectively.

Code Constraint Name
QG3 (x ∗ y) ∗ (y ∗ x) = x Schröder quasigroup
QG4 (y ∗ x) ∗ (x ∗ y) = x Stein’s third law
QG5 ((y ∗ x) ∗ y) ∗ y = x
QG6 (x ∗ y) ∗ y = x ∗ (x ∗ y) Schröder’s first law
QG7 (y ∗ x) ∗ y = x ∗ (y ∗ x) Stein’s second law
QG8 x ∗ (x ∗ y) = y ∗ x Stein’s first law
QG9 ((x ∗ y) ∗ y) ∗ y = x C3-quasigroup
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14. Repeat the previous problem when an additional constraint, x ∗ x = x, is

added into the axiom set.



CHAPTER 8

PROLOG: PROGRAMMING IN LOGIC

Prolog is a programming language whose name comes from programming in

logic. Unlike many other programming languages, Prolog comes from first-order

logic and is intended primarily as a declarative programming language: the program

is expressed in terms of relations, represented as facts and rules. A computation is

initiated by running a query over these relations.

Based upon Robinson’s resolution principle, Prolog was first developed and

implemented in 1972 by Alain Colmerauer with Philippe Roussel, called “Mar-

seilles Prolog”. The Japanese Fifth-Generation Computer Project, announced in

1981, adopted Prolog as a development language, and thereby focused consider-

able attention on the language and its capabilities. Prolog is the major example

of a fourth generation programming language supporting the declarative program-

ming paradigm, and is widely regarded as excellent languages for “exploratory” and

“prototype programming”.

There are several free implementations of Prolog available today, such as

GNU’s gprolog and SWI’s SWI-prolog, and they are the descendants of Marseille

Prolog. The language has been used for theorem proving, expert systems, auto-

mated planning, natural language processing, and is a popular tool in artificial in-

telligence and computational linguistics. Prolog is well-suited for specific tasks that

benefit from rule-based logical queries such as searching databases, voice control

systems, and filling templates.

8.1 Prolog’s Working Principle

In Prolog, program logic is expressed in terms of relations, and a computation

is initiated by running a query over these relations.

8.1.1 Horn Clauses in Prolog

Typically, relations and queries are constructed by Horn clauses. In sec-

tion 3.4, we have seen that Horn clauses are clauses with at most one positive

literal. In Prolog, Horn clauses are further divided into three types.

• fact: a unit positive clause;

280
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• rule: a clause with one positive literal and one or more negative literals;

• query: a negative clause.

A Prolog program consists of facts and rules, which are collectively called

definite clause. For a rule clause (A | B1 | ... | Bn), where A,B1, ..., Bn, n ≥ 1, are

atomic formulas, it is written in Prolog as A : −B1, ..., Bn. This format looks closely

to the equivalent formula

B1 ∧ · · · ∧Bn → A.

In other words, the symbol : − is the inverse of→ and the commas are ∧ in Prolog.

For a rule H : −B, H is the head and B is the body of the rule. It is read as “H

is true if B is true”. Clauses with an empty body are facts, which do not need the

symbol “:-” or we may write it as “H :- true” in Prolog.

Negative clauses like (B1 | ... | Bn) are Prolog queries and denoted by ?-

B1, ..., Bn, which resembles the equivalent formula ¬(B1 ∧ · · · ∧Bn).

Example 8.1.1. Suppose we want to study the family tree of a big family, we may

state the father-child and mother-child relations by facts, and define other relations

by rules. Here is a Prolog program. 2

mom(rose, john). % Rose is the mother of John

mom(rose, bob).

mom(rose, ted).

papa(joe, john). % Joe is the father of John

papa(joe, bob).

papa(joe, ted).

papa(ted, patrick).

papa(john, caroline).

papa(bob, kathleen).

papa(bob, joseph).

papa(bob, mary).

parent(X, Y) :- papa(X, Y). % X is parent of Y if X is papa of Y.

parent(X, Y) :- mom(X, Y). % X is parent of Y if X is mom of Y.

grandpa(X, Y) :- papa(X, Z), parent(Z, Y).

grandmo(X, Y) :- mom(X, Z), parent(Z, Y).

From this example, we can see that variables in Prolog are identifies whose

first character is a capital letter. Once the above program is loaded into Prolog, we

may issue queries after the symbol ?-.
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To query who are the parents of ted, we type parent(X, ted). after the

symbol ?-. Prolog will answer with X = joe. If you type “;”, Prolog will give you

another answer: X = rose. If you hit “return”, you will terminate the query.

To query the sibling relation, we may define the sibling relation as a rule,

sibling(X, Y) :- parent(Z, X), parent(Z, Y), X =\= Y.

% X and Y share parent Z.

where \ = stands for “not equal”, and issue the query ?- sibling(X, Y). On the

other hand, we may use the query

?- parent(Z, X), parent(Z, Y), X =\= Y.

This query also prints out the common parent Z of X and Y . For instance the first

answer found by Prolog is

X = john, Y = bob, Z = joe.

8.1.2 Resolution Proofs in Prolog

In Prolog, associated with every successful query, there exists a resolution

proof. For instance, for the query ?- parent(X, ted), we have an answer X =

joe. The corresponding resolution proof is given below.

Prolog format clausal format

1 papa(joe, ted). (f(joe, ted)) // input

2 parent(X, Y) :- papa(X, Y). (p(X,Y ) | f(X,Y )) // input

3 ?- parent(X, ted). (p(X, ted)) // query

4 ?- papa(X, ted). (f(X, ted)) // resolvent of 2 and 3

5 ⊥. ⊥ // resolvent of 1 and 4.

In the last resolution, the mgu is X 7→ joe, which is the answer of the query. The

query comes from the negation of the formula ∃X parent(X, ted), which is a logical

consequence of the input clauses.

As another example, for the query parent(Z, X), parent(Z, Y), X Ȳ, the

corresponding resolution proof is the following.

1 papa(joe, john). // input

2 papa(joe, bob). // input

3 parent(X, Y) :- papa(X, Y). // input

4 ?- parent(Z, X), parent(Z, Y), X \= Y. // query
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5 ?- papa(Z, X), parent(Z, Y), X \= Y. // resolvent of 3 and 4

6 ?- parent(joe, Y), john \= Y. // resolvent of 1 and 5

7 ?- papa(joe, Y), john \= Y. // resolvent of 3 and 6

8 ?- john \= bob. // resolvent of 2 and 7

9 ?- >. // ?- > is ⊥, the empty clause

The mgus used in the resolutions provide the solution of the query: Resolution

between 1 and 5 provides X = john, Z = joe and resolution between 2 and 7

provides Y = bob.

Both above resolution proofs are a negative, input and linear resolution proof.

That is, every resolution includes a negative clause and an input clause as parents,

and the latest resolvent (which is negative) is used in the next resolution. This

is true for every resolution proof found by Prolog. Corollary 3.4.11 claims that,

for propositional Horn clauses, if there exists only one negative clause, then the

negative, input and linear resolution is complete for Horn clauses. This result can

be extended to first-order clauses. In other words, the negative, input and linear

resolution strategy is complete for first-order Horn clauses.

Thus, given a query, the Prolog engine attempts to find a resolution refutation

of the query. If the empty clause can be derived, i.e., an instantiation for all free

variables is found that makes the input clauses plus the query false, it follows

that the negation of the query, with the found instantiation applied, is a logical

consequence of the program. This makes Prolog particularly useful for symbolic

computation and language parsing applications.

Example 8.1.2. Suppose we are asked to write a program to convert a propositional

formula into negation normal form. This would be a week-long exercise using a

conventional programming language. Using Prolog, it is an hour-long exercise.

Suppose we use only three propositional variables, say p, q, r, and the logical

operators are “n” for ¬, “a” for ∧, “o” for ∨, “i” for →, and “e” for ↔, the Prolog

program is given below: 2

pvar(p). % definition of propositional variables

pvar(q).

pvar(r).

literal(n(L)) :- pvar(L). % definition of literals

literal(L) :- pvar(L).

nnf(n(n(X)), NNF) :- nnf(X, NNF). % double negation
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nnf(a(A, B), a(N1, N2)) :- nnf(A, N1), nnf(B, N2). % and

nnf(n(a(A, B)), o(N1, N2)) :- nnf(n(A), N1), nnf(n(B), N2).

nnf(o(A, B), o(N1, N2)) :- nnf(A, N1), nnf(B, N2). % or

nnf(n(o(A, B)), a(N1, N2)) :- nnf(n(A), N1), nnf(n(B), N2).

nnf(i(A, B), o(N1, N2)) :- nnf(n(A), N1), nnf(B, N2). % implication

nnf(n(i(A, B)), a(N1, N2)) :- nnf(A, N1), nnf(n(B), N2).

nnf(e(A, B), o(a(NA, NB), a(NnA, NnB))) :- % equivalence

nnf(A, NA), nnf(n(A), NnA), nnf(B, NB), nnf(n(B), NnB).

nnf(n(e(A, B)), o(a(NA, NnB), a(NnA, NB))) :-

nnf(A, NA), nnf(n(A), NnA), nnf(B, NB), nnf(n(B), NnB).

nnf(X, X) :- literal(X). % NNF of literal is itself

The following is a query to the above program:

?- nnf(n(o(n(a(p,q)),e(p,q))), X).

X = a(a(p,q),o(a(p,n(q)),a(n(p),q))) ?

8.1.3 A Goal-Reduction Procedure

The Prolog engine can be regarded as a goal-reduction process: For each G

in the original query, the engine will search for a rule in the Prolog program whose

head unifies with G and recursively apply the engine to the subgoals in the body

of the rule. When all subgoals are solved, or when the body is empty, goal G is

considered as solved and a substitution for the variables of G is returned; otherwise,

the label “fail” is returned.

Procedure 8.1.3. Assuming P is a Prolog program, procedure engine1 takes a

single goal G as input and returns a substitution as output if one rule of P can

solve G; otherwise, fail is returned. Procedure engine takes a list Gs of goals as

input and returns a substitution as output if every goal of Gs is solved by P .

proc engine1(G)

1 for (H : −B) ∈ P do

2 if (H and G are unifiable with mgu σ)

3 θ := engine(Bσ);
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4 if θ 6= fail return σθ;

5 return fail;

proc engine(Gs)

1 σ = θ := ∅;
2 for A ∈ Gs do

3 σ := engine1(Aθ);

4 if σ = fail break; else θ := θσ;

5 if σ = fail return fail; else return θ;

We assume that B is empty if H : −B is a fact. The first call is engine(Qs), where

Qs are the goals in a query.

Obviously, engine1 and engine are mutually recursive procedures. If we exam-

ine the recursion tree of engine1 and engine, the links going out of the engine1 node

are labeled by rules of P ; and the links going out of the engine node are labeled by

a goal in Gs. The engine1 node is an ∨-node: if one of its children succeeds, it will

succeed. The engine node is an ∧-node: if one of its children fails, it will fail. In

other words, the recursion tree of engine and engine1 is an ∧-∨ tree.

Procedure engine1 as given intends to find one answer; if more answers are

desired, then line 4 of engine1 will remember which rule is used to get σ and will

use the next rule when more solutions are desired. In this case, the engine1 node

may have more than one successful child.

A leaf node in the ∧-∨ tree is said to be ok if (a) it is an engine node and Gs

is empty or (b) it is an engine1 node and G is a built-in atom evaluated to be true.

An internal node in the ∧-∨ tree is said to be ok if (c) it is an engine node and

every child node is ok, or (d) it is an engine1 node and one of its children is ok.

In this case, the ∧-∨ tree has a solution iff its root node is ok and it represents

all the solutions dictated by the ∨ nodes.

Example 8.1.4. The following program implements a depth-first search procedure

for a directed graph:

% s(u, v): directed edge (u, v)

1: s(a,b).

2: s(a,c).

3: s(b,d).

4: s(c,g).

5: s(d,g).

6: goal(e). % goal(x): x is a goal
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Figure 8.1.1: ∨-nodes in the ∧-∨ tree for the query dfs(a, N).

7: goal(g).

8: dfs(N, N) :- goal(N). % dfs(startNode, solution)

9: dfs(N, l(N, R)) :- s(N, X), dfs(X, R).

There are two solutions to the query ?- dfs(a, N). That is, N = l(a, l(b, l(d,

g))) and N = l(a, l(c, g)), where a term like l(a, l(c, g)) represents a path (a,

c, g) in the graph. Later, after introducing the list, the same path can be rep-

resented by [a, c, g]. Figure 8.1.1 shows the ∨-nodes in the search tree for the

query dfs(a, N); the ∧-nodes are implicit. The shaded nodes are the failed nodes;

the other nodes are ok nodes. 2

Note that the two recursive procedures engine and engine1 just illustrate the

goal-reduction process; the actual Prolog engine is an interactive procedure and uses

a stack to save all the information in a search path of the ∧-∨ tree.

Procedure engine1 shows that the order of rules in P is important. Procedure

engine shows that the order of atomic formulas in the body of a rule is important.

In other words, the links in the ∧-∨ tree are ordered and it implements a special

case of the negative, input and linear resolution strategy: the literals in a rule are

handled from left to right, and the commas, which represent ∧ in logic, are not

commutative. The input clauses are tried to unify with a given goal from first to

last. From the viewpoint of search strategies, this is the depth-first search in the

∧-∨ tree.
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Example 8.1.5. Adding the following rules to the Prolog program in Example 8.1.1:

descen(X, Y) :- parent(Y, X). % X is a descendant of Y

descen(X, Z) :- parent(Y, X), descen(Y, Z).

The last rule is different from the previous rules in that descen is recursively defined.

If we ask “who are the descendants of Joe”, the query is ?- descen(X, joe). Pro-

log will find that X = john, bob, ted, patrick, caroline, kathleen, joseph,

and mary, in the given order. For the first answer, i.e., X = john, the recursive calls

of engine and engine1 go as follows:

engine([descen(X, joe)])

engine1(descen(X, joe))

engine([parent(joe, X)]])

engine1(parent(joe, X)])

engine([papa(joe, X)])

engine1(papa(joe, X)) return X = john

...

engine([descen(X, joe)]) return X = john

For the last answer, i.e., X = mary, the recursive calls go as follows (the calls

to engine are ignored if the list contains a single goal).

engine1(descen(X, joe))

engine([parent(Y, X), descen(Y, joe)])

engine1(parent(Y, X))

engine1(papa(Y, X)) return {X = mary, Y = bob}
engine1(descen(bob, joe))

engine1(parent(bob, joe))

engine1(papa(bob, joe)) return { }
...

engine([parent(Y, X), descen(Y, joe)]) return {X = mary, Y = bob}
engine1(descen(X, joe)) return {X = mary, Y = bob}

However, if we change the last rule to a logically equivalent one:

descen(X, Z) :- descen(Y, Z), parent(Y, X).
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The same query, ?- descen(X, joe), will produce X = john, bob, ted,

caroline, kathleen, joseph, mary, and patrick, the same set of eight answers

in different orders, and will cause Prolog to crash if you ask for more answers. If

we switch the order of the last two clauses, i.e., the last two clauses are

descen(X, Z) :- descen(Y, Z), parent(Y, X).

descen(X, Y) :- parent(Y, X).

Then the same query will cause Prolog to crash without generating any answer.

The first-order logic cannot explain the difference because these two clauses are

logically equivalent. The procedures engine and engine1 can explain the difference

perfectly:

The initial goal list is [descen(X, joe)] in all the three cases. In the last case,

the rule descen(X, Z) :- descen(Y, Z), parent(Y, X) is applied first, and the

recursive calls of engine and engine1 go as follows.

engine1(descen(X, joe))

engine([descen(Y, joe), parent(Y, X)])

engine1(descen(Y, joe))

engine([descen(Y1, joe), parent(Y1, Y)])

engine1(descen(Y1, joe))

engine([descen(Y2, joe), parent(Y2, Y1)])

...

The unsolved goal list contains a long sequence of goals like

..., parent(Y3, Y2), parent(Y2, Y1), parent(Y1, Y), parent(Y, X)

until Prolog runs out of memory. Here we changed the variable names because each

clause is assumed to have different variables from others. 2

The above example shows that Prolog uses a depth-first strategy, which is not

a fair strategy, to implement resolution, and becomes an incomplete theorem prover

for Horn clauses. As a Prolog programmer, we need to be careful to avoid the pitfall

of infinite loops associated with the depth-first strategy. We will address this issue

in the next section.

Example 8.1.6. Hanoi’s tower asks to move n disks from peg A to peg B using

peg C as an auxiliary holding peg. At no time can a larger disk be placed upon a

smaller disk. The Prolog code contains two predicate definitions: move writes out

the move information; hanoi(N,A,B,C) checks if N = 1, then moves disk 1 from A

to B; otherwise, it tries to move the top N-1 disks from X to C; move bottom disk N

from X to B; and then N-1 disks from C to B.
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move(N,A,B) :- % print a move info

write(’Move disk ’), write(N), write(’ from ’),

write(A), write(’ to ’), write(B), nl.

hanoi(1,A,B,C) :- % disk 1 can move freely from A to B

move(1,A,B).

hanoi(N,A,B,C) :- % To move N disks from A to B,

N>1, M is N-1, % where N > 1,

hanoi(M,A,C,B), % we move the top N-1 disks from A to C

move(N,A,B), % then move disk N, the largest, from A to B

hanoi(M,C,B,A). % then move the N-1 disks from C to B

| ?- hanoi(3, a, b, c).

Move disk 1 from a to b

Move disk 2 from a to c

Move disk 1 from b to c

Move disk 3 from a to b

Move disk 1 from c to a

Move disk 2 from c to b

Move disk 1 from a to b

The code comes directly from the description of the solution. It involves two recur-

sive calls of hanoi. The recursive calls will terminate because the first argument of

hanoi is reduced by one in each successive call. 2

8.2 Prolog’s Data Types

As a programming language, Prolog has several built-in data types, such as

numbers (floats or integers), strings, and lists, and associated functions. These data

types are subtypes of a supertype, called terms. In this view, term is the only data

type language in Prolog. Terms are either atoms, numbers, variables or compound

terms. Atomic formulas in Prolog are called callable terms.

8.2.1 Atoms, Numbers, and Variables

We have been using “atom” for “atomic formula”; in this section, we will use

“atomic formula” explicitly because “atom” has special meaning in Prolog: an atom

is either an identifier other than variables or a single-quoted string of characters.
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Examples of atoms include x, red, ’Taco’, and ’some atom’. An atom is a

general-purpose name with no inherent meaning.

Prolog provides the predicate atom/1, where atomX is true iff X is an atom.

For example, atom(’some atom’) is true; atom(123) is false.

Numbers can be floats or integers. The range of numbers that can be used is

likely to be dependent on the number of bits (amount of computer memory) used to

represent the number. Most of the major Prolog systems support arbitrary length

integer numbers. The treatment of float numbers in Prolog is likely to vary from

implementation to implementation; float numbers are not all that heavily used in

Prolog programs, as the emphasis in Prolog is on symbol manipulation.

Prolog provides all the usually predicates on numbers, such as >/2, </2,

=</2, >=/2, etc., and arithmetic operations, such as -/1, +/1, +/2, -/2, */2,

//2, mod/2, rem/2, gcd/2, lcm/2, abs/1, sign/1, max/2, min/2, truncate/1,

floor/1, ceiling/1, sqrt/1, sin/1, cos/1, etc. You use =:=/2 to check if two

numbers are equal; and =/̄2 for not equal. The symbol =/2 is reserved for unifica-

tion: s = t returns true if s and t are unifiable.

Prolog also provides predicate number/1 to check if a term is a number or not;

integer/1 for being an integer; float/1 for being a float number. For example,

float(1.0) returns true; float(1) returns false. Note that integer(1+1) returns

false as 1+1 is a compound term. If we check the value of 1+1<3, Prolog will return

true because 1 + 1 will be evaluated to 2 before < is called on (2, 3).

Variables are denoted by an identifier consisting of letters, numbers and un-

derscore characters, and beginning with an upper-case letter or underscore. The

underscore alone, “ ”, denotes a nameless distinct variable. A nameless variable

is used when we do not care about the value of the variable. For example, if we

define the multiplication relation mul(X, Y, Z), where Z = X*Y, the first rule can

be mul(0, , 0), where the second position is a nameless variable.

Prolog variables closely resemble variables in logic in that it can be instantiated

by arbitrary terms through unification. If a variable is instantiated, we say “the

variable is bounded”. Some operations require the involved variables are bounded.

For instance, to show

descen(X, Z) :- parent(Y, X), descen(Y, Z).

is a terminating rule in Example 8.1.5, we need to check that the bindings of X, Y

and Z. The predicate parent(Y, X) ensures that X and Y will be bounded to atoms

when we reach descen(Y, Z). When these variables are bounded by atoms, the

atom bounded to Y is one step closer than that of X to Z in the descendant relation,

this meaning defines a well-founded ordering > such that X > Y when we compare

descen(X, Z) and descen(Y, Z).
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In Prolog, there is a special infix predicate called is/2, which was used in the

Hanoi example. It resembles the assignment statement of a variable by a numeric

expression in a conventional programming language. For example, the value of X

is 1+1 is true with X is instantiated with 2. That is, Prolog will evaluate the right

side of is, if it is a number, that number is bounded to the variable on the left side

of is; otherwise it will abort with error. In contrast, X = 1+1 will also return true,

but it will bound the variable X to the compound term 1+1. As another example,

“X = a” will return true and “X is a” will be aborted, because a is not a number.

8.2.2 Compound Terms and Lists

A compound term is composed of a predicate or function symbol, called a

“functor” and a number of “arguments”, which are again terms. Compound terms

are ordinarily written as a functor followed by a comma-separated list of argument

terms, which is contained in parentheses. The number of arguments is called the

term’s arity. An identifier can be regarded as a compound term with arity zero.

There is a built-in predicate called functor/3 which allows us to extract the

functor and its arity from a compound term:

?- functor(f(a, b), F, N).

F = f, N = 2

Compound terms are indispensable for representing various data structures

in conventional languages. For example, to represent a binary tree where each

non-empty tree node contains a key, we may use the compound term node(key,

leftChild, rightChild). We can define easily predicate tree/1, which checks if

its argument is a tree, and predicate dfs/2, which tries to find a key by depth-first

search in a tree.

tree(nil). % nil denotes the empty tree

tree(node(_, Left, Right)) :- tree(Left), tree(Right).

dfs(node(K, _, _), K) :- write(’found ’), write(K).

dfs(node(_, L, _), K) :- dfs(L, K). % go to Left branch

dfs(node(_, _, R), K) :- dfs(R, K). % go to Right branch

In the definition of dfs, we used “ ” twice in each rule; each “ ” represents a

unique variable.

One special member of compound terms is list, which is an ordered collection

of terms. It is denoted by square brackets with the terms separated by commas, or
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in the case of the empty list, by []. Here are some lists of three elements, [1,2,3],

[red,green,blue], or [34,tom,[2,3]]. Lists are the replacement of arrays in

conventional programming languages.

For a non-empty list, the first member of a list is separated from the rest

members by the symbol |. For example, the result of [X | Y] = [1,2,3] is X =

1 and Y = [2, 3] and the result of [X | Y] = [1] is X = 1 and Y = [].

Two lists unify if they are the same length and all their elements unify pair-

wisely.

|?-[a,B,c,D]=[A,b,C,d]. |?-[(a+X),(Y+b)]=[(W+c),(d+b)].

A = a, W = a,

B = b, X = c,

C = c, Y = d?

D = d ? yes

yes

|?-[a,b,c,d]=[Head|Tail]. |?-[a,b,c,d]=[X,Y|Z].

Head = a, X = a,

Tail = [b,c,d]? Y = b,

yes Z = [c,d];

yes

8.2.3 Popular Predicates over Lists

Most Prolog implementations provide efficient implementations of the follow-

ing predicates over lists. We also are providing hypothetical Prolog codes of these

predicates, even though they are not identical to actual implementations.

• list/1: Check if its argument is a list.

list([]).

list([_ | X]) :- list(X).

• member/2: Check if the first argument is a member of the second argument.

member(X, [X | _]).

member(X, [_ | Y]) :- member(X, Y).

• append/3: Check if the third list is the concatenation of the first two lists.
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append([], Y, Y).

append([F|X], Y, [F|Z]) :- append(X, Y, Z).

• select/3: select(X, List1, List2) is true when List1, with X removed,

results in List2.

select(_, [], []).

select(X, [X|Y], Y).

select(X, [F|Y], [F|Z]) :- select(X, Y, Z).

For instance, select(X, [a,b], Z) has two solutions: (1) X = a and Z =

[b]; (2) X = b and Z = [a]. An alternative implementation of select is to

use append:

select(E, L, R) :- append(X, [E|Y], L), append(X, Y, R).

• delete/3: delete(X, List1, List2) is true when List1, with all members

matching to X are removed, results in List2.

delete(_, [], []).

delete(X, [X|Y], Z) :- delete(X, Y, Z).

delete(X, [F|Y], [F|Z]) :- X \= F, delete(X, Y, Z).

where \= means “not unifiable”. For instance, delete(X, [a,b], Z) has

only one solution: X = a, Z = [b].1 This shows the difference of select

and delete.

• reverse/2: reverse(List1, List2) is true when the elements of List2 are

in reverse order compared to List1.

reverse([], []).

reverse([F|X], Z) :- reverse(X, Y), append(Y, [F], Z).

• permutation/2: permutation(List1, List2) is true when List2 is a per-

mutation of List1.

permutation([], []).

permutation([F|X], Y) :- permutation(X, Z), select(F, Y, Z).

1For the same query, the built-in delete in gprolog gives an infinite number of solutions.
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• length/2: length(List, N) is true when the length of List is N.

length([], 0).

length([_|X], N) :- length(X, M), N is M+1.

One common feature of these predicates is that they are all defined recursively.

The termination of these definitions is easy to establish as one of the arguments to

the recursive calls goes smaller, or we may show that the head of each rule is strictly

greater than its body under a simplification ordering.

Due to the relational nature of many built-in predicates, they can typically be

used in several directions. For example, append/3 can be used both to append two

lists (append(ListA, ListB, X) given lists ListA and ListB) as well as to split a

given list into parts (append(X, Y, List), given List). For instance, the query

append(X, Y, [1,2,3]) will produce the following four answers:

X = [], Y = [1,2,3]

X = [1], Y = [2,3]

X = [1,2], Y = [3]

X = [1,2,3], Y = []

For this reason, a comparatively small set of library predicates suffices for many

Prolog programs. Note that the suggested implementation for length can compute

the answer N = 3 from length([a,b,c], N), but cannot generate a list of 3 place-

holders, L = [ 1, 2, 3], from length(L, 3). Some version of Prolog, e.g., SWI

Prolog, can do so.

For some applications, we need to obtain a set S = {x | A(x)}, that is,

S is a set of elements satisfying the condition A(x). It is not easy to write a

Prolog program which generates such a set. Fortunately, in most implementations of

Prolog, such a set can be obtained by calling bagof(X, Goal(X), S). For example,

in Example 8.1.1, we may define children(F) = { C | papa(F, C) }. A query

like the following will give us a satisfactory answer:

?- bagof(C, papa(Father, C), Children).

Father = bob, Children = [kathleen,joseph,mary] ? ;

Father = joe, Children = [john,bob,ted] ? ;

Father = john, Children = [caroline] ? ;

Father = ted, Children = [patrick]

Some Prolog also provides the set operations, such as intersection/3, union/3,

subtract/3, subset/2, when a list is viewed as a set.
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In Prolog, a string is a sequence of characters surrounded by double quotes

and is equivalent to a list of numeric character codes. One common mistake is to

use strings in the write predicate instead of a single-quoted sequence of characters

(an atom).

8.2.4 Sorting Algorithms in Prolog

To illustrate how an algorithm is implemented in Prolog, we show below the

Prolog code of insertion sort and quick-sort.

Example 8.2.1. The following program defines four predicates for the implementa-

tion of insertion sort and quick-sort: isort/2, insert/3, split/4, and qsort/2.

% isort(L, R): R is the output of L by insert sort

isort([], []).

isort([X|L], R) :-

isort(L, T), % sort L into T

insert(X, T, R). % insert X into T to obtain R.

% insert(X, L, R): insert X into list L and R is the result.

insert(X, [], [X]).

insert(X, [Y|L], [X, Y|L]) :- X =< Y.

insert(X, [Y|L], [Y|R]) :- X > Y, insert(X, L, R).

% split(P, I, S, B): split the input list I into S and B by pivot P.

split(_, [], [], []).

split(P, [H|I], [H|S], B) :- H =< P, split(P, I, S, B).

split(P, [H|I], S, [H|B]) :- H > P, split(P, I, S, B).

% qsort(L, R): L is the input list and R is the output by quicksort

qsort([], []).

qsort([X|Y], Z) :- split(X, Y, S, B),

qsort(S, S1), qsort(B, B1), append(S1, [X|B1], Z).

2

The above code is lucid and neat, easy to understand and maintain. This

is typical feature of a declarative programming language. Of course, its execution

is not as efficient as conventional programming languages. That is why Prolog is

used mostly for prototype programming, and for popular functions, we have efficient

built-in implementations.
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Another feature of declarative programming is that the correctness of the algo-

rithm can be verified. For sorting, the correctness is ensured by the two properties:

(1) the output is sorted; (2) the output is a permutation of the input list. In Prolog,

(2) is a built-in function and we can define (1) with easy.

Example 8.2.2. The following Prolog program defines the predicate sorted(L),

which returns true iff L is a sorted list, and some utility predicates for the verification

purpose.

sorted([]).

sorted([_]).

sorted([X,Y|L]) :- X=<Y, sorted([Y|L]).

verifyIsort(X, Y) :- isort(X, Y), permutation(X, Y), sorted(Y).

verifyQsort(X, Y) :- qsort(X, Y), permutation(X, Y), sorted(Y).

slowsort(X, Y) :- permutation(X, Y), sorted(Y).

In the above code, the first three clauses define sorted/1. The next two clauses

illustrate the verification of isort and qsort. The last clause shows how the re-

quirement can be the code itself. The code of permutation/2 can be found in

section 8.2.3. 2

Most Prolog implementations provide two versions of predicates for sorting:

sort/2, which removes duplicate elements, and msort/2, which does not remove du-

plicates. For instance, the query sort([b,a,c,a], X) will produce X = [a,b,c],

while msort([b,a,c,a], X) produces X = [a,a,b,c]. These built-in predicates

run faster than the user defined sorting algorithms.

8.3 Recursion in Prolog

As is commonly the case in most programming tasks, we often wish to re-

peatedly perform some operation either over a whole collection of data, or until

a certain point is reached. Conventional programming languages provide various

loop controls for performing such tasks. The only way we can do this in Prolog is

by recursion. In section 8.2.3, we have seen many Prolog programs which contain

recursive definitions. Recursion allows us to write clear and elegant code. Data such

formulas or lists are often recursively and best processed recursively. Recursion al-

lows Prolog to perform complex search of a problem space without any dedicated

algorithms. Without recursion, Prolog goes nowhere. To master Prolog, we have to

learn how to use recursion correctly and efficiently.
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Any recursive definition, whether in Prolog or some other language needs

two things: base cases and recursive cases. The base cases specify a condition of

when the recursion terminates. Without this the recursion would never stop! For

example, the base case of append(X, Y, Z) is append([], Y, Y) when X=[]. Base

cases almost always come before recursive cases. Recursive cases ask a program to

handle a similar problem of smaller size. For example, append([U|X], Y, [U|Z])

:- append(X, Y, Z).

8.3.1 Program Termination

The danger of recursion is that the program may loop forever and never termi-

nate. The termination problem is more complicated in Prolog than in conventional

programs because the input to a Prolog program may contain variables and we may

ask for multiple solutions from a single query.

Definition 8.3.1. A Prolog program P is said to have first termination on an input

x if P terminates with either no solution or the first solution on x. P is said have

last termination on x if P terminates after all solutions of x are generated. If P

has first (last) termination on any ground input x, then P is said to have first (last)

ground termination.

Example 8.3.2. Given the following program P ,

ancestor(tom, jack).

ancestor(X, Y) :- ancestor(X, Z), ancestor(Z, Y).

P has first termination on the query ?- ancestor(A, B) with the solution A=tom,

B=jack, but not on ?- ancestor(jerry, tom), as the second clause will be used

forever during the search. Since the second input is ground, P has no first ground

termination. Since last termination implies first termination, P has no last ground

termination. 2

Prolog is a relational programming language, and relations can hold between

multiple entities that are reported on backtracking. Therefore, first termination

does not fully characterize the procedural behavior of a Prolog query and we need

the concept of last termination. We may use the termination of the query ?- Q,

false. to check if Q has last termination, because all the solutions of Q must be

generated before the query terminates.

Consider the member/2 program in section 8.2.3, the program has ground

termination when the second argument of member is ground. However, the query

?- member(X, Y), false. will fail with a stack overflow error, thus showing that

member(X, Y) has no last termination.
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Example 8.3.3. Given a propositional formula A in negation normal form (NNF),

we may use the following program to decide if A is satisfiable, assuming the formula

uses Prolog variables for propositional variables, and and, or, not for ∧, ∨, ¬,
respectively.

sat(true). % positive literal

sat(not(false)). % negative literal

sat(or(X, _)) :- sat(X).

sat(or(_, Y)) :- sat(Y).

sat(and(X, Y)) :- sat(X), sat(Y).

test1(X, Y) :- sat(and(not(X), X)). % test examples

test2(X, Y) :- sat(and(X, not(Y))).

test3(X, Y) :- sat(and(X, or(not(X), Y))).

The NNF formulas can be defined recursively by the BNF as follows:

〈NNF 〉 ::= 〈Literal〉 | 〈NNF 〉 or 〈NNF 〉 | 〈NNF 〉 and 〈NNF 〉

The first two clauses are the base cases of sat which handle literals, and the next

three clauses are the recursive cases which handle or and and.

It is easy to see that the argument to the recursive call is strictly less than the

argument in the head of each rule. Thus, we expect that the program will terminate

with the test examples. For the three test examples, the query ?- test1(X, Y) will

say no, thus sat has last termination on and(not(X), X). For the second query,

?- test2(X, Y), Prolog will give the first solution X=true, Y=false. The third

query ?- test3(X, Y) will produce the first solution X=true, Y=true. Thus, sat

has first termination on both inputs.

However, if we look for more answers from ?- test2(X, Y), we will see the

following answers:

X = not(false), Y = false

X = or(true,_), Y = false

X = or(not(false),_), Y = false

X = or(or(true,_),_), Y = false

X = or(or(not(false),_),_), Y = false

X = or(or(or(true,_),_),_), Y = false

X = or(or(or(not(false),_),_),_), Y = false

...
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These answers are correct in Prolog, but not correct for propositional satisfiability

(which asks for the models of a formula). If you ask for more answers from ?-

test3(X, Y), you will see an infinite number of answers, too. Thus, sat has last

termination neither on and(X, not(Y)) nor on and(X, or(not(X), Y)). Ground

termination does not make sense for sat because propositional variables are repre-

sented by variables. 2

The problem illustrated by the above example is that variables appearing in

the arguments of a recursive program are not bounded and they can be substituted

by terms containing other unbound variables, thus creating an infinite number of

possibilities. This is the same reason why member(X, Y) has no last termination.

8.3.2 Focused Recursion

A poorly definition of a recursive predicate may cause the program to loop.

In the next chapter, it is shown that checking if a Prolog program terminates on

a given input is a undecidable problem. Thus, people are interested in sufficient

conditions which ensure the termination of a Prolog program. Focused recursion is

one of such conditions.

Definition 8.3.4. A recursive predicate is said to be focused on an input t0 if there

exists a well-founded order � such that t1 � t2 � · · · � tn, where ti are the values

of the same argument appearing in the predicate’s consecutive recursive calls.

The argument in the above definition is called the focused position of the

predicate. Given the definition of append/3 in section 8.2.3, the predicate append

is focused on the first argument when the first argument is bound to a list of items

(which can be variables) of finite length. Each recursive call reduces the number of

items in the list by one. On the other hand, if the first argument is bounded to a

variable, the call may go on forever. The same can be said about member/2 or sat

in Example 8.3.3, where one sequence of calls of sat in the query test2(X, Y) may

contain the following values as the argument of sat:

and(X, not(Y)), X, or(X1, _), X1, or(X2, _), X2, or(X3, _), X3, ...

Example 8.3.5. In Example 8.3.2, the transitivity of the ancestor relation is ex-

pressed by the rule ancestor(X, Y) :- ancestor(X, Z), ancestor(Z, Y). This

rule cannot be used in Prolog as it causes an infinite loop. To define ancestor, we

may use the parent/2 relation, which is defined by a set of ground facts, and can

be represented by a directed acyclic graph (DAG) among individuals. Then we can

show that ancestor/2 defined by the following rules is a focused recursion on the

first argument.
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ancestor(X, Y) :- parent(X, Y).

ancestor(X, Y) :- parent(X, Z), ancestor(Z, Y).

Let X0, X1, ..., Xn be the values of the first argument in the recursive calls of

ancestor. Under the assumption that parent defines a DAG among the indi-

viduals, we can see that the distance from Xi to Y in the DAG is reduced by one

when i increases by one. Thus, the length of longest paths of the DAG provides an

upper bound for the number of recursive calls of ancestor. It is easy to see that

ancestor is the transitive closure of parent. 2

Proposition 8.3.6. If a recursive predicate P is focused on an input t0, then then

P has last termination on t0.

8.3.3 Tail Recursions

In Prolog, due to the power of logic variables, many predicates can be naturally

written in a tail recursive way, where the recursion happens in the last position

of the body. For example, the predicates list, member, append, select, and

delete, are tail recursive as given in section 8.2.3. On the other hand, reverse,

permutation and length are not tail recursive.

In many cases, tail recursion is good for performance. For conventional pro-

grams, a smart compiler can change tail recursion to an interactive one, thus saving

the time and space of using a stack to store the environments of a recursive call. In

Prolog, the same technique can be used so that a tail call means that the Prolog

system can automatically reuse the allocated space of the environment on the local

stack. In typical cases, this measurably reduces memory consumption of your pro-

grams, from O(N) in the number of recursive calls to O(1). Since decreased memory

consumption also reduces the stress on memory allocation and garbage collection,

writing tail recursive predicates often improves both space and time efficiency of

your Prolog programs.

Example 8.3.7. The reverse/2 predicate defined in section 8.2.3 is copied here:

reverse([], []).

reverse([F|X], Z) :- reverse(X, Y), append(Y, [F], Z).

Suppose the query is ?- reverse([a, b, c, d], L). The subgoal list can become

?- reverse([], []), append([], [d], L3), append(L3, [c], L2), append(L2,

[b], L1), append(L1, [a], L), before it is shrinking. To avoid this long list of

subgoals, we may introduce a tail recursive rev/3:
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reverse(X, Y) :- rev(X, [], Y).

rev([], R, R).

rev([U|X], Y, R) :- rev(X, [U|Y], R).

Now, the subgoal list for ?- reverse([a, b, c, d], L). never contains more

than one item at any time:

?- reverse([a, b, c, d], L)

?- rev([a, b, c, d], [], L)

?- rev([b, c, d], [a], L)

?- rev([c, d], [b, a], L)

?- rev([d], [c, b, a], L)

?- rev([], [d, c, b, a], L)

2

This example illustrates that tail recursion can save space and time. However,

you should not overemphasize it, as for beginners, it is more important to understand

termination, and to focus on clear declarative descriptions.

8.3.4 A Prolog program for N -Queen Puzzle

Example 8.3.8. Below is a simple Prolog program for generating all legal positions

for the N -queens problem. The predicate queen(N,L) takes N as the number of

queens and generate a list L for the row numbers of N queens in the N columns.

2

% queen(N, R) generates at first a list R of N variables.

% Assuming one variable per column, then generate values for R,

% which gives the row number of the queen in each column.

queen( N, Res) :-

length( Res, N), % Res = N variables for columns

gen_list( 1, N, L), % L = [1, 2, ..., N]

solution( N, Res, L). % Res is a permutation of L

% gen_list( X, N, R) is true iff R = [X, X+1, X+2, ..., N].

gen_list( X, N, []) :- X>N, !.

gen_list( X, N, [X | Res]) :- Y is X+1, gen_list( Y, N, Res).

% solution( N, RowValues, List) if

% RowValues represent a list of N non-attacking queens
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solution( 0, [], _). % run out of columns

solution( C, [R|Others], L) :- % 1st queen at position [R,C]

C1 is C-1,

select( R, L, L2), % pick row R for column C

solution( C1, Others, L2), % find a partial solution

noattack( R/C, C1, Others). % 1st queen doesn’t attack Others

noattack( _, _, []). % Nothing to attack

noattack( R/C, C1, [R1 | Others]) :-

C1-C =\= R1-R, % Different diagonals

C1-C =\= R-R1,

C2 is C1-1,

noattack( R/C, C2, Others). % no attacks for Others

Given the query is ?- queen(4, R). the first answer is L = [2,4,1,3], which

says that the queens are placed at row 2 in the first column, row 4 in the second

column, etc., and the second answer is L = [3,1,4,2]. In the above program, each

position is generated and checked against the positions generated previously, so that

no two positions can be attacked each other by the move of queens. Using Prolog’s

depth-first search, the program is simple to write but highly inefficient. When

N > 12, it will take quite a while to find one solution, must slower than a SAT

solver. Sudoku puzzles can also be solved by Prolog using the same logic. However,

Sudoku cannot be solved efficiently using this generate-and-test approach, as the

search space is huge. SAT solvers are a much better tool for the Sudoku puzzles.

8.4 Beyond Clauses and Logic

As a general-purpose language, Prolog provides various built-in predicates to

perform routine activities like input/output, using graphics and otherwise commu-

nicating with the operating system. These predicates are not given a relational

meaning and are only useful for the side-effects they exhibit on the system. For ex-

ample, the predicate write/1 displays a term on the screen, and returns true when

it succeed. Besides this kind of extensions, various kinds of extensions are proposed,

some intended to improve the expressive power, some speed up the execution. Some

of these extensions follow the first-order logic; some go beyond the first-order logic.

For instance, since the occur-check in the unification algorithm is expensive,

most prolog implementations choose to ignore the occur-check. This does not cause

any problem in most applications. If you run into this problem and need a sound

unification algorithm, you may call the built-in function unify with occurs check.
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?- X = f(Y,Y).

X = f(Y,Y)

yes

?- X = f(X,Y).

cannot display cyclic term for X

?- unify_with_occurs_check(X, f(X,Y)).

no

8.4.1 The Cut Operator !

The cut, in Prolog, is a predicate of arity 0, written as !, which always suc-

ceeds, but cannot be backtracked. It is best used to prevent unwanted backtracking,

including the finding of extra solutions by Prolog and to avoid unnecessary compu-

tations.

Example 8.4.1. The figure shows how the cut operator affects the search procedure

engine and engine1 by a contrived example, where p is reduced to a list of subgoals

by rule 0, which contains !. When ! is reached by engine1, alternative rules, such

as rule 1 for p, are eliminated; alternative rules for all the left siblings of !, such as

rule 4 for a, are also eliminated. The right siblings of ! are not affected. 2

Some programmers call the cut a controversial control facility because it was

added for efficiency reasons only and is a function of logic.

A green cut is a use of cut which only improves efficiency. Green cuts are used

to make programs more efficient without changing program output. For example,

in the definition of split predicate of qsort, we may insert a cut after H =< P of

the second rule, that is, the three clauses become the following.

split(_, [], [], []).

split(P, [H|I], [H|S], B) :- H =< P, !, split(P, I, S, B).

split(P, [H|I], S, [H|B]) :- H > P, split(P, I, S, B).

If the current goal G is split(3, [2, 4, 1], L, R), then G unifies with

the heads of the last two rules. Once the subgoal H =< P, i.e., 2 =< 3, succeeds,

the last clause will never be tried due to the cut operator, even if G unifies with

the head of this clause and we want to see more answers. This cut is a green cut,

because we know the subgoal H>P, i.e., 2 > 3, will fail and the last clause cannot
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be applied. The cut operator saves us the time for trying unifying G with the head

of the last clause. With or without the cut, the program performs the same way as

desired.

A red cut is a use of cut which changes the meaning of the program if the cut

is missing. For the above split example, if H =< P fails, then H > P will succeeds.

To save the cost of H > P, we can write the split program as the following:

split(_, [], [], []).

split(P, [H|I], [H|S], B) :- H =< P, !, split(P, I, S, B).

split(P, [H|I], S, [H|B]) :- split(P, I, S, B).

This program will give us the same result as the previous one for any input.

However, this program will perform differently from the following program, where

the cut is gone:

split(_, [], [], []).

split(P, [H|I], [H|S], B) :- H =< P, split(P, I, S, B).

split(P, [H|I], S, [H|B]) :- split(P, I, S, B).

So, the above cut is a red cut. Red cuts are potential pitfalls for bugs. For

example, if the order of the two rules is reversed, the green cut will work correctly

and the red cut will produce wrong results. If the saving is significant when using

a red cut, a detailed documentation should be provided along the code. The cut

should be used sparingly. Proper placement of the cut operator and the order of

the rules is required to determine their logical meaning.

8.4.2 Negation as Failure

A Non-Horn clause like A∨B ∨¬C can be represented as ¬B ∧C → A. Can

we write it in Prolog as A : −¬B,C? The answer lies on how to solve the subgoal

¬B by the goal-reduction process. One approach is called “negation as failure”:

Try to solve B. If B succeeds, then ¬B fails; if B fails, then ¬B succeeds.

Using cut together with the built-in predicate fail, we may define this kind

of negation, so that properties that cannot be specified by Horn clauses can be

specified.

For example, to express “Mary likes any animals except reptiles” in Prolog,

likes(mary, X) :- reptile(X), !, fail.

likes(mary, X) :- animal(X).
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We can use the same idea of “cut fail” to define the predicate not, which takes

a term as an argument, and uses the built-in predicate “call”. not(G) will “call”

the term G, evaluates G as though G as a goal. If G succeeds, so is call(G), and

not(G) will fail. Otherwise, not(G) succeeds.

not(G) :- call(G), !, fail.

not(_).

Most Prolog systems have a built-in predicate like not. For instance, SWI-

Prolog calls it \+. Remember, “not” is not the same as ¬, because it is based on

the success/failure of goals. It can, however, be useful:

likes(mary, X) :- not(reptile(X)).

different(X, Y) :- not(X = Y).

Negation as failure can be misleading. Suppose the database held the names

of members of the public, marked by whether they are innocent or guilty of some

offense, and expressed in Prolog:

innocent(peter_pan).

innocent(winnie_the_pooh).

innocent(X) :- occupation(X, nun).

guilty(joe_bloggs).

guilty(X) :- occupation(X, thief).

?- innocent(einstein).

no.

If we add one more rule into the above program:

guilty(X) :- not(innocent(X)).

?- guilty(einstein).

yes.

It is one thing to show that “Einstein cannot be demonstrated to be innocent”;

but it is quite another thing to incorrectly show that he is guilty. To justify the

behavior of “negation as failure”, people suggest the closed world assumption: Every

ground atomic formula is assumed to be false unless it can be shown to be true by the

program. Under this assumption, since we cannot show that innocent(einstein)
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is true in the program, so innocent(einstein) is assumed to be false, thus it

justifies the answer guilty(einstein).

Some disturbing behavior is even more subtle than the innocent/guilty prob-

lem, and can lead to some extremely obscure programming errors. Here is a Prolog

program about restaurants:

good_standard(goedels).

good_standard(hilberts).

expensive(goedels).

reasonable(R) :- not(expensive(R)).

?- good_standard(X), reasonable(X).

X = hilberts

yes

?- reasonable(X), good_standard(X).

no.

Logically, the query good standard(X), reasonable(X) is equivalent to the

query reasonable(X), good standard(X). Why do we get different answers for

what seem to be logically equivalent queries? The difference between the ques-

tions is as follows. In the first query, the variable X is always instantiated when

reasonable(X) is executed. In the second question, X is not instantiated when

reasonable(X) is executed. The semantics of reasonable(X) differ depending on

whether its argument is instantiated. To avoid this kind of problems, some imple-

mentations of Prolog ask that G is ground in not(G).

Because of the problems associated with “negation as failure”, extra care is

needed when using it.

8.4.3 Beyond Clauses

Typically, a rule’s body consists of atomic formulas, separated by the com-

mas, and denotes the conjunction of subgoals. If the commas are replaced by the

semicolons (;/2), then it will denote the disjunction of subgoals. A rule like H :-

(C; D), E is no longer a clause: It is equivalent to two clauses: H :- C, E and H

:- D, E, because “;” is considered to be ∨. Conjunctions “,” and disjunctions “;”

can only appear in the body, not in the head of a rule.

Prolog also supports the if-then relation by using the infix symbol “-¿/2”. A

rule like H :- C -> G has the same effect as H :- C, G: if C returns true, G will be
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called; if C returns false, C -> G returns false. When -> is combined with “;”, we

then have the if-then-else relation implemented as H :- C -> G1; G2: If C returns

true, G1 will be called; otherwise, G2 will be called. Logically, H :- C -> G1; G2,

which is not a clause, is equivalent to two clauses: H :- C, G1 and H :- ¬ C, G2

(which is not a Horn clause).

Once a predicate is declared as dynamic, Prolog allows the clauses of that

predicate can be inserted or removed during the execution. For Example 8.1.1,

if we have a file which contains the pair of father-children names, we can de-

clare papa as dynamic: dynamic(papa). During the execution, we read names

into Father and Child, and call assertz(papa(Father, Child)), which adds the

clause papa(Father, Child) at the end of all existing clauses of the predicate

papa. If we want to add the new clause at the beginning of the existing clauses, the

command is asserta/1. To remove a clause during the execution, the command is

extract/1. This set of commands allows the user to dynamically change the pro-

gram that occurs as the result of executing assertz/1 or retract/1. The change

does not affect any activation that is currently being executed. Thus the database

is frozen during the execution of a goal, and the list of clauses defining a predicate

is fixed at the moment of its execution.

8.5 Exercise Problems

1. Given the following Prolog program,

append([], Y, Y).

append([H | X], Y, [H | Z]) :- append(X, Y, Z).

Find the four solutions for the query ?- append(X, Y, [a, b, c]). For

each of the four solutions, find a resolution proof.

2. For the program in Example 8.3.3, place the clause for handling and before

those for or, and run the query ?- test2(X, Y) for three answers. Please

produce the resolution proof for each of the three answers.

3. Implement in Prolog the selection sort, ssort(X,Y ), where X is a list of

integers and Y is the result of sorting X.

4. Implement in Prolog the merge sort, msort(X,Y ), where X is a list of integers

and Y is the result of sorting X.

5. The predicate slowsort is defined in Example 8.2.2. Construct the resolution

proof for the query ?- slowsort([3,2,1], Y).
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6. Assume xor/2 is the logical operation ⊕ (exclusive-or). Add the rules for

converting the formula containing xor into NNF in the Prolog program in

Example 8.1.2.

7. Add a predicate cnf/2 into the Prolog program in Example 8.1.2, where

cnf(F,X) takes a propositional formula F as input and converts F into an

equivalent formula X in CNF.

8. Write a Prolog program which converts a first-order formula A into NNF

(negation normal form), with the following assumptions: The predicate sym-

bols are p/2, q/1, and r/0. The quantifiers are all(X,A) and ex(X,A),

where X takes a value in {x, y, z}.

9. Decide with evidence if the following Prolog programs are terminating or not.

Do they have first termination? last termination? ground termination? on

what inputs? under what conditions?

(a) goHome(no_12).

goHome(X) :- get_next_house(X,Y), goHome(Y).

(b) hasFlu(rebecca).

hasFlu(john).

hasFlu(X) :- kisses(X, Y), hasFlu(Y).

kisses(janet,john).

(c) search(end).

search(X) :- path(X,Y), search(Y).

10. Introduce a tail recursive predicate for each of the following predicate: (a)

length/2 and (b) permutation/2, so that the same result can be obtained

through the tail recursive calls.

11. Given the following Prolog program which gives reviews on restaurants:

not(P) :- call(P), !, fail.

not(_).

good_standard(goedels).

good_standard(hilberts).

expensive(goedels).

reasonable(R) :- not(expensive(R)).

Do the following two queries provide the same result? Why?



309

?- good_standard(X), reasonable(X).

?- reasonable(X), good_standard(X).
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CHAPTER 9

UNDECIDABLE PROBLEMS IN FIRST-ORDER LOGIC

Undecidability concerns about the problems which are beyond the power of

computers. To talk about “undecidable problems”, we have to start with Tur-

ing machines. Turing machines are important in computability theory due to the

Church-Turing thesis, which states that every computing model, invented in the

past or to be invented in the future, can be simulated by a Turing machine.

Let us quote an account of historic events from the Wikipedia on the “Church-

Turing thesis”: In the 1930s, several independent attempts were made to formalize

the notion of computability:

• In 1933, Kurt Gödel, with Jacques Herbrand, created a formal definition of a

class called general recursive functions. The class of general recursive functions

is the smallest class of functions (possibly with more than one argument) which

includes all constant functions, projections, the successor function, and which

is closed under function composition, recursion, and minimization.

• In 1936, Alonzo Church created a method for defining functions called λ-

calculus. Within λ-calculus, he defined an encoding of the natural num-

bers called Church numerals. A function on the natural numbers is called

λ-computable if the corresponding function on the Church numerals can be

represented by a term of the λ-calculus.

• Also in 1936, before learning of Church’s work, Alan Turing created a theo-

retical model for machines, now called Turing machines, that could carry out

calculations from inputs by manipulating symbols on a tape. Given a suitable

encoding of the natural numbers as sequences of symbols, a function on the

natural numbers is called Turing computable if some Turing machine computes

the corresponding function on the encoded natural numbers.

Church and Turing proved that these three formally defined classes of com-

putable functions coincide: a function is λ-computable iff it is Turing computable,

and iff it is general recursive. This has led mathematicians and computer scien-

tists to believe that the concept of computability is accurately characterized by

these three equivalent computing models. Other formal attempts to characterize

computability have subsequently strengthened this belief. Since we cannot exhaust
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all possible computing models, the Church–Turing thesis, although it has near-

universal acceptance, cannot be formally proven.

In computability theory, the halting problem is the problem of determining,

from a description of an arbitrary computer program and an input, whether the

program will finish running, or continue to run forever. Alan Turing proved in 1936

that a general algorithm to solve the halting problem for all possible pairs 〈M,w〉,
where M is a Turing machine and w is an input to M , cannot exist. Turing’s proof

is one of the first cases of undecidable decision problems to be concluded. The

theoretical conclusion that it is not undecidable is significant to practical computing

efforts, defining a class of problems which no computing devices can possibly perform

perfectly.

The halting problem is not just a theoretic problem. This is a practical prob-

lem for many researchers. For example, the unsolved Collatz conjecture is related

to whether the program below terminates for all positive integer x:

while x > 1 do

if even(x) x := x/2 else x := 3 ∗ x+ 1

The same code can be expressed as a recursive function

proc f(x)

if x = 1 return 1

else if even(x) return f(x/2)

else return f(3 ∗ x+ 1)

or as a rewrite system:
f(1) → 1

f(2x) → f(x)
f(2x+ 1) → f(3x+ 2)

Does f(x) = 1 for any positive integer x? Or will the above rewrite system termi-

nate? The renowned mathematician Paul Erdos (1913-1996) once said about the

Collatz conjecture: “Mathematics is not yet ready for such problems.” He offered

$500 for its solution.

9.1 Turing Machines

A Turing machine (TM) is a mathematical model of computation first pro-

posed by Alan Turing in 1936. A Turing machine manipulates symbols on a tape

of symbols according to a set of rules. According to the Church-Turing Thesis,

any function on the natural numbers can be calculated by an effective method iff
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it is computable by a TM. In other words, despite the model’s simplicity, Turing

machines are capable of simulating any algorithm on the natural numbers.

A Turing machine operates on a tape containing infinite cells and each cell

contains one symbol. The machine positions its “head” over a cell and “reads”

the symbol there. Then, as per the symbol and the machine’s own present state

in a user-specified set of instructions, the machine (i) writes a symbol in the cell,

(ii) either moves the tape head one cell left or right, (iii) possibly changes the

current state, and (iv) goes to the next round, or halts the computation with either

“success” or “failure”.

Initially, the beginning of the tape is filled with an input string of symbols and

is blank everywhere else. The machine positions its head to the first symbol with the

designated state called the “initial state”. The machine moves as described above

through the steps (i) − (iv). There are three possible outcomes: (1) the machine

stops with “success”; (2) it stops with “failure”; or (3) it loops forever.

Turing was able to answer a fundamental question in the negative: Does an

algorithm exist that can determine whether any arbitrary TM stops on a given input

string? This is so-called the “halting problem” of Turing machines.

A Turing machine can do everything that a real computer can do. However,

their minimalist design makes them unsuitable for computation in practice: real-

world computers are based on different designs that, unlike Turing machines, use

random-access memory.

While a Turing machine can express arbitrary computations, nonetheless, even

a Turing machine cannot solve certain problems. In a very real sense, these prob-

lems are beyond the theoretical limits of computation. Turing machines proved the

existence of fundamental limitations on the power of mechanical computation.

9.1.1 Formal Definition of Turing Machines

The TM model uses an infinite tape as its unlimited memory. The symbols

appearing in the tape is denoted by Γ, called the tape alphabet. By default, Γ is

a super set of Σ, which are the symbols used in all the input strings. By default,

the blank symbol, t, is in Γ − Σ. Σ∗ denotes the set of all input strings (see

Example 1.3.12) and Γ∗ denotes the set of all tape contents excluding the trailing

blanks.

For any string w ∈ Σ∗, let w0 = ϵ if i = 0 and wi+1 = wwi, where i ≥ 0. For

example, a3 = aaa and (ab)2 = abab.

Example 9.1.1. Suppose Σ = {a, b} and we would like to design a TM which

checks whether input string w ∈ L1 = {ajbk | 0 ≤ j ≤ k}. To design a Turing
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machine is the same as to design an algorithm working on the array of symbols. If

the machine reads ’a’, we may cross it off, which corresponds to j := j − 1, and

then look for the symbol ’b’ and cross it off, which corresponds to k := k − 1. The

pseudo code of the algorithm may read as:

while (j > 0 ∧ k > 0) do

j := j − 1; k := k − 1;

if (j = 0) return “success” else return “failure”;

2

The machine has a tape head that can read and write symbols and move

around on the tape. Initially the tape contains only the input string in the begin-

ning portion of the tape and is blank everywhere else. If the machine needs to store

information, it may write this information on the tape. To read the information

that it has written, the machine can move its head back over it. The machine con-

tinues computing until it decides to produce an output. The outputs “success” (or

“accept”) and “failure” (or “reject”) are obtained by entering designated accepting

and rejecting states. If it doesn’t enter an accepting or a rejecting state, it will go

on forever, never halting.

To report “success”, the Turing machine uses the state qa (or qaccept); to re-

port “failure”, the machine either uses the state qr (or qreject) or provides no move

information in that situation (“reject” by blocking the next move). Since each move

is decided by the current symbol and the current state, we may define each move

as a function δ which takes a state and a symbol as input and outputs (i) the next

state, (ii) the symbol to be written on the tape, and (iii) the move direction of the

tape head.

Definition 9.1.2. A Turing machine is a 6-tuple M = (Q,Σ,Γ, δ, q0, qa), where

Q is a finite set of states; Σ is the alphabet of input strings, Γ is the set of tape

symbols, Σ ⊂ Γ, t ∈ Γ − Σ, the initial state q0 ∈ Q, and the final state (or the

accepting state) qa ∈ Q and the (partial) function δ,

δ : Q× Γ −→ Q× Γ× {L,R}

defines each move of M , where L means the tape head moves left and R means the

tape head moves right. If the tape head points to the first symbol on the tape, it

cannot move left (“move off the tape” is blocked).

Example 9.1.3. Continuing from Example 9.1.1, We would like to construct M1 =

(Q,Σ,Γ, δ, q0, qa) to accept the stings in L1 = {ajbk | 0 ≤ j ≤ k}, where Σ = {a, b},
Γ = {a, b, x, y,t}, Q = {q0, q1, q2, q3, qa} and the functions of each state are:
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• q0: at the beginning of the while loop for checking j > 0 or k > 0.

• q1: done j := j − 1, look for b.

• q2: done k := k − 1, rewind to the last x.

• q3: found j = 0, check j ≥ 0 and no a’s after b.

and δ is defined as follows. 2

1 δ(q0,t) = (qa,t, R) // j = k = 0, ϵ ∈ L1

2 δ(q0, a) = (q1, x, R) // j > 0, j := j − 1, goto q1
3 δ(q0, b) = (q3, b, R) // j = 0, k > 0, goto q3
4 δ(q0, y) = (q3, y, R) // skip y, goto q3
5 δ(q1, a) = (q1, a, R) // skip a, continue right
6 δ(q1, y) = (q1, y, R) // skip y, continue right
7 δ(q1, b) = (q2, y, L) // k := k − 1, goto q2
8 δ(q2, y) = (q2, y, L) // skip y, continue left
9 δ(q2, a) = (q2, a, L) // skip a, continue left
10 δ(q2, x) = (q0, x, R) // found x, goto q0
11 δ(q3, y) = (q3, y, R) // skip y, continue right
12 δ(q3, b) = (q3, b, R) // skip b, continue right
13 δ(q3,t) = (qa,t, L) // k ≥ 0, bk ∈ L1

Definition 9.1.4. Given an input string w to a TM M = (Q,Σ,Γ, δ, q0, qa), let

q ∈ Q be the current state, α and β be the strings of tape symbols before and after the

tape head, respectively. The triple 〈α, q, β〉, or simply αqβ, is called a configuration

of M . The initial configuration is q0w. A legal move of M is a pair (C1, C2) of

configurations, written as C1 ` C2, such that either C1 = αqaβ, δ(q, a) = (p, b, R),

and C2 = αbpβ, or C1 = αcqaβ, δ(q, a) = (p, b, L), and C2 = αpcbβ.

Example 9.1.5. Continuing from the previous example, q0aabb ` xq1abb ` xaq1bb `
xq2ayb ` q2xayb ` xq0ayb ` xxq1yb ` xxyq1b ` xxq2yy ` xq2xyy ` xxq0yy ` xxyq3y

` xxyyq3t ` xxyqay. So aabb is accepted by M1.

On the other hand, q0aba ` xq1ba ` q2xya ` xq0ya ` xyq3a. Since δ(q3, a) is

not defined, the move is blocked and the input aba is rejected by M1. 2

Definition 9.1.6. Let M = (Q,Σ,Γ, δ, q0, qa) be a TM, and w ∈ Σ∗, w is said to

be accepted by M if

q0w `∗ αqaβ

where `∗ denotes the reflexive and transitive closure of `, and α, β ∈ Γ∗.
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The language recognized by M is the set L(M), where

L(M) = {w | w ∈ Σ∗, w is accepted byM}.

It is easy to see that a2b2 ∈ L(M1) and aba 6∈ L(M1), as shown by Exam-

ple 9.1.5. It is not an easy task to show that M1 recognizes L1 = {ajbk | 0 ≤ j ≤ k},
i.e., L(M1) = L1. We would like to point out that M1 can be also regarded per-

forming k − j, as the number of b’s left on the tape when M1 accepts is exactly

k − j.

9.1.2 High-level Description of Turing Machines

In general, a detailed description of a TM is often tedious. We often prefer

to provide a high level description such that every line in the description can be

implemented by a finite number of moves of the machine.

Example 9.1.7. If we are asked to design a TM M2 to recognize L2 = {biajbk |
i ∗ j = k, i, j, k ≥ 0}, the basic algorithm is the following.

Check if i = 0 or j = 0, then k must be 0;

while (i > 0) do

i := i− 1; k := k − j;

if (k = 0) return “success” else return “failure”;

From Example 9.1.1, we know how to check i = 0, how to do i := i−1 and k := k−j.
There is no technical difficulty to design M2 for L2.

M2 = ”On input w ∈ {a, b}∗
1. Scan the tape to check if i = 0 or j = 0. If yes, accept if k = 0,

else reject;

2. Check if w is of form biajbk; if not, reject, else go to the first symbol;

3. Decrease i by one by crossing off the first b;

4. Zigzap between aj and bk to check if k < j, if yes, “reject”, else k := k − j;

5. Go back to the first b and restore a;

6. If i > 0, goto 3; otherwise check if k = 0; if yes, accept, else reject.”

2

Once we know how to check i ∗ j = k, we can modify the machine code to

compute i ∗ j, k/i (an exercise), or jk. We can also compare two numbers, or two

strings are identical, or copy one string from one place to another. This kind of
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operations can be assumed in a high-level description of a TM. In many cases, a

high-level description is the only way to design a TM. However, a basic algorithm

or procedure, which can be expressed by a high-level description, is a must in the

design of some Turing machines.

9.1.3 Recognizable vs Decidable

Given any TM M = (Q,Σ,Γ, δ, q0, qa), if we feed w ∈ Σ∗ to M , there will be

three possible outcomes: (1) M halts with “accept”; (2) M halts with “reject”; and

(3) M loops on w. In other words, M partitions Σ∗ into three disjoint sets:

• L(M) = {w | w ∈ Σ∗,M halts and accepts w},

• reject(M) = {w | w ∈ Σ∗,M halts and rejects w}, and

• loop(M) = {w | w ∈ Σ∗,M loops on w}.

Obviously, L(M) ∪ reject(M) ∪ loop(M) = Σ∗. By convention, L(M) =

Σ∗ − L(M) = reject(M) ∪ loop(M).

In computability theory, any subset L of Σ∗ is said to be a formal language.

L can be ∅ or Σ∗. Turing machines can be used to classify formal languages.

Definition 9.1.8. (recognizable and decidable) A formal language L ⊆ Σ∗ is

said to be recognizable, if there exists a TM M such that L = L(M), and we say

M is a recognizer of L.

L is said be decidable if there exists a TM M such that L = L(M) and

loop(M) = ∅, and we say M is a decider of L.

If L is decidable and L(M) = L for some TM M , it does not mean that

loop(M) = ∅. The definition just ensures that there exists a decider M ′ such that

L = L(M ′) and loop(M ′) = ∅.

9.2 Decidability of Problems

In computability theory, a problem is typically a decision problem which has

a simple yes/no answer. Optimization problems like “finding the longest simple

cycle in graph G” is always converted to a question like “does G have a simple cycle

of length at least m?” by introducing a number m, so that it becomes a decision

problem.
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9.2.1 Encoding of Decision Problems

Another common practice in computability theory is to encode every decision

problem by a set of strings.

For instance, the problem that “does G have a simple cycle of length at least

m?” can be encoded as a set L1:

L1 = {〈G,m〉 | G has a simple cycle of length at least m},

where 〈G,m〉 is a string which represents G and m; we may think 〈G,m〉 =

〈G〉〈m〉. If G contains n vertices and m ≤ n, then the alphabet for 〈G,m〉 can
be {1, 2, ..., n, (, ), ·}, where each vertex is represented by a number i, 1 ≤ i ≤ n,

and each edge is represented by (i ·j), 1 ≤ i, j ≤ n. The alphabet can also be {0, 1},
if every symbol in {1, 2, ..., n, (, ), ·} is encoded by a binary string of equal length, as

we use the ASCII code in a computer. Now, a graph G has a simple cycle of length

at least m iff 〈G,m〉 ∈ L1. L1 catches the essence of this decision problem.

“Does there exist an algorithm A which finds a simple cycle in G of length at

least m?” This is also a decision problem and can be encoded as

L2 = {〈A,G,m〉 | Algorithm A finds in G a simple cycle of length at least m}

where 〈A〉 can be the code file for implementing A in a programming language.

Turing machines can also be encoded as a string. For instance, the definition

of M1 in Example 9.1.1 takes less than 20 lines of this book and each line has less

than 100 characters, so a string of 2000 characters will be more than enough to

encode M1.

There are many decision problems about Turing machines and the following

are some of them.

• ATM = {〈M,w〉 | TM M accepts input w}.

• HTM = {〈M,w〉 | TM M halts on input w}.

• ETM = {〈M〉 | L(M) is empty}.

• OneTM = {〈M〉 | |L(M)| = 1}.

• FinTM = {〈M〉 | L(M) is finite}.

• S10TM = {〈M〉 |M has at least 10 states}.

• A10TM = {〈M〉 |M accepts at least 10 strings}.
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• B10TM = {〈M〉 |M moves at least 10 steps on any input}.

The language ATM encodes the acceptance problem of Turing machines: Given

any TM M and any input w, does M accept w? This is one of the first problems

shown to be undecidable, that is, there exists no algorithm to solve the acceptance

problem.

The language HTM encodes the well-known halting problem of Turing ma-

chines. Alan Turing proved in 1936 that a general algorithm to solve the halting

problem for all possible 〈M,w〉 pairs cannot exist. Later, after giving formally

the definition of “undeciable”, we will show that both ATM and HTM are Turing

recognizable, but not decidable.

The language ETM encodes the emptyness problem of Turing machines. While

both ATM and HTM are undecidable but Turing recognizable, ETM is even not

Turing recognizable.

The rest languages in the above list encode some problems less popular. You

may create your own languages for any decision problem.

Let the encodings of all TMs use a common alphabet, say Σ, and LTM =

{〈M〉 |M is a TM}.

Proposition 9.2.1. LTM is countable.

Proof. Since 〈M〉 ∈ Σ∗ for every TM M , LTM ⊆ Σ∗. According to Lemma 1.3.4,

Σ∗ is countable and any subset of a countable set is also countable. 2

The above proposition claims that the set of possible TMs is countable.

9.2.2 Decidable Problems

Since every decision problem can be encoded as a formal language L ⊆ Σ∗,

we wish to design a TM M which can answer the question of w ∈ L or not, for any

w ∈ Σ∗. This is only possible when L is decidable; if L is not recognizable, then no

such TMs can exist.

Definition 9.2.2. (decidable and computable problem) A decision problem is

said to be decidable if the language of its encoding is decidable. A decision problem

is said to be computable if its encoding is recognizable.

All the decision problems we have met in the courses on data structures and

algorithms, where their complexity is obtained by a big O function, belong to the

class of decidable problems. In computability theory, a decider for a decision prob-

lem is also call a decision procedure, or an algorithm, which coincides with the
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conventional definition of algorithm: a set of instructions which will be executed in

a finite number of steps for any input.

Some problems are computable but undecidable; some are not computable.

Any Boolean function f : N → {0, 1}, over the natural numbers is a decision

problem about the natural numbers: Does f(n) = 1 for any n ∈ N? According

to Lemma 1.3.5, the set of all Boolean functions over the natural numbers is not

countable. That is, there are more Boolean functions than the available TMs, which

are countable. For any function f : N → {0, 1}, it is not always possible to have a

TM Mf such that M accepts i iff f(i) = 1 for any natural number i. There exist

many, many functions which cannot be computed by any computing device in view

of the Church-Turing thesis.

Here, we are in particular interested in decision problems about TMs.

Example 9.2.3. Let S10TM = {〈M〉 | M has at least 10 states}. Then S10TM is

decidable because we can design a TM which counts how many states in 〈M〉. It

takes no more than the linear time to count and if the count goes beyond 10, stop

with “accept”, otherwise, stop with “reject”. 2

Example 9.2.4. Let B10TM = {〈M〉 | M moves at least 10 steps on any input}.
LetM = (Q,Σ,Γ, δ, q0, qa) andMB be the decider that we will construct for B10TM .

The basic algorithm of MB works as follows: The tape of MB is divided into

three sections separated by the special symbol # and $. Section 1 stores the input

string 〈M〉 and will never change.

Section 2 has 11 cells and takes turns to store all the input strings w ∈ Σ∗

for M , |w| ≤ 10. The strings in Σ∗ are generated by the following order: (i)

shorter strings first; (ii) for the strings of the same length, smaller string under the

lexicographic order first. Thus, if Σ = {0, 1}, then the strings are in this order:

ϵ, 0, 1, 00, 01, 10, 11, 000, .... We say the successor of ϵ is 0, the successor of 0 is 1,

and so on.

Section 3 will be the space for simulating the moves of M .

MB = ”On input 〈M〉, M is a TM

1. Place # at the end of 〈M〉; move right 11 steps and place $.

Treat the string between # and $ as w, which is empty initially.

2. Write q0 of M after $ in section 3.

3. Copy string w in section 2 to section 3, after q0.

Now section 3 contains q0w, an initial configuration of M .

4. Zigzap between section 1 and section 3, do the following:

4.1 Using the states of MB to remember the pair (q, a) in section 3;

4.2 Find the delta definition for (q, a) in section 1;
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4.3 If no δ(q, a) is found, stop with ”reject”;

4.4 If found, use the states to remember δ(q, a) = (p, b,D), D ∈ {L,R};
4.5 Move to section 3, and update the configuration of M according to

δ(q, a) = (p, b,D);

4.6 If 4.5 has been done less than 10 times, go to 4.1;

4.7 else erase the content of section 3 and go to 5;

5. Go to section 2 and generate the successor of w, replacing w;

6. If w exceeds 10 symbols, stop with “accept”, else go to 2. ”

Lines 4.1-4.7 simulates the moves of M for 10 steps. If this is possible, MB continues

for the successor of w (4.7); if the move of M is blocked before moving 10 steps, it

stops with “reject” (4.3), because we have found an input string for M to move less

than 10 steps. In line 5, we generate the successor of the current w and replace w

by it. If all the strings of length 10 or less are generated and M moves over 10 steps

on each of them, we stop with “accept”, because to read the 11th symbol, M has to

move at least 10 steps. Thus, we do not need to consider the strings of length more

than 10 for w. 2

Lines 4.1-4.5 describe how a move of M is simulated by MB. Later, when we

say “M ′ simulates M”, we refer to this example for the details of the simulation.

Note that the states of a TM can remember only a finite amount of information.

For MB, one definition of δ(q, a) = (p, b,D) contains only five symbols. You cannot

use the states to restore the information like ai, where i is any number.

9.2.3 Undecidable Problems

Theorem 9.2.5. The acceptance problem of Turing machines is undecidable. That

is, ATM = {〈M,w〉 | TM M accepts input w} is undecidable.

Proof. Assume that ATM is decidable, then there exists a hypothetical decider H

for ATM . Since H is a decider, H either accepts x or rejects x for any input x, and

H accepts 〈M,w〉 iff M accepts w.

Using H, we construct another decider D, which checks if a TM M does not

accept its own code:

D = ”On input 〈M〉, M is a TM,

1. Simulate H on 〈M, 〈M〉〉 until H halts.

2. If H accepts, reject; if H rejects, accept.”

Obviously, D is a TM and L(D) = {〈M〉 |M is a TM, M rejects 〈M〉} is decidable,
because D halts on any input.

Let us check if 〈D〉 ∈ L(D) and there are only two cases:
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• 〈D〉 ∈ L(D): Every member 〈M〉 of L(D), including 〈D〉, satisfies the defini-

tion of L(D): “M rejects 〈M〉”. Replace M by D, we have “D rejects 〈D〉”,
which means 〈D〉 6∈ L(D).

• 〈D〉 6∈ L(D): That means D rejects 〈D〉. By the definition of L(D), 〈D〉 ∈
L(D) should be true.

In both cases, we have a contradiction, so D cannot exist. D is constructed from

H, hence, H cannot exist. H comes from the assumption that ATM is decidable.

Thus ATM is undecidable. 2

The above proof is analogous to that of “Barber’s paradox” (see Paradox 1.3.8).

The TM D, which accepts the encodings of those TMs that do not accept their own

encoding, corresponds to “the Barber who shaves all those who do not shave them-

selves”. Both proofs originated from Cantor’s diagonalization method. To see this

connection, the reader is recommended to Michael Sipser’s textbook on theory of

computation.

9.2.3.1 Reduction

Once we have found one undecidable language, other undecidable languages

can be found through reduction, as illustrated by the proof of the halting problem

of Turing machines.

Theorem 9.2.6. The halting problem of Turing machines is undecidable. That is,

HTM = {〈M,w〉 | TM M halts on input w} is undecidable.

Proof. Assume HTM is decidable, then there exists a hypothetical decider H for

HTM . Since H is a decider, H will halt on any input, and H accepts 〈M,w〉 iff M

halts on w.

Using H, we can construct another decider S for ATM as follows:

S = ”On input 〈M,w〉, M is a TM and w is an input to M ,

1. Simulate H on 〈M,w〉 until H halts.

2. If H rejects, reject.

3. Simulate M on w until M halts.

4. If M accepts, accept; if M rejects, reject.”

At line 2, when H rejects 〈M,w〉, it means M loops on w, so w cannot be

accepted by M . This justifies the rejection of w by S. At line 3, we know M will

halt w. When M halts on w, S returns the output of M at line 4. All four lines of
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S will be finished in a finite number of steps, so S is a decider for ATM . Since S

cannot exist, H cannot exist, either. Thus, HTM must be undecidable. 2

The above two theorems are what we needed to show the undecidability of

some logical problems.

Reduction is a powerful tool to show that a problemX is undecidable: Assume

X is decidable and A is a decider for X. We use A to construct another decider B

for a known undecidable problem Y . Since B cannot exist, so A cannot exist and

X is thus undecidable. In the proof of the above theorem, X is HTM , A is H, Y

is ATM and B is S. We showed that if there exists a decider for HTM , then there

exists a decider for ATM .

We may switch the role of HTM and ATM by showing that if there exists a

decider for ATM , then there exists a decider for HTM . Suppose ATM is decidable

and A is its decider. We may construct a decider B for HTM as follows:

B = ”On input 〈M,w〉, M is a TM and w is an input to M ,

1. Let 〈M ′〉 be a copy of 〈M〉 and we modify 〈M ′〉 as follows:
For any state q and tape symbol x of M , if q is not qa
(the final state), and δ(q, x) is not defined, add in M ′:

δ′(q, x) = (qa, x, R).

2. Simulate A on 〈M ′, w〉 until A halts.

3. If A accepts, accept; if A rejects, reject.”

It is easy to check when M rejects w, M ′ will accept w; when M accepts

w or loops on w, so does M ′. Thus, loop(M) = loop(M ′), reject(M ′) = ∅, and
L(M ′) = L(M)∪ reject(M). B accepts 〈M,w〉 iff A accepts 〈M ′, w〉, iff M ′ accepts

w, iff M accepts w or M rejects w. In other words, B accepts 〈M,w〉 iff M halts

on w; B rejects 〈M ′, w〉 iff M loops on w. This justifies the output of B at line 3.

Since all the three lines of B can be done in a finite number of steps, B is a decider

for HTM .

We have just shown that both ATM and HTM are undecidable. Are they

recognizable? The answer is yes for both of them.

U = “On input 〈M,w〉, M is a TM and w is an input to M ,

1. Simulate M on w.

2. When M halts on w, accept if M accepts; reject if M rejects.”

It is clear that U will accept 〈M,w〉 if M accepts w; U will loop if M loops

on w. Thus L(U) = ATM ; U is called the universal Turing machine, because it

simulates any Turing machine.

Similarly, HTM can be recognized by a Turing machine.
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T = “On input 〈M,w〉, M is a TM and w is an input to M ,

1. Simulate M on w.

2. When M halts on w, accept.”

T accepts iff M halts on w, thus L(T ) = HTM .

Proposition 9.2.7. If a formal language L is recognizable but undecidable, then L

is not recognizable.

Proof. (sketch) Let M1 be the recognizer of L. If L is also recognizable, let M2 be

its recognizer. We may use M1 and M2 to create a decider for L:

T = “On input 〈M,w〉, M is a TM and w is an input to M ,

1. Simulate M1 on w for one move;

2. If M1 accepts, accept;

3. Simulate M2 on w for one move;

4. If M2 accepts, reject;

5. go to 1. and continue the simulations. ”

For any w ∈ Σ∗, either w ∈ L or w ∈ L. So either M1 accepts w or M2 accepts w.

T will halt when one of them accepts. If w ∈ L, T will accept; otherwise, T will

reject. Thus, T is a decider for L. 2

Applying the above proposition to ATM and HTM , we now know that ATM

and HTM are not recognizable.

9.3 Turing Completeness

By the Church-Turing thesis, any computing model can be simulated by a

Turing machine. On the other hand, it becomes easy to design a new computing

model which has the same power as a Turing machine, as long as the new computing

model is shown to do what a Turing machine can do. The concept of Turing

completeness just expresses this property: If a computing model has the ability to

simulate a Turing machine, it is Turing complete. Both Gödel’s recursive functions

and Church’s λ-calculus are Turing complete.

Example 9.3.1. A two-stack machine is a variation of Turing machine in that the

tape is replaced by two stacks: The first stack stores all the symbols from the tape

head (inclusive) to right; the second stack stores all the symbols from the tape head

(exclusive) to left. The state information remains the same. It is easy to show

that the two-stack is Turing complete by simulating all the Turing moves by the
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operations on stacks. Initially, the input string is stored in the first stack with the

first symbol on the top of the stack. The simulation of a Turing move goes as follows:

A symbol a is popped off from the first stack; if the stack is empty, use the blank

symbol. If δ(q, a) = (p, b, R), then push b into the second stack; if δ(q, a) = (p, b, L),

then push b into the first stack, and also pop the top symbol from the second stack

and push it into the first stack. 2

The significance of being Turing complete is that all the undecidable properties

of Turing machines will be inherited by the new computing model. Thus, the halting

problem of a two-stack machine is undecidable, because if we have an algorithm to

tell the termination of a two-stack machine, this algorithm can be used to show the

termination of a Turing machine. Similarly, if we can show the Turing completeness

of a logic, we can derive the same result.

9.3.1 Turing Completeness of Prolog

Proposition 9.3.2. Prolog is Turing complete.

Proof. The proposition can be shown by using Prolog to simulate a Turing machine,

using the idea of two-stack machines. The content of the Turing machine tape is

split into two lists, L and R, which correspond to the two stacks in a two-stack

machine. Initially, L = [] and R contains the input string. We transform L to

L′ and R to R′ according to the Turing machine, until we reach the final state.

The transformation is illustrated by a Prolog program for the Turing machine in

Example 9.1.1

% M1 checks a^jb^k for j =< k.

delta(q0, b, qa, bl, right).

delta(q0, a, q1, x, right).

delta(q0, b, q3, b, right).

delta(q0, y, q3, y, right).

delta(q1, a, q1, a, right).

delta(q1, y, q1, y, right).

delta(q1, b, q2, y, left).

delta(q2, y, q2, y, left).

delta(q2, a, q2, a, left).

delta(q2, x, q0, x, right).

delta(q3, b, q3, b, right).

delta(q3, y, q3, y, right).

delta(q3, bl, qa, bl, left).
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% General code for all Turing machines

turing(W, Tape) :- % W: input string, Tape: at the end

write(’ ’), write(q0), write(W), nl, % initial configuration

move([], L, q0, W, R), % ([], q0, W) |-* (rev(L), qa, R)

reverse(L, Lr),

append(Lr, R, Tape).

move(L, L, qa, R, R) :- !. % qa is the final state

move(L0, L, Q, R0, R) :-

current(R0, A, Rest), % load the current symbol in A

delta(Q, A, P, B, Direct), % delta(Q, A) = (P, B, Direct)

result(Direct, L0, L1, B, Rest, R1), % update L and R

write(’|- ’), write(rev(L1)), write(P), write(R1), nl,

move(L1, L, P, R1, R). % continue to move

current([], bl, []). % current symbol is a blank bl

current([Sym|Rest], Sym, Rest). % current symbol is Sym

result(left, [C|L], L, B, R, [C,B|R]). % move top symbol of L to R

result(right, L, [B|L], B, R, R). % push B at the top of L

?- turing([a,a,b,b], Tape).

q0[a,a,b,b]

|- rev([x])q1[a,b,b]

|- rev([a,x])q1[b,b]

|- rev([x])q2[a,y,b]

|- rev([])q2[x,a,y,b]

|- rev([x])q0[a,y,b]

|- rev([x,x])q1[y,b]

|- rev([y,x,x])q1[b]

|- rev([x,x])q2[y,y]

|- rev([x])q2[x,y,y]

|- rev([x,x])q0[y,y]

|- rev([y,x,x])q3[y]

|- rev([y,y,x,x])q3[]

|- rev([y,x,x])qa[y,bl]
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This illustrates how any computation can be expressed declaratively as a se-

quence of Turing machine moves, implemented in Prolog as a relation between

successive states of interest. The Prolog code may be used as a debugging tool for

designing Turing machines. 2

Theorem 9.3.3. The termination of a Prolog program is undecidable.

Proof. (sketch) If we have an algorithm to decide the termination of a Prolog pro-

gram on any input, then we can use the algorithm to decide the termination of a

Turing machine on an input, as the moves of the Turing machine can be simulated

by a Prolog program. The termination of the Prolog program in the simulation

ensures the termination of the Turing machine. 2

Theorem 9.3.4. The satisfiability of a set of Horn clauses is undecidable.

Proof. (sketch) If we have an algorithm to decide the satisfiability of a Horn clauses,

then the algorithm can be used to decide the clauses in the Prolog program for

simulating a Turing machine, together with the query derived from q0w, is satisfiable

or not. If it is unsatisfiable, then there exists a resolution proof derived from the

query as this is the only negative clause (the clauses without this one is satisfiable).

The resolution proof ensures that w is accepted by the Turing machine. Thus, the

algorithm can tell if the Turing machine can accept w or not. This is a contradiction

to the fact that the acceptance problem of Turing machines is undecidable. 2

Theorem 9.3.5. The satisfiability of a first-order formula is undecidable.

The proof is left as an exercise.

9.3.2 Turing Completeness of Rewrite Systems

In theoretical computer science and mathematical logic, a string rewrite system

(SRS), historically called a semi-Thue system, is a rewrite system over strings from

an alphabet. Given a binary relation → between fixed strings over the alphabet,

called rewrite rules, denoted by s→ t, an SRS extends the rewriting relation to all

strings in which the left- and right-hand side of the rules appear as substrings, that

is usv → utv, where s, t, u, and v are strings.

Proposition 9.3.6. SRS is Turing complete.

Proof. Any configuration of a Turing machine is a string of tape and state symbols,

assuming the states and the tape do not share symbols. We may use an SRS to
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describe all the moves of a Turing machine as follows: If δ(q, a) = (p, b, R), we have

a single rewrite rule qa → bp; if δ(q, a) = (p, b, L), we have a set of rewrite rules:

cqa→ pcb, where c is any tape symbol. Then it is trivial to show that q0w `∗ αqaβ
iff q0w ⇒∗ αqaβ. 2

A term rewrite system (TRS) is a binary relation over terms. TRS are more

expressive than SRS as an SRS is easily converted into a TRS, where each symbol f

in the SRS is replaced by a unary function f/1 in the TRS. For example, a rewrite

rule abc → cd in SRS is replaced by a(b(c(x))) → c(d(x)). Since SRS is Turing

complete, so are the term rewrite systems.

Theorem 9.3.7. The termination of a rewrite system is undecidable.

Proof. (sketch) If we have an algorithm to decide the termination of a rewrite system

(either SRS or TRS), then we can use the algorithm to decide the termination of

a Turing machine as the moves of the Turing machine can be expressed as a set of

rewrite rules. The termination of the rewrite system ensures the termination of the

Turing machine. 2

9.4 Exercise Problems

1. Some Turing machines allow the tape head stays after a move (only chang-

ing state or the current symbol). How to simulate this action in the Prolog

program of section 9.3.1?

2. Some Turing machines allow the tape has infinite symbols on the left side

of the head tape (so there is no “move off the tape”). How to simulate this

action in the Prolog program of section 9.3.1?

3. Provide a complete design of Turing machineM2 for recognizing L2 = {biajbk |
i ∗ j = k, i, j ≥ 0}. Test your code in the Prolog program on the input string

w = b2a1b2.

4. Provide a high-level description of a Turing machine M3 for recognizing L3 =

{aibjck | k = bi/jc, i, j ≥ 0}.

5. Prove that the satisfiability of a first-order formula is undecidable.
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CHAPTER 10

HOARE LOGIC

One of the most important research objectives in computer science and engi-

neering is to obtain means of reasoning about computer systems. Proving properties

of such systems is extremely important. A 2003 study commissioned by the De-

partment of Commerce’s National Institute of Standards and Technology found that

software bugs cost the US economy $59.5 billion annually. In safety-critical systems

even small mistakes can provoke disasters. Since the amount of data which has

to be handled in all the application domains is usually huge, computer support is

necessary. Many approaches have been proposed to formally verify the properties of

software and hardware systems. For software formal verification, Hoare logic is one

of the most influential approaches for proving the correctness of software designs in

various programming languages.

Hoare logic (also known as Floyd–Hoare logic or Hoare rules) is a formal system

with a set of logical rules for reasoning rigorously about the correctness of imperative

programs, where a program describes steps that change the state of the computer. It

was proposed in 1969 by the British computer scientist and logician Tony Hoare, and

subsequently refined by Hoare and other researchers. The original ideas were seeded

by the work of Robert Floyd, who had published a similar system for flowcharts.

We will use the word “state” to denote a valuation of all variables in an

imperative program. A command in the program may change the value of variables,

thus causing a transition of states. For example, suppose x holds the value 1 before

the command “x := x+1”, the value of x will be 2 after the execution of x := x+1.

A state can be easily specified by a first-order formula, called assertions, such as

“x = 1”, “A[0] = 2”, etc.

Executing an imperative program has the effect of changing the state. To use

such a program, one first establishes an initial state by specifying the initial values

of variables. One then executes the program and this transforms the initial state

into a final one through a sequence of state transitions. One then inspects the values

of variables in the final state to get the desired results. For example, to compute

“z := exp(x, y)”, the initial state specifies the value of x and y, and the final state

specifies the value of z satisfying “z = xy” to judge that the program exp(x, y) is

correct.
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Hoare logic is an axiomatic approach to formal verification, which consists of

(1) a first-order logic language for making assertions about programs; and (2) rules

for establishing state transitions, that is, what assertions hold after a transition of

states. From the requirement on the input, we create a precondition of a program,

and from the requirement on the output, we create a postcondition of the program.

Both the precondition and the postcondition are assertions, i.e., formulas of the

first-order logic. We then use a theorem prover to prove that the postcondition is

a logical consequence of a formula derived from the precondition and the program

code by the rules of Hoare logic. Other approaches to formal verification include

model checking and abstract interpretation, which are directed at finding specific

errors, such as the possible violation of a safety property.

10.1 Hoare Triples

The central idea of Hoare logic is Hoare triples, a notation proposed first by

Hoare, which specify exactly what precondition that a program asks before the

execution and what postcondition, i.e., the desired behavior of the program, that

the program will achieve. A Hoare triple describes how the execution of a piece of

code changes the state of the computation. A Hoare triple is of the form

{P}C {Q}

where P and Q are assertions, which are formulas in a first-order language, and C

is a program code. P is named the precondition and Q the postcondition: When

the precondition is met, executing the code C establishes the postcondition. For

instance, {x = 1}x := x + 1{x = 2} is true, because the value of x changes from 1

to 2 after the execution of x := x+1. On the other hand, {x = 1}x := x+1{x = 0}
is false. Since a triple may be true or false, we call it a statement in the general

sense.

Example 10.1.1. The following code computes the sum of all numbers in an integer

array.

{ P : A is an array of n integers, and n ≥ 0 }
s := 0;

for i := 0 to n− 1 do

s := s+ A[i];

{ Q: s =
∑n−1

i=0 A[i] }

2
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At first glance, P and Q are not the formulas we saw in the previous chapters.

An array is not different from a list in logic. In Prolog, we have seen that a list is

just a compound term. Thus, it is not strange to represent an array by a term in

first-order logic, and we may simply treat an array as a term in the logic. Similarly,

we can also treat
∑n−1

i=0 A[i] as another term. In fact, we may define a function

sum : N,Array −→ N recursively as follows:

sum(0, A) = 0;
sum(i+ 1, A) = sum(i, A) + A[i]

Then
∑n−1

i=0 A[i] is equivalent to the term sum(n,A).

Now suppose we can specify preconditions and postconditions in first-order

logic, how do we prove that a postcondition is a theorem from the precondition and

the program? This is handled by the Hoare rules for each type of commands in

a small programming language. In this language, we consider only three types of

commands:

1. assignment, i.e., x := E;

2. conditional, i.e., if B then S1 else S2 fi; and

3. while loop, i.e., while B do S od.

Commands are separated by semicolons. This language is small but covers the

essential part of most imperative programming languages. There are many varia-

tions of the loop construct in imperative programming languages: the “while” form,

which uses a continuation condition; the “do-until” form, which always executes the

loop body at least once, testing for the condition at the end rather than on entry;

and the “for” or “do” forms, which iterate over an integer interval or a data struc-

ture. They can all be expressed in a straightforward way as a while loop, on which

we will rely throughout this chapter. For instance, a for-loop can be expressed by a

while-loop. The for-loop in Example 10.1.1 can be replaced by the equivalent while

loop.

s := 0; s := 0; i := 0;

for i := 0 to n− 1 do while (i < n) do

s := s+ A[i] s := s+ A[i]; i := i+ 1

od od
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10.1.1 Hoare Rules

Hoare rules cover the three basic commands in the small programming lan-

guage, plus one rule for the composition of commands and one rule for logical

implications.

10.1.1.1 Assignment Rule

The assignment rule states that, after the assignment, any predicate that was

previously true for the right-hand side of the assignment now holds for the variable.

Formally, let P (x) be an assertion in which the variable x is free. Then:

>
{P [x ↼ E]}x := E {P (x)}

where P [x ↼ E] denotes the assertion obtained from P (x) in which each free

occurrence of x is replaced by the expression E.

The assignment rule means that the truth of P [x ↼ E] is equivalent to the

after-assignment truth of P (x). Thus if P [x ↼ E] is true prior to the assignment, by

the assignment rule, then P (x) would be true after the assignment. All preconditions

that are not modified by the assignment can be carried over to the postcondition.

Examples of valid triples include: {x = 4} y := x + 1 {y = 5} and {x ≤
N − 1}x := x + 1 {x ≤ N}. In the first example, to show that y = 5 is true, we

need the precondition x + 1 = 5, which is equivalent to x = 4. Since assigning

y := x+1 does not change the fact that x = 4, so both x = 4 and y = 5 may appear

in the postcondition. Formally, this result is obtained by applying the assignment

rule with P (y) being x = 4 ∧ y = 5 and P [y ↼ x + 1] is x = 4 ∧ x + 1 = 5, which

can in turn be simplified to the given precondition x = 4.

Since we have not given a formal definition of “state”, we cannot prove rigor-

ously the correctness of the assignment rule. However, we may argue informally. To

show that {P [x ↼ E]}x := E {P} is sound, let s be the state before x := E and s′

the state after. So, s′ = s[x 7→ E] (assuming E has no side-effect, i.e., no variables

changed values by E). P [x ↼ E] holds in s iff P holds in s′ = s[x 7→ E], because

1. Every variable, except x, has the same value in s and s′,

2. P [x ↼ E] has every x in P replaced by E, and

3. P has every x evaluated to E in s′ = s[x 7→ E].

The assignment rule is equivalent to saying that to find the precondition, first

take the postcondition and replace all occurrences of the left side of the assignment
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with the right side of the assignment. Be careful not to try to do this backwards by

following this incorrect way of thinking: {P (x)}x := E {P [x ↼ E]}; this rule leads
to examples like: {x = 4}x := 5 {5 = 4}. Another incorrect rule looking tempting

at first glance is {P (x)}x := E {P ∧ (x = E)}; it leads to illogical examples like:

{x = 5}x := x+ 1 {x = 5 ∧ x = x+ 1}.
While a given postcondition P (x) uniquely determines the precondition P [x ↼

E] of an assignment, the converse is not true. That is, different postconditions are

available for the same precondition and the same code. For example,

• {0 ≤ y ∧ y ≤ 9}x := y {0 ≤ x ∧ x ≤ 9},

• {0 ≤ y ∧ y ≤ 9}x := y {0 ≤ y ∧ x ≤ 9},

• {0 ≤ y ∧ y ≤ 9}x := y {0 ≤ y ∧ x ≤ 9}, and

• {0 ≤ y ∧ y ≤ 9}x := y {0 ≤ y ∧ y ≤ 9}

are valid instances of the assignment rule.

The assignment rule proposed by Hoare can apply to multiple mutual assign-

ments. For example, to swap two elements of an array, some programming languages

support the command A[i], A[j] := A[j], A[i]. The assignment rule for this type of

commands is

>
{P [x ↼ E1, y ↼ E2]}x, y := E1, E2 {P (x)}

10.1.1.2 Implication Rule

The implication rule, sometimes called the consequence rule, is purely logical

as it does not involve any command of a programming language, but concerns about

the implication relation of logical formulas.

P1 → P2 {P2}S {Q2} Q2 → Q1

{P1}S {Q1}
This rule can be split into two rules:

P1 → P2 {P2}S {Q}
{P1}S {Q}

{P}S {Q2} Q2 → Q1

{P}S {Q1}

We say formula A is weaker than formula B if B |= A, but not A |= B. If we

regard the entailment relation |= as an order � on formulas, then ⊥ is the strongest
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(or the largest) and > is the weakest (or the least). We say P is the weakest

precondition for program S and the postcondition Q if (a) {P}S{Q} is true; and

(b) for any precondition P ′, if {P ′}S{Q} is true, then P ′ |= P .

The implication rule allows us to strengthen the precondition P2 to P1, i.e.,

assume more than we need, and to weaken the postcondition Q2 to Q1, i.e., conclude

less than we are allowed to.

For instance, if we have shown that {n > 0} sort(A) {n > 0 ∧ sorted(A)},
and the target assertion is sorted(A), since n > 0 ∧ sorted(A) → sorted(A), the

implication rule allows us to get {n > 0} sort(A) {sorted(A)}.

10.1.1.3 Conditional Rule

{B ∧ P}S {Q} {¬B ∧ P}T {Q}
{P} if B then S else T fi {Q}

The conditional rule states that a postconditionQ common to the two branches

of an if-then-else statement is also a postcondition of the whole if-then-else state-

ment, i.e., if B then S else T fi {Q}.
In the then-part and the else-part, B and ¬B are added to the precondition

P , respectively. The condition B must not have side-effect, i.e., it does not change

the variables during the computation of E.

Example 10.1.2. To show the following triple,

{P : >} if x < 10 then x := 1 else x := 10 fi {Q : x = 1 ∨ x = 10},

is true by the conditional rule, we need to show

(1) {P1 : > ∧ x < 10}x := 1 {Q : x = 1 ∨ x = 10},
(2) {P2 : > ∧ x ≥ 10}x := 10 {Q : x = 1 ∨ x = 10}.

To prove (1) and (2), we obtain the following by the assignment rule:

(1′) {1 = 1 ∨ 1 = 10}x := 1 {Q : x = 1 ∨ x = 10},
(2′) {10 = 1 ∨ 10 = 10}x := 10 {Q : x = 1 ∨ x = 10}.

Since (1 = 1 ∨ 1 = 10) ≡ > and P1 |= >, by the implication rule, (1) is true. (2) is

true by the same reasoning. 2

If the else-part is missing or T is skip or “x := x”, the conditional rule becomes:

{B ∧ P}S{Q} ¬B ∧ P → Q

{P} if B then S fi {Q}
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Example 10.1.3. To show the following statement

{P : x = a ∧ y = b} if x > y then y := xfi {Q : y = max(a, b)}

is true, by the conditional rule, we need to show

(1) {P1 : x = a ∧ y = b ∧ x > y} y := x {Q : y = max(a, b)};
(2) (x = a ∧ y = b ∧ ¬(x > y))→ y = max(a, b).

From the assignment rule, we have

{x = max(a, b)} y := x {Q : y = max(a, b)}

To prove (1), by the implication rule, we need to show P1 → x = max(a, b), which

can be simplified by equality crossing as x > y → x = max(x, y), which holds for

all x and y. (2) can also be simplified by equality crossing to ¬(x > y) → y =

max(x, y), which is true in arithmetic, too. 2

10.1.1.4 Iteration Rule

{I ∧B}S {I}
{I}while B do S od {¬B ∧ I}

Here I is the so-called loop invariant, which is true at the beginning of the

loop and is preserved by the loop body S. That is, after the loop is finished, this

invariant I still holds. If the loop condition B becomes false, ¬B, which is called

the exit condition of the loop, is added to I as the postcondition of the loop. As in

the conditional rule, B must not have side effects.

Example 10.1.4. To show that the following statement is true,

{I : x ≤ 5}while x < 5 do x := x+ 1 od {Q : x = 5}

we apply the iteration rule and show that

{x ≤ 5 ∧ x < 5}x := x+ 1 {I : x ≤ 5}

By the assignment rule, we have {x + 1 ≤ 5}x := x + 1 {I : x ≤ 5}, so we just

need to prove (x ≤ 5 ∧ x < 5) → (x + 1 ≤ 5) by the implication rule. When x

is an integer, (x < 5) → (x + 1 ≤ 5) is true. So (x ≤ 5 ∧ x < 5) → (x + 1 ≤ 5)

is true. Finally, we need to show (I ∧ ¬B) → Q by the implication rule. Since

x ≤ 5 ∧ ¬(x < 5)→ x = 5 is true for all number x, the program is correct when x

is an integer. 2
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10.1.1.5 Sequence Rule

The assignment, conditional and iteration rules cover the three basic com-

mands of the small programming language. The sequence rule applies to sequen-

tially executed programs S and T , where S executes prior to T and is written as

S;T .

{P}S {Q} {Q}T {R}
{P}S;T {R}

where Q is called the middle assertion. For example, consider the following two

instances of the assignment axiom: {x = 4} y := x + 1 {y = 5} and {y = 5} z :=

y {z = 5}. By the sequence rule, one concludes: {x = 4} y := x+ 1; z := y {z = 5}.

10.1.2 Examples of Formal Verification

Now, we have all the rules needed to show the correctness of any program in

the small programming language.

Example 10.1.5. Consider the program in Example 10.1.1:

{n ≥ 0} sum(0, A) = 0

s := 0; i := 0; sum(i+ 1, A) = sum(i, A) + A[i]

while (i < n) do

s := s+ A[i]; i := i+ 1

od

{s = sum(n,A)}

Since the code contains a while loop, a crucial step in applying the Hoare logic

is to find a loop invariant. Examining the body of the loop, we can see that the

values of s and i are changed inside the body. A good loop invariant must reflects

these changes. Since the variable s accumulates the sum of the first i elements of

A, the first guess for a suitable loop invariant would be I : s = sum(i, A).

By the sequence rule, we need to prove the following statements:

• (1) {n > 0} s := 0; i := 0 {I};

• (2) {I} while i < n do s := s+ A[i]; i := i+ 1 od {s = sum(n,A)}

The proof of (1) is easy as we just need to prove n > 0 → I[i ↼ 0, s ↼ 0],

which comes from {I[i ↼ 0, s ↼ 0]} s := 0 {I[i ↼ 0]} and {I[i ↼ 0]} i := 0 {I}.
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Since I[i ↼ 0, s ↼ 0] is 0 = sum(0, A), which is true by the definition of sum,

hence (1) is true.

The proof of (2) is reduced to the following two statements by the iteration

rule and the implication rule:

• (2.1) {I ∧ i < n} s := s+ A[i]; i := i+ 1 {I}, and

• (2.2) I ∧ ¬(i < n)→ {s = sum(n,A)}.

The way to prove (2.1) is the same as that of (1), and we need to prove the following

formula:

(2.1.1) (I ∧ i < n)→ I[i ↼ i+ 1, s ↼ s+ A[i]]

Opening I in (2.2.1), we have

(s = sum(i, A) ∧ i < n)→ (s+ A[i] = sum(i+ 1, A))

By the definition of sum, sum(i+ 1, A) = sum(i, A) + A[i] = s+A[i], so (2.1.1) is

true, thus (2.1) is true.

Opening I in (2.2), we have (s = sum(i, A)∧i ≥ n)→ (s = sum(n,A)). Since

the condition i ≥ n cannot give us i = n, the proof cannot go through. From this

failure, we can see that we need to strengthen the loop invariant by adding i ≤ n to

it: the new loop invariant I ′ should be s = sum(i, A) ∧ i ≤ n. Using I ′, the proofs

of (1) and (2.1) will go through as before and the proof of (2.2) becomes easy as

i ≤ n ∧ i ≥ n→ i = n. 2

The above example shows that the loop invariant should contain all the infor-

mation about how the loop works:

• It reflects what has been done so far together with what remains to be done

and should contain all the changing variables;

• It holds at both the beginning and the end of each iteration;

• Together with the negation of the loop condition, it gives the desired result

when the loop terminates;

• If a proof cannot go through, we may need to strengthen the loop invariant

by adding a condition which is needed in the proof.

Example 10.1.6. Consider the following program which finds the maximal element

in an array:
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{n > 0} arrMax(1, A) = A[0]

m := A[0]; i := 1; arrMax(i+ 1, A) = max(arrMax(i, A), A[i])

while i < n do

if (m < A[i]) then m := A[i];

i := i+ 1

od

{m = arrMax(n,A)}

Examining the body of the loop, we can see that the values of m and i are

changed inside the body. A good loop invariant must reflects these changes. Since

the variable m contains the maximal value of the first i elements in A, a reasonable

guess for a loop invariant would be I : m = arrMax(i, A) ∧ i ≤ n.

By the sequence rule, we need to prove the following statements:

• (1) {n > 0}m := A[0]; i := 1 {I};

• (2) {I} while i < n do ... od {m = arrMax(n,A)}

The proof of (1) is easy as we just need to prove n > 0→ I[i ↼ 1,m ↼ A[0]],

which comes from {I[i ↼ 1,m ↼ A[0]]}m := A[0] {I[i ↼ 1]} and {I[i ↼ 1]} i :=
1 {I}. Since I[i ↼ 0,m ↼ A[0]] is A[0] = arrMax(1, A) ∧ 1 ≤ n, which is true by

the definition of arrMax and n > 0, hence (1) is true.

The proof of (2) is reduced to the following two statements by the iteration

rule and the implication rule:

• (2.1) {I ∧ i < n} if (m < A[i]) then m := A[i]; i := i+ 1 {I}, and

• (2.2) I ∧ ¬(i < n)→ {m = arrMax(n,A)}.

The proof of (2.1) is focused on the proof of the following statement:

(2.1.1) {I ∧ i < n} if (m < A[i]) then m := A[i] {I[i ↼ i+ 1]}

Applying the conditional rule, we need to prove the following two statements:

• (2.1.1.1) {I ∧ i < n ∧m < A[i]} m := A[i] {I[i ↼ i+ 1]}, and

• (2.1.1.2) (I ∧ i < n ∧ ¬(m < A[i]))→ I[i ↼ i+ 1].

Applying the assignment and application rules to (2.1.1.1), we need to prove

(2.1.1.1.1) (I ∧ i < n ∧m < A[i]→ I[i ↼ i+ 1,m ↼ A[i]]
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Opening I in (2.1.1.1.1), we need to show that

(m = arrMax(i, A)∧i ≤ n∧i < n∧m < A[i])→ (A[i] = arrMax(i+1, A)∧(i+1) ≤ n).

Note that (i+ 1) ≤ n is true because i < n and

arrMax(i+ 1, A) = max(arrMax(i, A), A[i]) by the definition ofarrMax
= max(m,A[i]) bym = arrMax(i, A)
= A[i] bym < A[i]

Hence, (2.1.1.1.1) is true. Using the same approach, (2.1.1.2) can be proved to be

true. Hence, (2.1.1) is true.

Opening I in (2.2), we have

(m = arrMax(i, A) ∧ i ≤ n ∧ ¬i < n)→ (m = arrMax(n,A)).

Since i ≤ n and ¬i < n imply that i = n, hence m = arrMax(i, A) implies

m = arrMax(n,A). Thus, the proofs of (1) and (2) are complete and I is indeed a

good loop invariant for showing m = arrMax(n,A). 2

Example 10.1.7. The following program will compute the integer quotient.

{x, y > 0}
r := x; q := 0;

while y ≤ r do

r := r − y;

q := q + 1

od

{q = bx/yc}

Since both r and q are changed inside the loop, let the loop invariant I be y >

0 ∧ r ≥ 0 ∧ x = r + y · q. By the sequence rule, we need to show the following

statements:

• (1) {x, y > 0} r := x; q := 0 {I};

• (2) {I} while y ≤ r do r := r − y; q := q + 1 od {q = bx/yc}

(1) is easy to prove by using the assignment rules twice, the sequence rule once, and

the implication rule once: x, y > 0 → I[r ↼ x, q ↼ 0], that is, x, y > 0 → (y >

0 ∧ x ≥ 0 ∧ x = x+ y · 0) is true.
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(2) needs the iteration rule and the implication rule: We need to prove

(2.1) {I ∧ y ≤ r} r := r − y; q := q + 1 {I};
(2.2) (I ∧ ¬(y ≤ r))→ (q = bx/yc).

The way to prove (2.1) is the same as to prove (1), we need to show

(I ∧ y ≤ r)→ I[r ↼ r − y, q ↼ q + 1]

which, when I is open up, is

(y > 0∧ r ≥ 0∧x = r+y · q∧y ≤ r)→ (y > 0∧ r−y ≥ 0∧x = (r−y)+y · (q+1))

Since (r− y)+ y · (q+1) = r+ y · q and y > 0∧ y ≤ r imply r− y ≥ 0, (2.1) is true.

The proof of (2.2) is easy as x = r+ y · q iff x/y = r/y + q when y > 0. Since

(y > r ∧ r ≥ 0) implies 0 ≤ r/y < 1, so bx/yc = br/y + qc =cr/yc+ q = 0 + q = q.

2

10.1.3 Hoare Rule for Function Calls

In addition to the rules for the simple language in Hoare’s original paper, rules

for other language constructs have been developed since then by Hoare and many

other researchers. There are rules for functions, procedures, jumps, and pointers.

10.1.4 Partial and Total Correctness

Hoare rules presented in the previous section concern about the partial correct-

ness of programs: If the program stops, the postcondition will hold. If a program is

both partially correct and terminating, we say the program is totally correct. The

relationship between partial and total correctness can be informally expressed by

the equation:

Total correctness = Termination + Partial correctness.

As shown in the previous chapter, the termination of programs is an undecidable

problem and there are no decision procedures to solve this problem in general.

Using the Hoare triples, only partial correctness can be proven, while termi-

nation needs to be proved separately. Thus the intuitive reading of a Hoare triple

is: Whenever P holds of the state before the execution of C, then Q will hold after-

wards, or C does not terminate. In the latter case, there is no “after”, so Q can be

any statement at all. Indeed, one can choose Q to be false to express that C does

not terminate.
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Example 10.1.8. Consider the statement {T}while x 6= a do od {x = a}. Let

the loop invariant I be >, then both I ∧ x 6= a→ I and I ∧ ¬(x 6= a)→ x = a are

trivially true. Thus, the program is partially correct: If the program stops, we must

have x = a. The program will loop forever unless it starts with x = a, therefore it

is not totally correct. 2

Total correctness can be proved with an extended version of the iteration rule,

where the value of a function on the changing variables of the loop decreases under

a well-founded order. Total correctness is what we are ultimately interested in, but

it is usually easier to prove it by establishing partial correctness and termination

separately. Termination is often straightforward to establish, and the complexity

analysis of algorithms often provides finer results than the termination. For exam-

ple, the program in Example 10.1.5 is terminating because the value of f(i) = n− i

decreases by one after each iteration and the minimum value of f(i) is 0 when the

looping condition i < n becomes false. For the program in Example 10.1.7, let

f(q) = bx/yc − q, then f(q) decreases by one after each iteration and the mini-

mum value of f(q) is 0 when the looping condition is false. The complexity of both

algorithms is O(n) (n = bx/yc in the second example).

10.2 Automated Generation of Assertions

After seeing only a few examples, the following two things is painfully clear:

• Proofs are typically long and boring, even if the program being verified is

quite simple.

• There are lots of fiddly little details to get right, many of which are trivial,

e.g. proving r = x ∧ q = 0→ (x = r + y · q).

Many attempts have been made (and are still being made) to automate cor-

rectness proofs by designing systems to do the boring and tricky bits of generating

formal proofs in Hoare logic. Unfortunately logicians have shown that it is impos-

sible in principle to design a decision procedure to decide automatically the truth

or falsehood of an arbitrary mathematical statement. However, this does not mean

that one cannot have procedures that will prove many useful theorems. The non-

existence of a general decision procedure merely shows that one cannot hope to

prove everything automatically. In practice, it is quite possible to build a system

that will mechanize many of routine aspects of verification. This section describes

one commonly taken approach to doing this.

In the previous section it was shown how to prove {P}S {Q} by reducing this

goal to several subgoals and then putting these together using the Hoare rules to
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get the desired property of S itself. For example, to prove {P}S;T {Q}, first prove
{R}T {Q} and {P}S {R} for a middle assertion R, and then deduce {P}S;T {Q}
by the sequence rule. This process is called goal reduction, or backward reasoning,

because one works backwards: Starting from the goal of showing {P}S {Q}, one
generates subgoals, sub-subgoals, etc., until the problem is solved. Prolog also uses

this process for computation.

Example 10.2.1. Suppose one wants to show:

{x = x0 ∧ y = y0} r := x;x := y; y := r {y = x0 ∧ x = y0}

then by the assignment and sequence rules, the above statement is reduced to the

subgoal

{x = x0 ∧ y = y0} r := x;x := y {r = x0 ∧ x = y0}

because {r = x0 ∧ x = y0} y := r {y = x0 ∧ x = y0}. By a similar argument this

subgoal can be reduced to

{x = x0 ∧ y = y0} r := x {r = x0 ∧ y = y0}

which is reduced further to (x = x0 ∧ y = y0) → (x = x0 ∧ y = y0). Every step of

the above reduction clearly follows from the assignment rule. The middle assertions

for the sequence rule are automatically generated. 2

We wish that the process illustrated by the above example can be extended

to arbitrary programs so that all middle assertions can be generated automatically,

releasing programmers from the burden of providing all assertions. A programmer

just needs to provide the pre- and post-conditions of the program derived from

the specification of the problem and all the needed assertions can be generated

automatically. Coupling with a powerful theorem prover, all the formulas derived

from Hoare rules can be proved automatically, and we arrive at the automation of

software verification.

10.2.1 Verification Conditions

The formal verification of a program can be described succinctly as follows:

1. The program S is annotated by inserting into it the assertions expressing con-

ditions that are meant to hold at various intermediate points. This step needs

a good understanding of how the program works. The user needs to provide

at least the pre- and post-conditions and loop invariants; other assertions can

be generated automatically.
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2. A set of formulas called verification conditions is then generated from the

annotated specification. This process is purely mechanical and easily done by

a software tool. We will describe how this done in this section.

3. The verification conditions are proved by a theorem prover. Automating this

remains to be a big challenge.

Definition 10.2.2. Given a Hoare triple {P}S {Q}, let vc(S,Q) denote the formula

P ′ such that both (1) P → P ′ and (2) {P ′}S {Q} are true, then P ′ is called a

verification condition of S with respect to Q.

By the implication rule, if a verification condition vc(S,Q) exists, then the

triple {P}S{Q} is true. Moreover, if vc(S,Q) can be generated automatically from

S and Q, then the process of generating all assertions becomes automated. Besides

being the basis for automated verification systems, verification conditions are a

useful way of working with Hoare logic by hand.

We will view vc(S,Q) as a recursive procedure on S, coinciding with the goal

reduction process. The definition of vc(S,Q) follows closely with Hoare rules on

the three constructs and the sequence rule of our small programming language. We

add a skip command, which does nothing, so that it is easy to use the if-then-else

command for the if-then command: if B then S fi becomes if B then S else skip

fi. In summary, there are only five cases to consider in the definition of vc(S,Q).

In fact, the verification conditions are the weakest preconditions in most cases,

with the exception of while loops, but we will neither make this more precise nor

go into details here. An in-depth study of weakest preconditions can be found in

Dijkstra’s book.

For while loops, we do not have an algorithm which can generate vc(S,Q)

for every loop; only some heuristic methods are available. To help the verification

tool to generate vc(S,Q), a programmer needs to suggest a loop invariant. That is,

instead of the code while B do S od, we write while B do {I} S od, where I

is the suggested loop invariant. The pre- and post-conditions can be also inserted

into a program code. This type of program codes with assertions is called “an-

notated program”, where assertions are provided by the programmer to assist the

verification.

Another exception with while loops is that, in addition to returning a verifi-

cation condition for the loop, it will create another formula whose validity is needed

to ensure the validity of the Hoare triple. This formula will be pushed into a stack

denoted by s during the execution of vc. The stack s is a global variable and is

initially empty; it will hold as many formulas as the number of while loops in the

program.
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Algorithm 10.2.3. The algorithm vc will take an annotated program C, a formula

Q and returns a formula as a precondition P for {P}C {Q} being true.

proc vc(C,Q)

1 if C is “x := E” return Q[x ↼ E]

2 else if C is “skip” return Q

3 else if C is “if B then S else T fi”

4 return (B → vc(S,Q)) ∧ (¬B → vc(T,Q))

5 else if C is “while B do {I} S od”

6 push(I → ((B → vc(S, I)) ∧ (¬B → Q)), s);

7 return ((¬B ∧Q) ∨ I)

8 else C is “S;T” return vc(S, vc(T,Q))

In the above algorithm, lines 1-2 handles the base cases, when the command

is an assignment or skip command; Lines 3-4 handle the conditional (for simplicity,

we ignore the conditional case when the else part is missing); Lines 5-7 handle the

while loop; and line 8 handles the sequence of commands. The last three cases

involve the recursive calls of vc.

Theorem 10.2.4. The output of vc(S,Q) is a formula P ′ in first-order logic such

that (a) P |= P ′ and (b) all the formulas generated by vc(S,Q) in the stack s are

valid, then {P}S {Q} is true.

The following subsection will be devoted the proof of the above theorem.

10.2.2 Proof of Theorem 10.2.4

At first, we need to show that vc will terminate. This is an easy task because

the first argument of vc, which is a piece of code, becomes strictly smaller for each

recursive call, and it will come down to an assignment or a skip command, there

cannot exist an infinite chain of recursive calls. So the algorithm vc must terminate.

The proof of the above theorem will be by induction on the structure of C.

Such inductive arguments have two parts. First, it is shown that the result holds

for the assignment and skip commands. Second, it is shown that when C is not an

assignment command, then if the result holds for the constituent commands of C

(this is called the induction hypothesis), then it holds also for C. The first of these

parts is called the base cases of the induction and the second is called the inductive

cases. From the base and the inductive cases, it follows that the result holds for all

commands. For instance, to show that vc returns a formula, since all the base cases

return a formula, assuming all the recursive calls will return a formula, then vc will

return a formula by examining all the inductive cases.
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The case of the skip command is trivial; the other cases will be discussed

separately.

10.2.2.1 Assignments

The only verification condition for x := E and Q is Q[x ↼ E], which is the

weakest precondition for x := E and Q. Thus, we have vc(x := E,Q) = Q[v ↼ E].

10.2.2.2 Sequences

The only verification condition for S;T andQ is vc((S;T ), Q) = vc(S, vc(T,Q)).

If both vc(S,Q′) and vc(T,Q) are the weakest preconditions for S and T , respec-

tively, then vc(S, vc(T,Q)) is the weakest precondition for S;T .

Example 10.2.5. The verification condition for the code in Example 10.2.1 is easily

obtained as it involves only two cases: assignment and sequence.

vc((r := x;x := y; y := r), y = x0 ∧ x = y0)
= vc((r := x;x := y), vc(y := r, y = x0 ∧ x = y0))
= vc((r := x;x := y), r = x0 ∧ x = y0)
= vc(r := x, vc(x := y, r = x0 ∧ x = y0))
= vc(r := x, r = x0 ∧ y = y0)
= x = x0 ∧ y = y0

2

10.2.2.3 Conditionals

Let P ′ = vc(if B then S else T fi, Q), by the definition of vc, P ′ = (B →
vc(S,Q)) ∧ (¬B → vc(T,Q)). Note that P ′ is the weakest precondition for the

conditional command, if both vc(S,Q)) and vc(T,Q)) are the weakest preconditions

for S and T , respectively. By the induction hypothesis, both {vc(S,Q)}S{Q} and
{vc(T,Q)}T{Q} are true. If P → P ′ is true, then both P → (B → vc(S,Q)) and

P → (¬B → vc(T,Q)) are true. Since P → (B → vc(S,Q)) ≡ (P ∧B)→ vc(S,Q),

by the implication rule, {P ∧ B}S {Q}. Following the same reasoning, we have

{P ∧ ¬B}T {Q}. By the conditional rule,

{P} if B then S else T fi {Q}

is true.
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Example 10.2.6.

vc(if (x < 10) then x := 0 else x := 10 fi, x = 0 ∨ x = 10)
= (x < 10→ vc(x := 0, x = 0 ∨ x = 10)) ∧ (x ≥ 10→ vc(x := 10, x = 0 ∨ x = 10))
= (x < 10→ 0 = 0 ∨ 0 = 10) ∧ (x ≥ 10→ 10 = 0 ∨ 10 = 10)
= (x < 10→ >) ∧ (x ≥ 10→ >)
= >

2

10.2.2.4 Iterations

Let P ′ = vc(while B do {I}S od, Q), by the definition of vc, P ′ is (¬B ∧
Q) ∨ I, which is a disjunction of two formulas: (a) ¬B ∧ Q, and (b) I. (a) covers

the case when B is false in the beginning and the while loop is the same as a skip

command. (a) can be omitted if we let vc to return a stronger precondition. (b)

ensures that I holds before entering the loop.

Moreover, the formula I → ((B → vc(S, I))∧ (¬B → Q)), which is equivalent

to (I ∧ B → vc(S, I)) ∧ (I ∧ ¬B → Q), is created and stored in the stack s. The

validity of I ∧ B → vc(S, I) ensures that the iteration rule can be applied. By

the induction hypothesis, {vc(S, I)}S {I} is true. Since I ∧ B → vc(S, I), by the

implication rule, {I ∧ B}S {I} is true, that is, I is indeed a loop invariant. Thus,

by the iteration rule, {I}while B do S od {I ∧¬B} is true. Finally, the validity of

(I ∧ ¬B)→ Q ensures that Q holds when the loop terminates. By the implication

rule, {I}while B do S od {Q} holds. This completes the proof of Theorem 10.2.4.

2

The algorithm vc(S,Q) shows how assertions needed for Hoare rules are de-

rived from the postcondition and loop invariants automatically in a goal-reduction

or backward reasoning process. Backward reasoning can be useful for nested loops,

where the inner loop’s postcondition can be derived from the outer loop’s invariant.

Example 10.2.7. The precondition for the following program is P : x = n∧ y = 1

and the loop invariant is I : x! · y = n!, where x! is the factorial function of x.

vc(while (x 6= 0) do {I : x!y = n!} y := x ∗ y;x := x− 1 od, y = n!)
= (x = 0 ∧ y = n!) ∨ (x!y = n!)
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The formula pushed into the stack and needs to be proved is

x!y = n!→ ((x! = 1→ vc([y := y ∗ x;x := x− 1], x!y = n!)) ∧ (x = 1→ y = n!))
= x!y = n!→ ((x! = 1→ vc(y := y ∗ x, vc(x := x− 1, x!y = n!))) ∧ (x = 1→ y = n!))
= x!y = n!→ ((x! = 1→ vc(y := y ∗ x, (x− 1)!y = n!)) ∧ (x = 1→ y = n!))
= x!y = n!→ ((x! = 1→ (x− 1)!(yx) = n!) ∧ (x = 1→ y = n!))
= x!y = n!→ ((x! = 1→ x!y = n!) ∧ (x = 1→ y = n!))
= x!y = n!→ (x = 1→ y = n!)

2

The last step used the equivalence X → ((Y → X) ∧ Z) ≡ X → Z, where X

is x!y = n!, Y is x! = 1, and Z is x = 1→ y = n!.

Can we get rid the stack used in vc? That is, instead of storing I → ((B →
vc(S, I))∧ (¬B → Q)), can we let vc(while B do {I}S od, Q) returns I → ((B →
vc(S, I)) ∧ (¬B → Q)) as part of its output? The following counterexample shows

that this approach is unsound.

Example 10.2.8. Let the Hoare triple be

{x = 0}while (x < 5) do x := x+ 1 od {x = 5},

which can be proved to be true by the Hoare rules with the loop invariant x ≤ 5.

If we modify vc such that vc(while B do {I}S od, Q) returns

(¬B ∧Q) ∨ I ∧ (I → ((B → vc(S, I)) ∧ (¬B → Q))),

which is equivalent to

(¬B ∧Q) ∨ I ∧ (B → vc(S, I)) ∧ (¬B → Q).

Let I be x = 0 ∨ x = 1 for the above program, then vc(while (x < 5) do {I} x :=

x+ 1 od, x = 5) returns

(x ≥ 5 ∧ x = 5) ∨ I ∧ (x < 5→ vc(x := x+ 1, I)) ∧ (x ≥ 5→ x = 5).

which can be is simplified to

P ′ : x = 5 ∨ (x = 0 ∨ x = 1) ∧ (x < 5→ (x = −1 ∨ x = 0)) ∧ (x ≥ 5→ x = 5),

because vc(x := x + 1, I) returns (x + 1 = 0 ∨ x + 1 = 1), which is equivalent to

x = −1 ∨ x = 0. Now it is easy to show (by equality crossing) that x = 0 → P ′

is true (since P ′[x ↼ 0] is true). By the original Hoare rule, we cannot show that

x = 0∨x = 1 is a valid loop invariant. Thus, the modification of vc is unsound. 2
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10.2.3 Implementing vc in Prolog

Since Prolog is good at pattern matching, it is easy to implement the algorithm

vc(S,Q) in Prolog. The first job is to let the Prolog program parses codes easily.

For this purpose, we change the syntax of our programming language as follows:

command before now

assignment x := E let(x,E)

conditional if B then S else T fi ite(B, S, T )

iteration while B do {I} S od while(B, I, S)

skip skip skip

sequence S1;S2; ...;Sn [S1, S2, ..., Sn]

For the iteration, instead of using a stack to store formulas, we simply write

the formulas on the screen. Below is the Prolog code for treating assignments,

conditionals, iterations, and skip:

% vc1(S1, Post, VC): VC = vc(S1, Post), S1 is a single command

% assignment

vc1(let(X, E), Post, VC) :- substitute(X, E, Post, VC).

% conditional

vc1(ite(B, S, T), Post, VC) :-

vc(S, Post, VC1), vc(T, Post, VC2),

VC = and((B -> VC1), (neg(B) -> VC2)).

% iteration

% use vc1(while(B, Inv, S), Post, Inv) as an alternative.

vc1(while(B, Inv, S), Post, or(and(neg(B), Post), Inv)) :-

vc(S, Inv, VC), % VC is vc(S, Inv)

write((and(Inv, B) -> VC)), nl, % part 1 of a conjunction

write((and(Inv, neg(B)) -> Post)), nl. % part 2 of a conjunction

The handling of assignment uses a utility function substitute, which per-

forms the substitution:

% substitute(X, V, E, R) succeeds when every occurrence of X in

% expression E is replaced by V and the modified E is R.

substitute(X, V, X, V):- !.
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substitute(X, V, E, R) :-

E =.. [F|Args0],

maplist(substitute(X, V), Args0, Args),

R =.. [F|Args].

For a sequence S of commands, we first reverse S into S2 and work on S2 from

the beginning to the end, as illustrated by the following code.

% vc(S, Post, VC) succeeds when a VC is generated from

% from the program S and the post condition Post.

vc(P, Post, VC) :- is_list(P), !, reverse(P, P2), vcR(P2, Post, VC).

vc(P, Post, VC) :- vc1(P, Post, VC). % if S is not a list

% vcR(SR, Post, VC) generates a VC from SR and Post, where

% SR is a list of instructions in reversed order.

vcR([], Post, Post).

vcR([Last | Rest], Post, VC) :-

vc1(Last, Post, Post1), vcR(Rest, Post1, VC).

In the following examples, we define a triple trii(P, S,Q), where i is a number.

We then define qi for the query of generating and displaying a verification condition

for the triple trii(P, S,Q). The validity of all the displayed formulas ensures that

the triple is true.

Example 10.2.9. The triple and the query are specified as follows:

tri1(true,

[ ite(a>b, let(x, b), let(x, a)), ift(x > c, let(x, c))],

x=min(a,min(b,c))).

q1 :- tri1(P, S, Q), vc(S, Q, VC), write((P -> VC)), nl.

The query ?- q1. produces one formula:

true->and((a>b->and((b>c->c=min(a,min(b,c))),

(neg(b>c)->b=min(a,min(b,c))))),

(neg(a>b)->and((a>c->c=min(a,min(b,c))),

(neg(a>c)->a=min(a,min(b,c))))))
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which represents the formula

> → ((a > b→ ((b > c→ c = m) ∧ (¬(b > c)→ b = m))) ∧ (¬(a > b)→
((a > c→ c = m) ∧ (¬(a > c)→ a = m))))

where m = min(a,min(b, c)). 2

Example 10.2.10. The triple and the query are specified as follows:

tri2(and(n>=0, and(k=0, result=0)),

while(k<n,

and(0=<k, and(k=<n, result=sum(0, k, a))),

[let(result, result+a(k)),

let(k, k+1)]),

result=sum(0, n, a)).

q2 :- tri2(P, S, Q), vc(S, Q, VC), write((P -> VC)), nl.

The query ?- q2 produces three formulas:

and(and(0=<k,and(k=<n,result=sum(0,k,a))),k<n)->

and(0=<k+1,and(k+1=<n,result+a(k)=sum(0,k+1,a)))

and(and(0=<k,and(k=<n,result=sum(0,k,a))),neg(k<n))->

result=sum(0,n,a)

and(n>=0,and(k=0,result=0))->

or(and(neg(k<n),result=sum(0,n,a)),

and(0=<k,and(k=<n,result=sum(0,k,a))))

where sum(b, e, A) = 0 if (b ≥ e); otherwise sum(b, e, A) = sum(b, e−1, A)+A[e−1].
The three formulas can be rewritten as

(0 ≤ k ∧ k ≤ n ∧ result = sum(0, k, a) ∧ k < n)→
(0 ≤ k + 1 ∧ k + 1 ≤ n ∧ result+ a(k) = sum(0, k + 1, a))

(0 ≤ k ∧ k ≤ n ∧ result = sum(0, k, a) ∧ ¬(k < n))→ result = sum(0, n, a)
(n ≥ 0 ∧ k = 0 ∧ result = 0)→ ((¬(k < n) ∧ result = sum(0, n, a))∨

(0 ≤ k ∧ k ≤ n ∧ result = sum(0, k, a)))

2

Example 10.2.11. The triple and the query are specified as follows:

tri3(and(n >= 0, and(x=n, y=1)),

while(neg(x = 0),

\{ fac(x)*y = fac(n)\},
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[let(y, x*y),

let(x, x-1)]),

y=fac(n)).

q3 :- tri3(P, S, Q), vc(S, Q, VC), write((P -> VC)), nl.

The query ?- q3 produces three formulas:

and(fac(x)*y=fac(n),neg(x=0))->fac(x-1)*(x*y)=fac(n)

and(fac(x)*y=fac(n),neg(neg(x=0)))->y=fac(n)

and(n>=0,and(x=n,y=1))->

or(and(neg(neg(x=0)),y=fac(n)),fac(x)*y=fac(n))

where fac(n) is the factorial function: fac(0) = 1, fac(i + 1) = fac(i) ∗ (i + 1).

The three formulas can be rewritten as

(fac(x) ∗ y = fac(n) ∧ ¬(x = 0))→ fac(x− 1) ∗ (x ∗ y) = fac(n)
(fac(x) ∗ y = fac(n) ∧ ¬¬(x = 0))→ y = fac(n)
(n >= 0 ∧ x = n ∧ y = 1)→ ((¬¬(x = 0) ∧ y = fac(n)) ∨ fac(x) ∗ y = fac(n))

2

The above three examples show how formulas can be generated from post-

conditions and loop invariants. All middle assertions, with the exception of loop

invariants, are generated automatically. These formulas are then fed to an auto-

mated theorem prover. Once they are proved to be valid, the Hoare triple is shown

to be true and the program is partially correct.

More than often, a theorem prover cannot prove these formulas automatically;

if it fails, advice is sought from the user. The analysis of the failure may suggest

that we would need to add a conjunct to a loop invariant, to the precondition, or

modify the postcondition. We then run vc with new annotated code, obtain new

formulas and feed them to the theorem prover. This process repeats until we find

the right pre- and post-conditions and loop invariants.

The aim of much current research is to build systems which reduce the role of

the slow and expensive human expert to a minimum. This can be achieved by:

• reducing the number and complexity of the annotations required, and

• increasing the power of the theorem prover.
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From the implementation of vc, it is now clear that the success of Hoare logic

to formal verification relies on (i) obtaining a good loop invariant for each while loop

in a program; (ii) having a powerful theorem prover which can prove the validity of

the formulas derived by vc. The first issue will be addressed in the next section. The

second issue has been addressed in the previous chapters of this book and will be

discussed in the next chapter. Since proofs of correctness of programs are typically

very long and boring, it is thus useful to check proofs mechanically or automatically,

even if they can only be carried out with human assistance.

10.3 Obtaining Good Loop Invariants

Finding an invariant for a loop is traditionally the responsibility of a human:

either the person performing the verification or the programmer writing the loop

in the first place. A better solution, when applicable, is program synthesis, a con-

structive approach to programming advocated by Dijkstra and others. Automated

generation of loop invariants is still an ongoing research topic.

For the triple {I}while B do S od {Q}, I is a correct invariant for the loop

if it satisfies the following conditions:

1. I is true in the state preceding the loop execution.

2. Every execution of the loop body S, started in any state in which both I and

B are true, will yield a state in which I holds again.

If these properties hold, then any terminating execution of the loop will yield a state

in which both I and ¬B hold; the latter is called the exit condition.

We may look at the notion of loop invariant from the constructive perspective

of a programmer directing his or her program to reach a state satisfying a certain

desired property, the postcondition. In this view, program construction is a form

of problem solving, and the various control structures are problem-solving tech-

niques; a loop solves a problem through successive approximation. This idea has

been strongly advocated in Furia et al.’s survey article on loop invariants. In the

following, our presentation of the idea is based on their survey.

• Generalize the postcondition (the characterization of possible solutions) into

a broader condition: the invariant.

• As a result, the postcondition can be defined as the conjunction of the invariant

and another condition, i.e., the exit condition.

• Find a way to reach the invariant from the previous state of the computation:

the initialization.
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• Find a way, given a state that satisfies the invariant, to get to another state,

still satisfying the invariant but closer, in some appropriate sense, to the exit

condition: the body.

The importance of this presentation of the loop process is that it highlights the

nature of the invariant: it is a generalized form of the desired postcondition, which

in a special case (represented by the exit condition) will give us that postcondition.

This view of the invariant, as a particular way of generalizing the desired goal of the

loop computation, explains why the loop invariant is such an important property of

loops; one can argue that understanding a loop means understanding its invariant.

10.3.1 Invariants from Generalizing Postconditons

To illustrate the idea of generalizing the postcondition to obtain an invariant,

we will use the thousands-year-old Euclid’s algorithm for computing the greatest

common divisor (gcd) of two positive integers. The postcondition of the algorithm

is

y = gcd(a, b),

where the precondition is a > 0 and b > 0. The first step of the generalization is to

replace this condition by

x = 0 ∧ gcd(x, y) = gcd(a, b)

with a new variable x, taking advantage of the mathematical property that, for every

y, gcd(0, y) = y. The second conjunct, i.e., gcd(x, y) = gcd(a, b), a generalization of

the postcondition, will serve as the invariant; the first conjunct will serve as the exit

condition. To obtain the loop body, we take advantage of another mathematical

property: for every x and y, gcd(x, y) = gcd(y, x) and gcd(x, y) = gcd(x − y, y) if

x > y, yielding the well-known algorithm:

x := a; y := b;

while x 6= 0 do

{I : x ≥ 0 ∧ y > 0 ∧ gcd(x, y) = gcd(a, b)}
if x < y then z := x;x := y; y := z fi;

x := x− y

od

The proof of correctness follows directly from the mathematical property of

gcd. This form of Euclid’s algorithm uses subtraction; we may replace the subtrac-

tion by the remainder function, i.e., replace x− y by x%y, resulting a more efficient

algorithm. In this case, we need the property that gcd(x, y) = gcd(x%y, y).
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Using the classification criteria proposed in Furia et al.’s survey article, the

invariant for the gcd algorithm is divided into two categories:

• The last conjunct of the invariant is an essential invariant, representing a

weakening of the postcondition. The first two conjuncts are bounding invari-

ants, indicating that the state remains within certain general boundaries and

ensuring that the “essential” part is well defined.

• The strategy that leads to the essential invariant is uncoupling, which replaces

a property of one variable (y in this case), used in the postcondition, by a

property of two variables (y and x), used in the invariant.

As illustrated by the above example, the essential invariant is a mutation

(often, a weakening) of the loop’s postcondition. The following mutation techniques

are particularly common.

• Constant Relaxation

Constant relaxation replaces a constant n (more generally, an expression which

does not change during the execution of the algorithm) by a variable i, and

use i = n as part or all of the exit condition. In Example 10.1.5, constant

relaxation is used to obtain the loop invariant, i.e., s = sum(i, A), from the

postcondition s = sum(n,A). This condition is trivial to establish initially

for i = 0 and s = 0, and is easy to extend to an incremented i, and yields the

postcondition when i reaches n.

• Uncoupling Uncoupling is to replace a variable by two, using their equality

as part or all of the exit condition. Uncoupling is used in the gcd algorithm

where we replace y = gcd(a, b) by x = 0 ∧ gcd(x, y) = gcd(a, b). Uncoupling

is also used in Example 10.2.7 where we replace y = n! by x = 0 ∧ x!y = n!.

• Term dropping Term dropping removes a subformula (typically a conjunct),

which gives a straightforward weakening. Term dropping often applies after

uncoupling. x = 0 is dropped from x = 0 ∧ gcd(x, y) = gcd(a, b) in the gcd

algorithm, and x = 0 ∧ x!y = n! in the factorial algorithm to obtain the

essential invariant. The dropped term often goes into the exit condition of the

loop.

• Aging Aging is to replace a variable (more generally, an expression) by an

expression that represents the value the variable had at previous iterations of

the loop. Aging typically accommodates “off-by-one” discrepancies between

when a variable is evaluated in the invariant and when it is updated in the
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loop body. Typically, aging is used for generating bounding invariants. For

example, if i > 0 appears in the loop condition and i := i− 1 appears in the

loop body, aging will generate i + 1 > 0 (equivalently i ≥ 0) as a bounding

invariant. On the other hand, if j < n appears in the loop condition and

j := j+1 appears in the body, then aging will generate j−1 < n (equivalently

j ≤ n) as a bounding invariant.

The above generalization techniques can be implemented by heuristic methods

and thus generating invariants automatically. The amount of research work on the

automated generation of invariants is substantial and spread over more than three

decades; this reflects the cardinal role that invariants play in the formal analysis

and verification of programs. The methods for automatic generation of invariants

can classified as static and dynamic. Static methods use only the program text,

whereas dynamic methods summarize the properties of many program executions

with different inputs.

Historically, the earliest methods for invariant inference were static. Abstract

interpretation and the constraint-based approach are the two most widespread

frameworks for static invariant inference. Abstract interpretation is a symbolic

execution of programs over abstract domains that over-approximates the semantics

of loop iteration. Constraint-based techniques rely on sophisticated decision pro-

cedures over nontrivial mathematical domains (such as polynomials) to represent

concisely the semantics of loops with respect to certain template properties. Static

methods are sound and often complete with respect to the class of invariants that

they can infer. Soundness and completeness are achieved by leveraging the decid-

ability of the underlying mathematical domains they represent; this implies that

the extension of these techniques to new classes of properties is often limited by

undecidability.

Only in the last decade have dynamic techniques been applied to invariant

generation. In a nutshell, the dynamic approach consists of testing a large number

of candidate properties against several program runs; the properties that are not

violated in any of the runs are retained as “likely” invariants. This implies that the

method is not sound but only an “educated guess”: dynamic invariant generation

is to static generation what testing is to program proofs. Nonetheless, just like

testing is quite effective and useful in practice, dynamic invariant generation can

work well if properly implemented. To date, dynamic invariant inference has been

mostly used to infer pre- and postconditions or intermediate assertions, whereas it

has been only rarely applied to loop invariant generation.
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10.3.2 Program Synthesis from Invariants

Program synthesis is the task to construct a program that provably satisfies

the postcondition. In contrast to program verification, the program is to be con-

structed rather than given. Both fields make use of formal proof techniques, and

both comprise approaches of different degrees of automation. In contrast to au-

tomatic programming techniques, postconditions in program synthesis are usually

non-algorithmic statements in an appropriate logical language.

If we are capable of generating loop invariants from the postcondition automat-

ically, then it is relatively easy to construct the code that satisfies the postcondition.

Since different algorithms for solving the same problem require different invariants,

generating different invariants lead us to different algorithms.

Suppose we like to sort an array A of n elements. Let A0 denote the original

array A. The postcondition of a sorting algorithm is perm(A,A0)∧ sorted(A, 0, n),
where perm(A,A0) is true iff A is a permutation of A0 and sorted(A, 0, n) is true

iff the elements of A from 0 to n− 1 are sorted. Suppose the only way to change A

is by swap(A, i, j), which swaps the elements A[i] and A[j], then perm(A,A0) will

remain true through the algorithm. That is, the triple

{permu(A,A0)} swap(A, i, j) {permu(A,A0)}

is always true (swap(A, i, j) represents the code z := A[i];A[i] := A[j];A[j] := z).

Thus, for simplicity, we drop perm(A,A0) from our discussion and focus only on

sorted(A, 0, n).

Intuitively, sorted(A, i, j) is true iff A[i] ≤ A[i+1] ≤ · · · ≤ A[j−1]. For verifi-

cation purpose, the program library does not need an implementation of sorted(A, i, j).

On the other hand, the programmer and theorem prover needs to know the meaning

of sorted(A, i, j), which can be defined recursively as follows:

sorted(A, i, j) = true if i ≥ j;
sorted(A, i, j + 1) = sorted(A, i, j) ∧ A[j − 1] ≤ A[j] if i < j + 1.

Example 10.3.1. If we wish to generate an invariant for the insertion sort algo-

rithm, the first technique to apply is constant relaxation: Replace sorted(A, 0, n)

by k = n ∧ sorted(A, 0, k). Dropping k = n as the exit condition, the outer loop

looks as follows:

1 k := 1;

2 while k 6= n do

3 {I : g > 0 ∧ sorted(A, 0, k)}
...
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10 k := k + 1

11 od

It is easy to see that the exit condition of the outer loop, i.e., k = n, will give

us the postcondition sorted(A, 0, n).

Now apply uncoupling and aging to sorted(A, 0, k) by introducing a new vari-

able j, which breaks the first k+1 elements of A into two sorted lists: A[0], ..., A[j−
1], and A[j], ..., A[k]. We obtain invariant I ′ for the inter loop:

I ′ : 0 ≤ j ≤ k ∧ sorted(A, 0, j) ∧ sorted(A, j, k + 1)

which has three conjuncts. The first conjunct is the bounding invariant. When the

exit condition of the inner loop, i.e., ¬(j > 0 ∧ A[j − 1] > A[j]) becomes true, we

have j = 0 ∨ A[j − 1] ≤ A[j]). Together with the last two conjuncts of I ′, we can

show that sorted(A, 0, k + 1) is true.

1 k := 1;

2 while k 6= n do

3 {I : k > 0 ∧ sorted(A, 0, k)}
4 j := k;

5 while (j > 0 ∧ A[j − 1] > A[j]) do

6 {I ′ : 0 ≤ j ≤ k ∧ sorted(A, 0, j) ∧ sorted(A, j, k + 1)}
7 swap(A, j, j − 1);

8 j := j − 1;

9 od

10 k := k + 1;

11 od

It is easy to see that sorted(A, 0, j) and sorted(A, j, k+1) are true when j = k,

because sorted(A, 0, j) comes from I and sorted(A, j, k + 1) from the definition of

sorted. To show that 0 ≤ j ≤ k is true when j = k, we need to know k ≥ 0. To

have this, we may add k > 0 as a bounding invariant into I of the outer loop. Once

this is done, I ′ can be shown to be true before entering the inner loop.

To see that I ′ is an invariant for the inner loop, when the loop condition is true,

0 ≤ j−1 is true because j > 0. sorted(A, 0, j−1) is true because of sorted(A, 0, j),

sorted(A, j − 1, k + 1) is true because sorted(A, j, k + 1) and A[j − 1] < A[j] (after

swapping). Thus, I ′ is indeed a loop invariant.

The exit condition of the inner loop is j ≤ 0∨A[j−1] ≤ A[j]. If j ≤ 0 is true,

from 0 ≤ j, we know j = 0, hence sorted(A, 0, k+1) is true from sorted(A, j, k+1). If

A[j−1] ≤ A[j] is true, from sorted(A, 0, j), A[j−1] < A[j], and sorted(A, j, k+1),
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we conclude also that sorted(A, 0, k + 1) is true. After the execution of line 10,

k := k + 1, we arrive at the invariant of the outer loop, i.e., k > 0 ∧ sorted(A, k).

2

The insertion algorithm in the above example can be regarded as an example

of “program synthesis”, if the invariants can be generated automatically.

Example 10.3.2. If we are asked to write a program that “store in y the maximum

of x and y”. The postcondition is naturally y = max(x, y). Assume the precondition

is >, what will be the code C in {>} C {y = max(x, y)}. In fact, C is not unique.

For example, some choices are:

• if x > y then y := x fi;

• if x > y then x := y fi;

• y := x;

• x := y;

What will be the “correct” code? With respect to the postcondition, the above

four codes are all correct. If the intended meaning is that y contains the maximum

of the original values of x and y, in this case, we need auxiliary variables, such

as x0 and y0, to denote the original values of x and y. The correct postcondition

is y = max(x0, y0) and the first of the above codes is correct with respect to this

postcondition. If we ask further that y = max(x, y), x and y hold the original

values of x and y, then the correct postcondition is y = max(x0, y0)∧ (x = x0∧ y =

y0 ∨ x = y0 ∧ y = x0), and none of the above codes is correct. 2

The above simple example illustrates that there exist many codes to achieve

the same postcondition; postconditions should be carefully chosen to reflect precisely

the requirement. When loops invariants are needed, the complexity of program

synthesis grows exponentially. Since there are too many choices to create proper

loop invariants, thus leading to various algorithms, program synthesis remains a very

challenging task. Here is a quotation from Wikipedia on an annual competition on

program synthesis.

The early 21st century has seen a surge of practical interest in the idea

of program synthesis in the formal verification community and related

fields. In 2013, a unified framework for program synthesis problems

was proposed by researchers at UPenn, UC Berkeley, and MIT. Since

2014 there has been a yearly program synthesis competition comparing
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the different algorithms for program synthesis in a competitive event,

the Syntax-Guided Synthesis Competition or SyGuS-Comp. Still, the

available algorithms are only able to synthesize small programs.

10.3.3 Choosing A Good Language for Assertions

Assertions are written in a first-order language. However, there are many

ways to specify assertions, because first-order languages are so expressive and you

can use various predicates and functions to specify the same property. There are

two possibilities:

• Allow assertions, in particular postconditions and loop invariants, to use func-

tions and predicates defined using some appropriate mechanism (often, the

programming language’s function declaration construct) to express high-level

properties based on a domain theory covering specifics of the application area.

We call this approach domain theory.

• Disallow the previous possibility, requiring assertions always to be expressed

in terms of the constructs of the assertion language, without functions. We

call this approach atomic assertions.

10.4 Exercise Problems

1. Prove formally the following triple is true by choosing a proper loop invariant.

{x = 0}while (x < 100) do x := x+ 1 od {x = 100}

2. Given the following annotated program, provide the loop invariant and prove

its total correctness by Hoare logic. For every simplification step used in the

proof, please state clearly which arithmetic/algebraic/logic law is used for

simplification.

{A : b ≥ 0}
int x = a, y = b, z = 1;

while y 6= 0 do

if (y%0 = 1)

y := y − 1; z := x ∗ z
else

x := x ∗ x; y := y/2

{B : z = ab}
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CHAPTER 11

TEMPORAL LOGIC

In the previous chapter, we have shown that Hoare logic can be used to verify

a program can achieve the desire property after its execution. However, when a

program involves multiple concurrent processes, its verification becomes much more

complex and the first order logic is inadequate. For example, when you deposit cash

into an automated teller machine (ATM), the program running inside the ATM will

read the balance of your bank account and add the cash amount into your account.

At the same time, another program running inside the bank may use the same

account to pay off your credit card. The two programs cannot be run at the same

time, otherwise, the balance of your account may go wrong. Modifying the same

data at the same time by multiple processes is called “race condition” in concurrent

programming. To avoid race condition, a locking mechanism is needed so that an

account can be accessed when it is free (unlocked). Due to locking mechanisms,

two programs may go to a “deadlock” state. For instance, when both you and your

friend send money to each other at the same time, one program locked account A

and asks for account B and the other program locked account B and asks for account

A. In such cases, we cannot prove the termination of the program by counting steps.

To verify a program works correctly without race condition or deadlock, we need a

formalism to express time, such as “two processes cannot access a critical data at

the same time”. or “the program will terminate eventually”.

In logic, the term temporal logic is any system of rules and symbolism for

representing and reasoning about time and temporal information, as well as their

formal representation. Temporal logic is sometimes also used to refer to tense logic, a

modal logic-based system introduced by Arthur Prior in the late 1950s and has been

further developed by computer scientists and logicians. Applications of temporal

logic include its use as a formalism for clarifying philosophical issues about time, as

a framework within which to define the semantics of temporal expressions in natural

language, as a language for encoding temporal knowledge in artificial intelligence.

Temporal logic has found as an important tool in formal verification, where it is

used to specify requirements of computer programs and systems and conduct formal

analysis and verification of the executions of computer programs. For instance, one

may wish to say that whenever a request is made, access to a resource is eventually
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granted, but it is never granted to two requestors simultaneously. Such a statement

can conveniently be expressed in a temporal logic.

Consider the statement “I possess account A”. Though its meaning is constant

in time, the statement’s truth value can vary in time. Sometimes it is true, and

sometimes false, but never simultaneously true and false. In temporal logic, a

statement can have a truth value that varies in time. This treatment of truth value

over time differentiates temporal logic from classical first-order logic.

11.1 An Approach from Modal Logic

A modal is an expression (like “necessarily” or “possibly”) that is used to

qualify the truth of a statement. Modal logic is the study of the deductive behavior

of the expressions containing the phrases “it is necessary that” and “it is possible

that”. Modal logic has been extended to include logics for belief, for tense and

other temporal expressions where “necessarily” (moral) is interpreted as “always”

(temporal) and “possibly” as “eventually”. An understanding of modal logic and its

extensions is particularly valuable in the formal analysis of philosophical argument,

where expressions from the modal family are both common and confusing.

Like most formal logical system, modal logic as well as temporal logic can be

defined as an extension of propositional logic. Here, we present a minimal temporal

logic (MTL) by adding two modal operators, □ and �, to propositional logic.

11.1.1 Modal Operators

The first operator □ denotes “always” and takes a formula as its argument.

For example, if p denotes “it rains today”, then □p is a formula of MTL and its

intuitive meaning is “it will rain everyday”.

The second operation � denotes “eventually” and also takes a formula as its

argument. Thus, if p denotes “it rains today”, �p is a formula of MTL and its

intuitive meaning is “it will rain someday”.

Informally, □ states a universal property in the future while � states an exis-

tential property in the future. For example, to specify the statement “if a request

is made to print a file, the file will be printed eventually”, the statement can be

denoted by □(r → �p), where r stands for “request is made” and p for “the file is

printed”.

Using the BNF grammar, the formulas of MTL can be formally defined as

follows:

Definition 11.1.1. Let op be the binary logical operators of propositional logic and

VP be the propositional variables used in the current application, then the formulas
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of MTL can be defined by the following BNF grammar:

〈op〉 ::= ∧ | ∨ | → | ⊕ | ↔
〈VP 〉 ::= p | q | r | s | t

〈Formulas〉 ::= > | ⊥ | 〈VP 〉 | ¬〈Formulas〉 | (〈Formulas〉 〈op〉 〈Formulas〉) |
□〈Formulas〉 | � 〈Formulas〉

Here are some examples of MTL formulas:

(p ∧ □¬q), � (r → (�p ∧ ¬q)), □((p ∧ ¬q) ∨ �r) (□(p ∧ ¬q) ∨ �r)

Note the difference of the last two formulas, where □ applies to the whole formula

in one and only to the first argument of ∨ in the other.

11.1.2 Kripke Semantics

The two modal operators of MTL are directly borrowed from classical modal

logic, where □ is usually read as “necessarily” and � as “possibly”. The first formal

semantics of modal logic is called Kripke frames, after Saul Kripke created it in early

1960s. Kripke semantics (also known as relational semantics or frame semantics)

is a formal semantics for modal logic systems created in the late 1950s by Saul

Kripke and Andre Joyal. It was adapted to temporal logic and other non-classical

systems. The development of Kripke semantics was a breakthrough in the theory of

non-classical logics, because the model theory of such logics was almost non-existent

before Kripke.

As we have known from Chapter 2, an interpretation of a propositional formula

is a mapping of propositional variables to truth values. Given n propositional

variables, we have exactly 2n different interpretations. For example, if we have two

propositional variables, say p and q, then there are four interpretations, I1 = TT (it

means I1(p) = >, I1(q) = >), I2 = TF , I3 = FT , and I4 = FF . Using the notation

from Chapter 2, VP = {p, q} and IVP = {TT, TF, FT, FF}.

Definition 11.1.2. Given a set of propositional variables VP , a Kripke frame is a

directed graph K = (W,R), where W , called states, is a non-empty subset of IVP ,

the set of all interpretations over VP , and R is a binary relation over W .

Example 11.1.3. Let VP = {p, q}, W = IVP = {TT, TF, FT, FF}, and R =

{〈TT, FT 〉, 〈TF, TT 〉, 〈TF, TF 〉, 〈FT, FT 〉, 〈FT, FF 〉, 〈FF, TF 〉}. ThenG = (W,R),

displayed in Figure 11.1.1, is a Kripke frame. 2
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Figure 11.1.1: A graphical display of the Kripke frame

It should be understood that in the discussion, every MTL formula uses the

propositional variables from VP and every state w in a Kripke frame K = (W,R) is

an interpretation of VP . If 〈w,w′〉 ∈ R, we say w′ is a successor of w in K.

Definition 11.1.4. Given a Kripke frame K = (W,R) and a state w ∈ W , an

MTL formula C is true in w of K recursively, denoted by K,w |= A, if one of the

following conditions is true:

1. if C is >;

2. if C ∈ VP and w(C) = >;

3. if C is ¬A and it is not the case that K,w |= A;

4. if C is A ∧B, K,w |= A and K,w |= B;

5. if C is A ∨B and either K,w |= A or K,w |= B;

6. if C is A→ B and K,w |= ¬A ∨B;

7. if C is □A and for every successor w′ of w, K,w′ |= A;

8. if C is �A and for some successor w′ of w, K,w′ |= A.

Otherwise, we say C is false in w.

Example 11.1.5. Consider the Kripke frame in Figure 11.1.1 and the formula

A = p ∧ q → □¬p. A is true in w = FT or FF , because p is false in w. A is true

in w = TF because q is false in w. A is also true in w = TT because □¬p is true

in w′ = FT . For the sams analysis, we can show that B = p ∧ q → □□¬p is true in

every state. However, C = p ∧ q → □□□¬p is false in w = TT . 2
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In modal logic, a Kripke frame specifies the transitions of states (also called

worlds). Necessarilymeans “in all successive states (successors)”, and possiblymeans

“in one of the successors”. In the same way, in MTL, a formula □A is true in the

current state if A is always true in every successor; �A is true in the current state if

A is eventually true in one of the successors. Note that if the current state does not

have any successor, then □A is true but �A is false for any formula A in the current

state.

Definition 11.1.6. Given a Kripke frame K = (W,R), an MTL formula A is true

in K, written K |= A, if for every state w ∈ W , K,w |= A, and we say K is a

Kripke model of A.

A is satisfiable in MTL if A has a Kripke model. That is, there exists a Kripke

frame K such that K |= A.

A is valid in MTL, written |= A, if A is true in every Kripke frame. That is, every

Kripke frame is a model of A.

Example 11.1.5 shows that both p∧ q → □¬p and p∧ q → □□¬p are satisfiable

as they are true in the Kripke frame in Figure 11.1.1. However, this frame is not a

model of p ∧ q → □□□¬p.
Given a MTL formula A, letM(A) denote the set of all Kripke models of A.

Definition 11.1.7. Given two MTL formulas A and B, A and B are equivalent,

written A ≡ B, ifM(A) =M(B).

We say A entails B, or B is a logical consequence of B, written A |= B, ifM(A) ⊆
M(B).

Given a set VP of n propositional variables, the number of choices for W in

a Kripke frame is enormous (22
n − 1) and the number of choices for R is also huge

(2|W |2 for each W ). Hence, it is infeasible to check if a MTL formula is valid by

enumerating all frames. However, all tautologies in propositional logic are valid in

MTL and all major results from propositional logic are still useful here.

Theorem 11.1.8. (a) Substitution Any instance of a valid MTL formula is valid

in MTL. That is, if p is a propositional variable in A and B is any formula, then

A[p ↼ B] is valid whenever A is valid.

(b) Substitution of equivalence For any formulas A, B, and C, where B

is a subformula of A, and B ≡ C, then A ≡ A[B ↼ C].

(c) Equivalence Given two MTL formulas A and B, |= A↔ B iff A ≡ B.

(d) Entailment Given two MTL formulas A and B, |= A→ B iff A |= B.
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The proofs of the above theorem are similar to those for propositional logic

and omitted here.

The proofs of the following theorems are examples of proving a formula is valid

or equivalent to another formula. Later, we will provide some proof techniques based

on semantic tableau.

Theorem 11.1.9. (Duality) ¬□p ≡ �¬p.

Proof. For any Kripke frame K = (W,R), if K is a model of ¬□p, then for every

state w ∈ W , ¬□p is true in w. Equivalently, □p is false in w. That means there

exists a successor w′ of w such that p is false in w′, or ¬p is true in w′. Hence, �¬p
is true in w. So K is a model of �¬p.

On the other hand, if K is not a model of ¬□p, then there exists a state w ∈ W

such that ¬□p is false and □p is true in w. By definition, for every successor w′ of

w, p must be true in w′. Hence ¬p is false in every successor of w and �¬p is false

in w. So K cannot be a model of �¬p. 2

Applying substitution and equivalence, we can easily deduce from the above

theorem that □¬p ≡ ¬ � p and □¬p↔ ¬ � p is valid.

Example 11.1.10. (□p→ p) ≡ (¬p→ �¬p). 2

The two formulas can be transformed by logical equivalence to the same nega-

tion normal form, i.e., p ∨ �¬p. We will discuss negation normal form in the next

section.

Theorem 11.1.11. Distribution |= □(p→ q)→ (□p→ □q).

Proof. □(p→ q)→ (□p→ □q) is logically equivalent to

(1) ¬□(¬p ∨ q) ∨ ¬□p ∨ □q.

Applying the duality theorem to (1), we obtain another equivalent formula

(2) � (p ∧ ¬q) ∨ �¬p ∨ □q.

For any Kripke frame K = (W,R) and any w ∈ W , if (2) is false in w, that

is, �(p ∧ ¬q), �¬p, and □q are all false in w, then w must have some successors

(otherwise, □q is true in w) and for any successor w′ of w, q must be true in w′

because of □q. p must be true in w′ because of �¬p. Hence, p∧¬q is true in w′ and

�(p ∧ ¬q) is true in w, a contradiction. Thus, (2) must be true in w and thus true

in every Kripke frame. 2
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11.1.3 Restrictions and Limitations

Let r denotes “it rains”, then the intuitive meaning of □r is “it always rains”.

Given a Kripke frame K = (W,R), if □r is true in a state w ∈ W , we know r will

be true in any successor of w. What is the truth value of r in the state w? If □

means “always”, should r be true now and then in every state, including w? That

is, we ask that □A→ A be an axiom of MTL.

We say a Kripke frame K = (W,R) is reflexive if every state w ∈ W is a

successor of itself, that is, 〈w,w〉 ∈ R (called loop in graph theory).

Theorem 11.1.12. (Reflexivity) A Kripke frame K is reflexive iff K is a model

of □A→ A for any formula A.

Proof. Let K = (W,R) be reflexive. If □A → A is false in K, then there exists

w ∈ W such that □A is true but A is false in w. Since □A is true, A is true in every

successor of w. However, w is also a successor of w because K is reflexive. So A is

true in w, too. This is a contradiction to □A→ A being false in K.

On the other hand, if K = (W,R) is not reflexive. Pick a state w ∈ W

such that w is not a successor of itself. Let Iw be the propositional interpretation

associated with w. If we view Iw as a conjunction of literals each of which is true

in w, then ¬(Iw) is a clause which is false in w. This clause will be true in every

interpretation (including all successors of w) other than w. Thus, □¬(Iw) is true in

w. Let A be ¬(Iw), then □A→ A is false in w. 2

The above theorem plays a dual role: By restricting Kripke frames to reflexive

ones, we obtain the validity of □A→ A in these frames; on the other hand, if □A→ A

is given as an axiom (a formula assuming to be true), we exclude all non-reflexive

Kripke frames as model candidates.

We know from Kripke frames that if □p is true in the current state w, then

p will be true in all the successors of w. What about the truth value of p in the

successors of the successors of w? If □ means “always”, should p be true in them,

too? Essentially, we ask □A → □□A to be true in every state for every formula A.

Let us say a Kripke frame K = (W,R) be transitive if R is transitive: for any states

u, v, w, 〈u, v〉 ∈ R and 〈v, w〉 ∈ R imply that 〈u,w〉 ∈ R. The following theorem

tells us the relationship between the transitivity and the formula □A→ □□A.

Theorem 11.1.13. (Transitivity) A Kripke frame K is transitive iff K is a model

of □A→ □□A for any formula A.

Proof. Let K = (W,R) be reflexive. If □A → □□A is false in K, then there exists

w ∈ W such that □A is true but □□A is false in w. The latter implies that there

must exist a successor w′ of w and a successor w′′ of w′ such that A is false in w′′.
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Since □A is true, A is true in every successor of w. However, w′′ is also a successor

of w because K is transitive. So A is true in w′′, too. This is a contradiction to

□A→ □□A being false in K.

On the other hand, ifK = (W,R) is not reflexive. Pick three states w1, w2, w3 ∈
W such that w2 is a successor of w1, w3 is a successor of w2 but not a successor of

w1. Let I3 be the propositional interpretation associated with w3. If we view I3 as

a conjunction of literals each of which is true in w3, then ¬(I3) is a clause which

is only false in w3 but true in every interpretation (including all successors of w1)

other than w3. Let A be ¬(I3), then A is false in w3, □A is false in w2 and □□A is

false in w1. Since □A is true in w1, □A→ □□A is false in w1. 2

Combing the above two theorems, we can conclude that if a Kripke frame is

both reflexive and transitive, then □A↔ □□A will be true in this frame.

The necessitation rule of modal logic states that if A is a theorem, then so

is □A. That is, if A can be proved to be true now, the same proof can be used

everywhere. The axiom for expressing the necessitation rule is the formula A→ □A.

The Kripke models of A → □A are those Kripke frames K = (W,R) in which the

only successor of each state is itself, i.e., if 〈w, v〉 ∈ R, then w = v. Such frames

are called discrete. Obviously, the only edges allowed in a discrete frame are loops

(i.e., 〈w,w〉) and such frames are not very useful. Every reflexive frame is discrete,

but the reverse may not be true, as some loop may be missing in a discrete frame.

Besides reflexivity, transitivity, and discreteness, there are many other restric-

tions on the relations in a Kripke frame, such as transitivity, symmetry, dense, etc.

There are axioms corresponding to these restrictions.

Semantics is useful for a logic only if the semantic consequence reflects its

syntactical counterpart, i.e., the result of the proof system for the logic. It is vital

to know which modal logics are sound and complete with respect to a set of Kripke

frames. Let C be the set of Kripke frames satisfying some properties. We define

Thm(C) to be the set of all formulas that are true in C. A proof system in a

modal logic is sound with respect to C if every formula proved to be true belongs

to Thm(C); it is complete with respect to C if every formula in Thm(C) can be

proved to be true. There are over a dozen of proof systems for modal logic and the

interested reader may refer to a textbook on modal logic.

Temporal logic always has the ability to reason about a timeline, which is linear

by nature. The Kripke semantics use directed graphs K = (W,R) and are suitable

for reasoning about multiple timelines, as each state allows multiple successors. We

may put restrictions over R so that R acts like a linear relation: Each state has at

most one successor. This restriction can work with reflexivity by allowing each state

having at most one successor other than itself. However, this restriction does not
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work well with transitivity because transitivity wants a state to include successors

of successors as its own successors. Moreover, the number of states in a Kripke

frame is bound by the number of propositional interpretations. We cannot model

a timeline of infinite length (other than a cycle in the graph). Hence, we need

semantics different from Kripke frames for linear temporal logic; temporal logic

based on Kripke frames can be viewed as a branching logic.

11.2 Linear Temporal Logic

Linear temporal logic (LTL) or linear-time temporal logic is a modal temporal

logic with modalities referring to time. LTL was first proposed for the formal

verification of computer programs by Amir Pnueli in 1977. In LTL, one can encode

formulas about the future of paths, e.g., a condition will eventually be true, a

condition will be true until another fact becomes true, etc. For simplicity, we will

define LTL as an extension of propositional logic. In terms of expressive power,

LTL is a fragment of first-order logic.

In LTL, □ is interpreted as “always” and � as “eventually”. In addition to these

two common modal operators, we have the third operator ◦ which is interpreted as

“next” tick (or step). Like □ and �, ◦ takes a formula as argument: If r means ”it

rains today”, then ◦r means “it will main tomorrow”, if we interpret that a tick

is a day. The operator ◦ is an important part of LTL, which has been invented

for the formal verification of concurrent programs. However, ◦ is rarely used in the

specification of concurrent programs, because not much are said about the execution

of programs in the next step. Furthermore, we want a correctness statement to hold

regardless of how the interleaving selects a next operation. Therefore, properties

are almost invariably expressed in terms of □ and �, not in terms of ◦.
The formal definition of the LTL is given as the following BNF grammar:

〈op〉 ::= ∧ | ∨ | → | ⊕ | ↔
〈VP 〉 ::= p | q | r | s | t

〈Formulas〉 ::= > | ⊥ | 〈VP 〉 | ¬〈Formulas〉 | (〈Formulas〉 〈op〉 〈Formulas〉) |
□〈Formulas〉 | � 〈Formulas〉 | ◦ 〈Formulas〉

Here are some examples of LTL formulas:

(◦p ∧ □¬q), � (◦r → (�p ∧ ¬q)), □((p ∧ ¬q) ∨ ◦ � r)
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11.2.1 Timeline as Interpretation Sequence

The semantics of LTL will be defined by an infinite sequence of propositional

interpretations so that a propositional variable has a fixed truth value at any position

(called state) in the sequence. Formally, an interpretation sequence σ is a mapping

from the set of natural numbers to the set of all propositional interpretations IVP :

σ : {0, 1, 2, ...} −→ IVP

For any i ≥ 0, let σ(i) = si. Then σ can be written as a sequence of interpretations:

σ = s0s1s2 · · ·

where si = σ(i) ∈ IVP for any i ≥ 0 and i is called a state of σ and si is the

interpretation at state i. For i ≥ 0, we use σ≥i to denote the suffix of σ by removing

the first i interpretations from σ:

σ≥i = t0t1t2 · · ·

where t0 = si, t1 = si+1, t2 = si+2, .... Obviously, σ≥0 = σ, σ(0) = s0, and σ =

σ(0)σ≥1. We say σ≥1 is the immediate suffix of σ.

Definition 11.2.1. Given an interpretation sequence σ, an LTL formula C is said

to be true in σ recursively, denoted by σ |= A, if one of the following conditions is

true:

1. if C is >;

2. if C is ¬A and it is not the case that σ |= A;

3. if C is A ∧B, σ |= A and σ |= B;

4. if C is A ∨B and either σ |= A or σ |= B;

5. if C is A→ B and σ |= ¬A ∨B;

6. if C is ◦A and σ≥1 |= A;

7. if C is □A and for all i ≥ 0, σ≥i |= A;

8. if C is �A and there exists i ≥ 0, σ≥i |= A.

Otherwise, we say C is false in σ.
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From the above recursive definition, we can see that a formula ◦A is true in

an interpretation sequence σ iff A is true in σ≥1, the sequence obtained by removing

the first item from σ. A formula □A is true in σ iff A is always true in every suffix of

σ; �A is true in σ iff A is eventually true in one suffix of σ. In contrast, in the Kripke

semantics, □A is true at the current state iff A is true in every successor state. Note

that the above definition of the truthfulness can be extended to sequences of finite

length. If σ is an empty sequence, for any formula LTL A, □A is true in σ but ◦A
and �A are false in σ.

For �□p to be true in σ, we need to find a state in σ such that p is true

in every interpretation of σ from that state. That means, only a prefix of σ may

contain a finite number of interpretations which falsify p; p must be true in every

interpretation not in the prefix. That is, there exists i ≥ 0, for all j ≥ i, σ(j)(p) = >.
For □ � p to be true in σ, we just need p to be true in one of the interpretations of

any suffix of σ: For all i ≥ 0, there exists j ≥ i, σ(j)(p) = >. Thus, in first-order

language, σ for �□p satisfies ∃i∀jR(i, j), while σ for □�p satisfies ∀i∃jR(i, j), where

R(i, j) denotes the formula i ≥ 0 ∧ j ≥ i ∧ σ(j)(p) = >. From the view of the

first-order formulas, □ � p is not equivalent to �□p.

Example 11.2.2. For the formula □ � p ∧ □ � ¬p, we have a sequence σ where the

truth value of p is alternating in σ. □�p is true in σ because p is true in every suffix

of σ. □�p is also true in σ because ¬p is true in every suffix of σ. Thus □�p∧□�¬p
is true in σ. Note that �□p is not true in σ, another evidence □ � p and �□p are not

equivalent. 2

Example 11.2.3. �□p ∧ �□¬p is not true in any sequence σ, because �□p requires

p be true everywhere in one suffix of σ. �□¬p requires p be false everywhere in one

suffix of σ. The two conditions cannot be met at the same time. 2

Definition 11.2.4. A LTL formula A is satisfiable if there exists an interpretation

sequence σ such that σ |= A. We say σ is a model of A.

A is valid in LTL, written |= A, if every sequence of interpretations is a model of

A.

Both �□p and □ � p are satisfiable but not valid. From Example 11.2.3, □ � p∧
□ � ¬p is satisfiable but not valid. �□p ∧ �□¬p is unsatisfiable and its negation is

valid.

Theorem 11.2.5. For any LTL formula A,

(a) (reflexivity) |= □A→ A;
(b) (transitivity) |= □A→ □□A.
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Proof. (a) To show □A→ A is valid in LTL, consider any interpretation sequence σ

for A. If □A→ A is false in σ, then □A is true and A is false in σ. □Ameans A is true

at every state of σ, including state 0, i.e., A is true in σ. That is a contradiction.

Hence □A→ A is true in σ.

The proof of (b) is similar to that of (a). 2

Note that neither □A → A nor □A → □□A is valid in MTL. Theorem 11.1.12

states that □A → A is true in every reflexive Kripke model and Theorem 11.1.13

states that □A → □□A is true in every transitive Kripke model. The semantics of

interpretation sequences is not a special case of Kripke semantics as Kripke frames

have no ways to specify the unique path explicitly defined by an interpretation

sequence. On the other hand, interpretation sequences are not expressive enough

to specify various relations among propositional interpretations.

Given an LTL formula A, letM(A) denote the set of all models of A.

Definition 11.2.6. Given two LTL formulas A and B, A and B are equivalent,

written A ≡ B, ifM(A) =M(B).

We say A entails B, or B is a logical consequence of B, written A |= B, ifM(A) ⊆
M(B).

Theorem 11.2.7. For any formula LTL formula A, (a) □A |= ◦A; (b) ◦ A |= �A;
and (c) □A |= �A.

The proofs of this theorem are straightforward, similar to the proof of (a) of

Theorem 11.2.5.

Like MTL, all tautologies in propositional logic are valid in LTL and all major

results from propositional logic are still useful here.

Theorem 11.2.8. (a) Substitution Any instance of a valid LTL formula is valid

in LTL. That is, if p is a propositional variable in A and B is any formula, then

A[p ↼ B] is valid whenever A is valid.

(b) Substitution of equivalence For any formulas A, B, and C, where B

is a subformula of A, and B ≡ C, then A ≡ A[B ↼ C].

(c) Equivalence Given two LTL formulas A and B, |= A↔ B iff A ≡ B.

(d) Entailment Given two LTL formulas A and B, |= A→ B iff A |= B.

The proofs of the above theorem are similar to those for propositional logic

and omitted here.

From Theorem 11.2.5 (a) and (b), it is easy to deduce that □A → □□A ≡
□A→ □□A.
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11.2.2 Properties of LTL

The proofs of the following theorems are examples of proving a formula is

valid or equivalent to another formula. In the next section, we will provide some

proof techniques based on semantic tableau. The operator ◦ commutes with □, �,
and ¬, but □ and � do not commute with each other, as shown in Example 11.2.2.

Theorem 11.2.9. (Commutativity)

(a) □ ◦ p ≡ ◦□p;
(b) � ◦ p ≡ ◦ � p;
(c) ¬ ◦ p ≡ ◦¬p.

Proof. The proofs of (a) and (b) are similar to that of (c): Given any interpretation

sequence σ, σ is a model of ¬ ◦ p iff ◦p is false in σ; ◦p is false in σ iff p is false in

σ≥1, or equivalently, ¬p is true in σ≥1; ¬p is true in σ≥1 iff ◦¬p is true in σ. 2

Theorem 11.2.10. (Duality)

(a) ¬□p ≡ �¬p;
(b) ¬ � p ≡ □¬p.

Proof. (a) Given any interpretation sequence σ, ¬□p is true in σ iff □p is false in

σ; □p is false in σ iff there exists i ≥ 0, σ(i)(p) = ⊥, or equivalent, σ(i)(¬p) = >.
There exists i ≥ 0, σ(i)(¬p) = > iff �¬p is true in σ.

(b) Replace p by ¬q in (a), and apply ¬¬q ≡ q, we have ¬ � q ≡ □¬q. 2

In Chapter 2, we introduced a concept called “negation normal form”, which

is a propositional formula where every argument of ¬ is a propositional variable.

This concept applies to formulas of LTL as well as MTL. Applying the two theorems

above, we have the following theorem.

Theorem 11.2.11. For every LTL formula A, there exists an LTL formula B such

that A ≡ B and B is in negation normal form.

Example 11.2.12. Let us transform ¬(◦ ∨ p→ □q) into negation normal form:

¬(◦ � p ∨ □q ≡ ¬ ◦ �p ∧ ¬□q
≡ ◦¬ � p ∧ ¬□q
≡ ◦□¬p ∧ �¬q

2
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Example 11.2.13. To show that �□p→ □�p is valid, we transform ¬(�□p→ □�p)
into negation normal form:

¬(�□p→ □ � p) ≡ �□p ∧ ¬□ � p
≡ �□p ∧ �¬ � p
≡ �□p ∧ �□¬p

It is shown in Example 11.2.3 that �□p ∧ �□¬p is unsatisfiable. Thus, �□p → □ � p
is valid.

On the other hand, the negation normal form of ¬(□�p→ �□p) is □�p∧□�¬p,
which is satisfiable (Example 11.2.2). Thus, □ � p→ �□p is not valid. 2

Formulas in propositional logic can be transformed into conjunctive normal

form (CNF) or disjunctive normal form (DNF). However, this is possible neither in

LTL nor in MTL. Like ∀ in first-order logic, □ does not distribute over ∨; like ∃, �
does not distribute over ∧.

Theorem 11.2.14. (Distributivity)

(a) □(p ∧ q) ≡ □p ∧ □q;
(b) �(p ∨ q) ≡ �p ∨ �q;
(c) ◦(p ∧ q) ≡ ◦p ∧ ◦q;
(d) ◦(p ∨ q) ≡ ◦p ∨ ◦q.

Proof. (a) For any interpretation sequence σ, □(p ∧ q) is true in σ iff for any i ≥ 0,

σ(i)(p ∧ q) = >. That is, σ(i)(p) = > and σ(i)(q) = > for any i ≥ 0. This is the

same as □p and □q, respectively.

(b) can be obtained from (a) by duality. The proofs of (c) and (d) are left as

exercise. 2

Example 11.2.15. To show that □(p ∨ q) is not equivalent to □p ∨ □q, consider an

interpretation sequence σ where p is true at each odd-number state of σ and q is

true at each even-number state of σ. Then p ∨ q is true at every state of σ, hence

□(p ∨ q) is true in σ. It is easy to see that neither □p nor □q is true in σ. Note that

□p ∨ □q |= □(p ∨ q). 2

Theorem 11.2.16. (Absorption)

(a) □□p ≡ □p;
(b) � � p ≡ �p;
(c) □ � □p ≡ �□p;
(d) �□ � p ≡ □ � p.
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Proof. The proofs of (a) and (b) are straightforward. (c) can be obtained from (d)

by duality. Here is the proof of (d): For any interpretation sequence σ, �□ � p is

true in σ iff there exists i ≥ 0, □ � p is true in σ≥i. □ � p is true in σ≥i iff for all

j ≥ i, �p is true in σ≥j. �p is true in σ≥j iff �p is true in σ≥k for any k ≥ 0, which

is equivalent to □ � p is true in σ. 2

The above theorem allows us to compress series of □ and � operators to no

more than two. They are useful in the simplification of LTL formulas.

11.3 Semantic Tableaux for LTL

The method of semantic tableaux introduced in Chapter 2 is a decision pro-

cedure for satisfiability in propositional logic. In this section, we may extend this

method for LTL by adding rules for the modal operators. The extension for MTL

is similar. LTL.

The construction of an LTL model is more complex than that it is for a propo-

sitional model because a propositional model is a single propositional interpretation;

an LTL model is a sequence of interpretations. We need to find an interpretation

for each state in the sequence. Therefore, we need to group nodes in the semantic

tableau by states. For example, the β-rule for ∨ will generate two children for the

node containing p ∨ q, and these two children belong to the group of their parent.

On the other hand, ◦p will generate a child node which belongs to a different group

associated with the next state of the current state.

Like propositional logic, the extended tableau method takes an input formula

A, create the initial node containing A, and then applies the rules repeatedly to any

leaf node to generate its successors. The tableau rules for LTL consist of the rules

for propositional logic shown in Section 3.1.1, plus a new α-rule for □, a new β-rule

for �, a new type rule called X-rule for ◦. To simplify the discussion, we will apply

some simplification rules to the initial formula. The simplification rules include the

following rewrite rules and some rules involving the constants > and ⊥ (such as

⊥ ∨ A→ A and □> → >).
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(1) ¬¬A → A.
(2) ¬(A ∧B) → ¬A ∨ ¬B;
(3) ¬(A ∨B) → ¬A ∧ ¬B;
(4) ¬(A→ B) → A ∧ ¬B;
(5) ¬(A↔ B) → (A ∧ ¬B) ∨ (¬A ∧B);
(6) ¬□A → �¬A;
(7) ¬ � A → □¬A;
(8) □ ◦ A → ◦□A;
(9) ¬ ◦ A → ◦¬A;
(10) � ◦ A → ◦ � A;

The last three rules are the commutativity rules which move ◦ outward; the
other rules move ¬ inward. These simplification rules are based on logical equiva-

lences and preserve the equivalence relation between the two formulas before and

after the application of a rewrite rule. The rules will transform the initial formula

to negation normal forms where ¬,∨,∧, ◦, □, � are the only operators.

11.3.1 Rules for Modal Operators

In Chapter 3, we showed how a tableau is created by creating the initial node

of the input formula and applying α and β rules to a formula in a node to create

successor nodes. A α-rule creates one successor and a β-rule creates two successors.

Let n be the current node and F (n) be the set of formulas contained in n. If a

α-rule can replace A by {B,C} for A ∈ F (n), then the successor of n, denoted n′,

is created and F (n′) = F (n) − {A} ∪ {B,C}. If a β-rule can replace A by B and

C for A ∈ F (n), then two successors of n, denoted n′ and n′′, are created such that

F (n′) = F (n)− {A} ∪ {B} and F (n′′) = F (n)− {A} ∪ {C}.
As in Chapter 3, given a tableau, we say a node is closed if it contains a pair of

complementary literals. A node is open if it is not closed and contains only literals.

A node is expandable if it is a leaf node which is neither closed nor open. Expandable

nodes always contain a formula which allows one of α or β rules to apply. For LTL,

we have a new type of nodes, called X-nodes.

Definition 11.3.1. (X-formula, X-node, and X-rule) If the root symbol of an LTL

formula A is ◦ and no rules can apply to A, A is called a next formula, or X-formula

A node of a semantic tableau is called an X-node if each formula in the node

is either a literal or a X-formula.

Let F be the formulas in a X-node n:

F (n) = {A1, A2, ..., Ak, ◦B1, ◦B2, ..., ◦Bm},
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where k ≥ 0, m ≥ 1, and {A1, A2, ..., Ak} is a set of consistent literals, then the

X-rule will generate an interpretation, which makes all A1, A2, ..., An true, for the

current state and create a new node n′, where F (n′) == {B1, B2, ..., Bm} for the

next state.

Example 11.3.2. Given the input formula ¬p∧◦p, the initial node contains {¬p∧
◦p}. Applying α-rule for ∧, we arrive at the second node which contains {¬p, ◦p}.
Here ¬p is a literal, ◦p is an X-formula, and no rules can apply, except the X-

rule. The X-rule will generate the third node containing p and this node belongs

to a different state. From the second node, we create s0 = {¬p}; from the third

node, we create s1 = {p}. The interpretation sequence created from this tableau is

s0, s1, s1, s1, ..., which is a model of ¬p ∧ ◦p. 2

By definition, the X-rule can apply to X-nodes only. Neither simplification

rules, nor α and β rules can apply to any formula in X-nodes. More application

examples of X-rules will be given shortly, after presenting the rules for □ and �.
To construct a model for □A, we need to find an interpretation sequence σ

such that A is true in every suffix of σ. That is, A is true in σ(0) and □A must be

true in all subsequent states. That is, instead of □A, we will construct a model for

A ∧ ◦□A. Intuitively, if ◦ represents “tomorrow”, then A is true everyday iff A is

true today and every tomorrow.

Theorem 11.3.3. (Induction)

(a) □A ≡ A ∧ ◦□A;
(b) �A ≡ A ∨ ◦ � A.

Proof. (a) For any interpretation sequence σ, A ∧ ◦□A is true in σ iff A is true in

σ≥0 and □A is true in σ≥1. □A is true in σ≥1 iff A is true in σ≥i for every i ≥ 1.

Thus A must be true in σ≥i for every i ≥ 0, which is exactly “□A being true in σ”

by definition.

b is the dual case of (a). 2

Part (a) of the above theorem serves as an inductive tool for constructing a

model of □A: A is the base case and ◦□A is the inductive case. Once both cases

are finished, we obtain a model for □A. Similarly, part (b) provides a tool for

constructing a model for �A: A is the base case; if a model of A is found, we use it

as a model of �A. Otherwise, we seek a model from the inductive case and try to

find a model of ◦ � A.
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Definition 11.3.4. The α-rule for □A and the β-rule for �A are given below:

α α1, α2

□A A, ◦□A
β β1 β2

�A A ◦ � A

The soundness of these two rules is ensured by Theorem 11.3.3.

The construction of semantic tableaux for LTL is similar to that of proposi-

tional logic by repeating α-, β-, and X-rules to open nodes, until no rules can apply.

However, there are one minor and one major differences. The minor difference is

that we apply the simplification rules first to the input formula to get a negation

normal form before the start of tableau construction.

The major difference is that we need to check if a new node contains the same

set of formulas as an existing node. If yes, instead of creating a new node, we create

a link to the existing node. Because of these links, the created tableau is still a

directed graph but no longer a tree. This graph may contain cycles and each node

has at most two successors (i.e., two outgoing links). The termination of the tableau

construction depends on this major difference as a tableau may contain paths of

infinite length.

Example 11.3.5. The tableau for □ � p is shown below, where the X-nodes are

boxed.
n0 : □ � p

↓
n1 : �p, ◦□ � p
↙ ↘

n2 : p, ◦□ � p n3 : ◦ � p, ◦□ � p
↓ ↓

to n0 n4 : �p, □ � p
↓

to n1

2

Given a tableau as directed graph, we still call a node without outgoing links

a leaf, which is either closed, open, or expandable. Given two nodes n and n′ of a

directed graph, n′ is said to be reachable from n if there exists a path from n to n′

in the graph.

For any node n of a tableau, let F (n) denote the set of formulas appearing in

n. As in Chapter 3, we assume that F (n) ≡
∧

A∈F (n) A, that is, a set of formulas is

equivalent to the conjunction of the formulas in the set.

Theorem 11.3.6. (a) The construction of a tableau for an LTL formula always

terminates.
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(b) If node n′ is derived from n by a α-rule, then F (n) ≡ F (n′); if n′ and n′′

are derived from n by a β-rule, then F (n) ≡ F (n′) ∨ F (n′′).

(c) If node n′ is derived from n by X-rule, then an interpretation sequence σ′ is

a model of F (n′) iff σ = s0σ
′ is a model of F (n), where s0 ∈ IVP is an interpretation

which makes every literal of F (n) true.

Proof. (a) The construction stops when no expandable nodes are available. If the

construction does not stop, then there will be an infinite path of nodes in the tableau

such that each node contains a different set of formulas. Hence the collection of

formulas from these nodes is infinite. However, the rules used in the construction

can only generate subformulas of the original formula, or adding at most one ◦
operator to them. In other words, only a finite number of formulas can be generated.

This is a contradiction.

(b) All the α and β rules used in the construction preserve the equivalence

relation.

(c) When the X-rule applies to n, F (n) = {A1, A2, ..., Ak, ◦B1, ◦B2, ... ◦ Bm},
A1, A2, ..., Ak are literals and F (n′) = {B1, B2, ...Bm}. By the assumption, F (n) ≡
(
∧

1≤i≤k Ai) ∧ ◦(
∧

1≤j≤m Bj). Let σ′ be any interpretation sequence and s0 be an

interpretation such that s0(Ai) = > for 1 ≤ i ≤ k. Then σ′ is a model of F (n′),

i.e.,
∧

1≤j≤m Bj) is true in σ′, iff sσ′ is a model of ◦(
∧

1≤j≤m Bj) for any s ∈ IVP , or

σ = s0σ
′ is a model of (

∧
1≤i≤k Ai)∧◦(

∧
1≤j≤m Bj), since s0 is a model of

∧
1≤i≤k Ai.

That is, σ = s0σ
′ is a model of F (n). 2

Part (a) of the above theorem tells that the construction of a tableau for an

LTL formula will terminate such that every leaf is either closed or open, without

expandable nodes. If the tableau has an open node, parts (b) and (c) tell us how to

construct a model (for the input formula in the initial node) from this open node

bottom-up, thus have shown that the original formula is satisfiable. What happens

when a tableau has no open nodes? We will discuss this case next.

11.3.2 Deciding Satisfiability by Tableaux

We have seen how a tableau can be constructed for every LTL formula. For

propositional logic, a formula is satisfiable iff its tableau has an open node. For

LTL, at least one side is true.

Theorem 11.3.7. If the tableau for an LTL formula A has an open node, then A

is satisfiable.

Proof. Let (n0, n1, ..., nm) be a simple path from the initial node n0 to the open node
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nm in the tableau. We show that F (nj) has a model σj for j = m,m− 1, ..., 1, 0 by

induction.

For the base case when j = m, F (nm) is a set of consistent literals. Let sm be

the interpretation which makes every literal of F (nm) true and σm = s+m, where s+m
means we repeat sm forever, then σm is a model of F (nm).

As induction hypothesis, we assume that σj is a model of F (nj). If nj is a

successor of nj−1 by either α-rule or β-rule, by Theorem 11.3.6 (b), σj−1 = σj is also

a model of F (nj−1). If nj is the successor of nj−1 by the X-rule, by Theorem 11.3.6

(c), σj−1 = sj−1σj is a model of F (nj−1), where sj−1 is an interpretation made from

the literals in F (nj−1).

Finally when j = 0, σ0 is a model of F (n0) = {A}. Thus A is satisfiable. 2

For LTL, a tableau may not have an open node, as seen in Example 11.3.5.

That tableau does not have closed nodes, either. How can we tell the input formula

of the tableau is satisfiable? Let us look at another example.

Example 11.3.8. To show that ◦p∧�¬p is satisfiable, we may construct a model by

semantic tableau. Using the tableau rules, we obtain the following tableau, where

X-nodes are boxed.

n0 : ◦p ∧ �¬p
↓

n1 : ◦p, �¬p
↙ ↘

n2 : ◦p,¬p n3 : ◦p, ◦ � ¬p
↓ ↓

n4 : p n5 : p, �¬p
↙ ↘

n6 : p,¬p n7 : p, ◦ � ¬p
× ↓

n8 : �¬p
↙ ↘

n9 : ¬p n10 : ◦ � ¬p
↓

to n8

A model is a sequence of interpretations and an interpretation can be created

either from an open node or X-node. For instance, consider the path (n0, n1, n2, n4):

from n2, we create s0 = {¬p}; from n4, we create s1 = {p}. The first two interpreta-

tions of our model are s0 and s1, respectively. By repeating s1, we obtain an infinite

interpretation sequence denoted by s0s
+
1 , where s+1 means we repeat s1 forever. It
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is easy to check that s0s
+
1 is a model of ◦p∧ �¬p. Since the interpretations after s1

does not affect the truth value of p, let s2 denote an interpretation where p takes any

value, then a general representation of the models from this path is s0s1s
∗
2, where

s∗2 means we can repeat s2 any finite number of times.

Consider another path ending with an open node:

(n0, n1, n3, n5, n7, n8, n9)

where n3 and n7 are X-nodes and n9 is open. n3 does not specify the truth value

of p, and we name the interpretation as s2 where p can take any truth value. The

interpretations created from n7 and n9 are s0 = {p} and s1 = {p}, respectively. The
model created from this path is s2s1s0s2

∗.

Consider another path

(n0, n1, n3, n5, n7, n8, n10)

where n3, n7, and n10 are X-nodes. If the interpretations created from them always

make p true, then no model can be found from this path. On the other hand, if the

path is

(n0, n1, n3, n5, n7, n8, n10, n8, n9),

the model from this path is s2s1s2s0s2
∗. If we repeat n8 and n10 a couple of times,

then all of the models from this path can be represented by s2s1s
∗
2s0s2

∗.

In fact, all the models of ◦p∧�¬p can be denoted by s0s1s
∗
2∪s2s1s∗2s0s∗2. Each

model corresponds to some path in the tableau. 2

The above example tells us that when there is an open node, we can construct

a model for the input formula. When the path ends with a cycle, a model may or

may not be constructed.

Example 11.3.9. Looking back at the tableau in Example 11.3.5: It has no open

nodes. If we pick the cycle (n0, n1, n2), let s1 = {p} be the interpretation derived

from the X-node n2, then s+1 is a model of the input formula □ � p.
Let us look the path (n0, n1, n3, n4), where the last three nodes are in a cycle.

The interpretation created from n3 does not care about the truth value of p and we

denote it by s2, then s+2 is not a model.

On the other hand, consider the path

(n0, n1, n2, n0, n1, n3, n4).

The sequence (s1s2)
+ is a model of □ � p, while the sequence s1s

+
2 is not a model.

In other words, we need to repeat altogether all the interpretations generated from

the nodes in a cycle.

Note that all the models of □�p can be denoted by the sequence (s1s2∗)+. 2
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The above examples show that some paths ending with a cycle generate models

and some don’t. Our purpose of using tableaux is to decide if the input formula is

satisfiable or not. A model is just an evidence that the input formula is satisfiable.

If a tableau has an open node, we know the input formula is satisfiable because a

model can be constructed from the path which connects the initial node and the

open node. If the tableau has no open nodes, we define below a marking mechanism

to check effectively if the input formula is satisfiable or not.

Definition 11.3.10. Given a tableaux which has no expandable nodes. A node n is

marked dead if one of the following conditions is true:

1. n is closed;

2. all successors of n are marked dead; or

3. for any formula �A ∈ F (n), there is no node n′ reachable from n and A ∈
F (n′).

In the third case, the reachable condition is checked among the nodes which

are not marked dead. That is, if a node is marked dead, it cannot be used in any

path. Node n is marked dead because it contains an unfulfilled �A: �A is true in

a sequence σ iff A is true in a suffix of σ. If A does not appear in any node n′

reachable from n, then it is impossible to construct such a suffix of σ such that σ is

a model of F (n).

Example 11.3.11. To show that □(p∧ q)→ □p is valid, we show that its negation

is unsatisfiable by semantic tableau. The negation normal form of ¬(□(p∧ q)→ □p)

is □(p ∧ q) ∧ �¬p, whose tableau is given below:

n0 : □(p ∧ q) ∧ �¬p
↓

n1 : □(p ∧ q), �¬p
↓

n2 : p ∧ q, ◦□(p ∧ q), �¬p
↓

n3 : p, q, ◦□(p ∧ q), �¬p
↙ ↘

n4 : p, q, ◦□(p ∧ q),¬p n5 : p, q, ◦□(p ∧ q), ◦ � ¬p
× ↓

to n1
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For �¬p ∈ F (n1), there is no node reachable from n1. Thus, n1 is marked dead. n0

is marked dead because its successor is marked dead. In fact, every node in this

tableau can be marked dead. For instance, n5 is marked dead because its successor

is marked dead. 2

Example 11.3.12. For the tableau given in Example 11.3.5, �p appears in n4.

Since n2 is reachable from n4 through the path (n4, n1, n2), n4 cannot be marked

dead. 2

Algorithm 11.3.13. The algorithm satisfiabilityByTableau takes an LTL formal A

as input and returns “satisfiable” if A is satisfiable; otherwise returns “unsatisfi-

able”.

proc satisfiabilityByTableau(A)

1. Create a tableau for A:

1.1 Create the initial node that contains A;

1.2 Apply the α, β, and X-rules until no expandable nodes exist.

2. Decide if A is satisfiable:

2.1 If the tableau has an open node, return “satisfiable”;

2.2 Apply Definition 11.3.10 until no nodes can be marked dead;

2.3 If the initial node is marked dead, return “unsatisfiable”;

2.4 Otherwise return “satisfiable”;

Although the algorithm returns only “satisfiable” or “unsatisfiable”, we can

still construct a model from a path of the tableau if the algorithm returns “satisfi-

able”, as illustrated by the following examples.

Example 11.3.14. To show that �p ∧ �¬p is satisfiable, we construct its semantic
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tableau.

n0 : �p ∧ �¬p
↓

n1 : �p, �¬p
↙ ↘

n2 : p, �¬p n3 : ◦ � p, �¬p
↙ ↘ ↙ ↘

n4 : p,¬p n5 : p, ◦ � ¬p n6 : ¬p, ◦ � p n7 : ◦ � p, ◦ � ¬p
× ↓ ↓ ↓

n8 : �¬p n9 : �p to n1

↙ ↘ ↓ ↘
n10 : ¬p n11 : ◦ � ¬p n12 : p n13 : ◦ � p

↓ ↓
to n8 to n9

For �p ∈ F (n1), either n5 or n12 contains p; for �¬p ∈ F (n1), either n6 or n10

contains ¬p. All the four nodes are reachable from n1. n0 cannot be marked dead,

so the algorithm will return “satisfiable”.

Various models can be constructed from this tableau, depending on which path

we choose in the tableau. Let s0 = {p}, s1 = {¬p}, and p2 denotes an interpretation

where we do not know the truth value of p.

1. (n0, n1, n2, n5, n8, n10): The derived model is s0s1s
∗
2, where s0 is derived from

n5 and s1 from n10. s
∗
2 is added at the end because n10 is open.

2. (n0, n1, n3, n6, n9, n12): The derived model is s1s0s
∗
2, where s1 is derived from

n6 and s0 from n12.

3. (n0, n1, n2, n5, n8, n11): The last two nodes are in a cycle and no model can be

found from this path. To fulfill �¬p ∈ F (n1), we need one of n6 or n10.

4. (n0, n1, n3, n6, n9, n13): The last two nodes are in a cycle and no model can be

found from this path.

5. (n0, n1, n3, n7): The last three nodes are in a cycle and no model can be found

from this path.

All models of �p ∧ �¬p can be denoted by s∗2s1s
∗
2s0s2 ∗ ∪s∗2s0s∗2s1s2∗ and each

model corresponds to some path in the tableau. 2
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Example 11.3.15. To show that □(�p∧�¬p) is satisfiable, we construct a semantic

tableau where we replace ∧ by “,” and A stands for (�p, �¬p).

n0 : □(�p, �¬p)
↓

n1 : �p, �¬p, ◦□A
↙ ↘

n2 : p, �¬p, ◦□A n3 : ◦ � p, �¬p, ◦□A
↙ ↘ ↙ ↘

n4 : p,¬p, ◦□A n5 : p, ◦ � ¬p, ◦□A n6 : ¬p, ◦ � p, ◦□A n7 : ◦ � p, ◦ � ¬p, ◦□A
× ↓ ↓ ↓

n8 : �¬p, □A n9 : �p, □A n10 : �p, �¬p, □A
↓ ↓ ↓

to n1 to n1 to n1

This tableau has one closed node, i.e. n4, and no open nodes. n4 is the only node

marked dead. �p and �¬p in n1 are fulfilled by n5 ad n6, respectively. n1 cannot be

marked dead; neither does n0. So the algorithm will return “satisfiable”.

If we wish to construct a model from the tableau, we need to consider a path

starting from n0 and containing both n5 and n6. Let s0 = {p} and s1 = {¬p}
be the interpretations derived from X-nodes n5 and n6, respectively. Then (s0s1)

+

is a model of the input formula. Any model requires that we repeat these two

interpretations together; repeating a single interpretation infinitely does not produce

a model. Let s2 be the interpretation where we do not know the value of p. All the

models of □(�p∧�¬p) can be represented by (s∗2s0s
∗
2s1s

∗
2)

+∪ (s∗2s1s∗2s0s∗2)+ and each

model corresponds some path in the tableau. 2

The following theorem provides the correctness of Algorithm 11.3.13.

Theorem 11.3.16. A LTL formula A is satisfiable iff Algorithm‘11.3.13 returns

“satisfiable”.

Proof. At first, the algorithm will terminate because (1) the construction of the

tableau will terminate (Theorem 11.3.6 (a)) and (2) checking if the initial node is

marked dead takes a finite number of steps.

If the tableau has an open node, A is satisfiable by Theorem 11.3.7.

If the initial node is not marked dead, we show that there is a model for A.

This model is constructed from a path that starts with the initial node and contains

all the nodes required by the fulfilling condition.

The path is selected among the nodes not marked dead as follows: (1) the

path starts with the initial node; (2) if the last node of the current path has only
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one unmarked successor, add the successor to the path; (3) if the current path

contains a node n and �A in n has not fulfilled yet, find node n′ reachable from n

and contain A. If n′ does not appear in the path, append the path from n to n′ to

the current path. If n′ already appears in the path, add only necessary nodes so

that all the nodes of the cycle containing n and n′ are present in the path. That is,

the last portion of the path contains a list of nodes from the same cycle and they

are reachable to each other.

Note that both if �A and �B appear in n, we will work on them one at a time:

When �A is fulfilled in n′, either �B has been fulfilled in the path upto n′ or �B is

still present in n′. In the later case, there is another node n′′ reachable from n′ and

containing B (if not, n′ would have been marked dead).

By repeating the selection, one obtains a path ending with a cycle and all �A’s
are fulfilled. Let nk0 , nk1 , ..., nkm be the X-nodes in the path and s0s1 · · · sm be the

interpretations from these X-nodes (keeping them in the same order), we define an

interpretation sequence

σ = s0s1s2 · · · (sj · · · sm)+,

where sj, ..., sm are the interpretations generated from the X-nodes in the cycle. It

is ready to check that σ is a model of the initial formula by a structural induction

on the formulas in each node.

We claim that σ≥i is a model of F (nki) for 0 ≤ i ≤ m. For any node n other

than X-nodes, if nki is the first X-node following n in the path for some i, then

F (n) ≡ F (nki) and σ≥i is also a model of F (n). For any formula A ∈ F (n), the

following statements are true.

• If A does not have any temporal operator, then A is true in σ≥i;

• If A is ◦B, then A is true in σ≥i because B appears in the node n′ following

nki by the X-rule and B is true in the model of n′ by induction hypotheses

(because B is smaller than ◦B and this model is the immediate suffix of σ≥i
).

• If A is �B, then A is true in σ≥i because B appears in a reachable node n′

from n and B is true in the model for n′ by induction hypotheses (B is smaller

than A) and this model is a suffix of σ≥i.

• If A is □B, then A is true in σ≥i because B is true in σ≥i (by the α-rule for

□) and □A is also true in the immediate suffix of σ≥i (by the X-rule).

On the other hand, if the initial node is marked dead, then A is unsatisfiable

because for any node n which is marked dead, F (n) is unsatisfiable. This statement
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can be proved by induction according to the recursive definition of that “n is marked

dead”. There are cases to consider:

1. n is closed: F (n) contains a pair of complementary literals and cannot be

satisfiable.

2. all successors of n are marked dead: Using induction hypotheses, the formulas

in the successors are unsatisfiable. F (n) is unsatisfiable by Theorem 11.3.6

(b) and (c).

3. �A ∈ F (n) and there is no node reachable from n and containing A: �A
cannot be true in any interpretation sequence σ, since any model corresponds

to some path in the tableau. If A does not appear in any path starting from

n, A cannot be true in any suffix of σ. Hence �A is false in any σ. 2

The above theorem ensures that Algorithm 11.3.13 is a decision procedure for

LTL. In the literature, there is another decision procedure based on Büchi automa-

ton (BA), which is an extension of finite-state automaton for input strings of infinite

length. For LTL, these input strings represent interpretation sequences. Given a

tableau, a Büchi automaton can be easily constructed from the tableau by keeping

only X-nodes and open nodes (they are not marked dead) as states. A transition

from one state to another is added if there is a path from the corresponding node

to another in the tableau. The language recognized by BA should be the set of

models of an LTL formula. There are algorithms that translate an LTL formula

to a Büchi automaton without tableaux. These algorithms differ in their construc-

tion strategies but they all have common underlying principle, i.e., each state in

the constructed automaton represents a set of LTL formulas that are expected to

be satisfied by the remaining input string after occurrence of the state during an

execution of BA. Büchi automata have important application in finite state model

checking for formal verification of concurrent programs and its presentation is out

of the score of this book.

11.4 Binary Temporal Operators

In temporal logic, we sometimes want to express a relationship of two state-

ments in terms of time. For example, after start, a computer will keep running

until it’s halted. To express this sentence, we write

start → ◦(running U halted)

where the binary temporal operation U has the meaning of until.
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11.4.1 The until and release Operators

The intuitive meaning of (AUB) is that A has to be true at least until B

becomes true and B must hold at the current or a future state.

The operator U has a dual operator called release, denoted by R . The intuitive

meaning of ARB is that B has to be true until and including the state where A

first becomes true; if A never becomes true, B must remain true forever.

We will extend LTL by adding U and R to the definition of LTL formulas

such that if A and B are LTL formulas, so are (AUB) and (ARB).

We also need to extend Definition 11.2.1 with the following condition:

Given an interpretation sequence σ, an LTL formula C is true in σ if

• C is AUB and there exists i ≥ 0, σ≥i |= B and for all 0 ≤ j < i,

σ≥j |= A.

• A is ARB and either □B or there exists i ≥ 0, σ≥i |= A and for

all 0 ≤ j ≤ i, σ≥j |= B.

Example 11.4.1. By definition, pU q is true in σ means q will be eventually true and

p must be true before q becomes true. Let s0 = {p, q}, s1 = {p,¬q}, s2 = {¬p, q},
and s3 = {¬p,¬q}.

pU q is true in s+0 , s1s
+
0 , s

∗
1s

+
0 , s1s

+
2 , s

∗
1s

+
2 , s

+
2 , and s2s

+
3 .

pU q is false in s+1 , s
+
3 , and s∗1s

+
3 . 2

The following theorem displays some properties of U .

Theorem 11.4.2. For any LTL formulas A and B,

(a) (idempotency) AUA ≡ A;
(b) (abbreviation) �A ≡ >UA;
(c) (absorption) AU (AUB) ≡ AUB;
(d) (absorption) (AUB)UB ≡ AUB;
(e) (distributivity) ◦(AUB) ≡ (◦A)U (◦B);
(f) (induction) AUB ≡ B ∨ A ∧ ◦(AUB).

Proof. (a) For any interpretation sequence σ, σ≥0 = σ. If A is true in σ≥0, then

i = 0 and for 1 ≤ j < i, A is true in σ≥j vacuously. So A is true in σ≥0. If A is false

in σ≥0, then AUA is false in σ≥ by definition.

(b) Here B is > and C is A, the truthfulness of B UC is reduced to the first

condition that there exists i ≥ 0, σ≥i |= C, identical to that of �C.
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(c) For any interpretation sequence σ, if �B is false, then both AU (AUB) and

AUB are false in σ. If �B is true, let k be the state such that B is true in σ≥k but

false in σ≥j for 1 ≤ j < k. Since B is true in σ≥k, AUB is trivially true in σ≥k.

AUB is true in σ iff A is true in σ≥j for 1 ≤ j < k. AU (AUB) is true in σ iff A is

true in σ≥j for 1 ≤ j < k, too.

The proofs of (d) and (e) are left as exercise.

(f) For AUB to be true, either B is true now, or we put off to the next tick

the requirement to satisfy AUB, while requiring that A be true now. 2

Example 11.4.3. By definition, pRq is true in σ means either q is true forever,

or after p becomes true, the condition of q being true is released. Let s0 = {p, q},
s1 = {p,¬q}, s2 = {¬p, q}, and s3 = {¬p,¬q}.

pRq is true in s+0 , s
+
2 , s2s

+
0 , and s2s0s

+
3 .

pRq is false in s+1 , s1s
+
0 , s

∗
1s

+
0 , s

+
1 , s

∗
1s

+
2 , s2s

+
1 , s2s

+
3 , and s+3 . 2

The following theorem displays some properties of R .

Theorem 11.4.4. For any LTL formulas A and B,

(a) (idempotency) ARA ≡ A;
(b) (abbreviation) ⊥RA ≡ □A;
(c) (absorption) AR (ARB) ≡ ARB;
(d) (absorption) (ARB)RB ≡ ARB;
(e) (distributivity) ◦(ARB) ≡ (◦A)R (◦B);
(f) (induction) ARB ≡ B ∧ (A ∨ ◦(ARB));
(g) (duality) ARB ≡ ¬(¬AU¬B).

Proof. (a)–(f) can be deduced from (g) and Theorem 11.4.2. To simplify the proof

of (g), we prove pRq ≡ ¬(¬pU¬q), where p and q are propositional variables.

Replacing σ(i) by σ≥i in the following proof would give us the proof of ARB ≡
¬(¬AU¬B).

Assume pRq is true in σ. If q is always true, ¬p and ¬pU¬q are always false.

Thus ¬(¬pU¬q) is always true in σ. If q is not always true, let k be minimal such

that q is false in σ(k). Since σ |= pRq, there must exist i < k such that p is true

in σ(k) and for all 1 ≤ j ≤ i, q is true in σ(j). In this case, let us check the truth

value of ¬pU¬q: since σ(k) is the first interpretation in which ¬q is true and ¬p is

false in σ(i) for i < k, ¬pU¬q must be false in σ by definition. Hence ¬(¬pU¬q)
must be true in σ.

Now assume pRq is false in σ. q cannot be always true and let k be minimal

such that q is false in σ(k). Hence q is true in σ(j) for 1 ≤ j < k. Because pRq is
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false in σ, q must be false in σ(j) for 1 ≤ j < k. Equivalently, ¬q must be true in

σ(j) for 1 ≤ j < k. Hence ¬pU¬q is true in σ because ¬q is true in σ(k). So we

conclude that ¬(¬pU¬q) is false in σ. 2

11.4.2 The weak until and strong release Operators

Some researchers also define a weak until binary operator, denoted W , with

semantics similar to that of the until operator but the stop condition is not required

to occur (similar to release). The strong release binary operator, denoted S , is the

dual of weak until. It is defined similar to the until operator, so that the release

condition has to be true at some point. Therefore, it is stronger than the release

operator.

Definition 11.4.5. The additional temporal operators are defined as follows:

• Weak until AWB: A has to be true at least until B; if B never becomes

true, A must remain true forever.

• Strong release ASB: B has to be true until and including the state where

A first becomes true, and A must be true at the current or a future state.

Instead of extending Definition 11.2.1 to include the formal meanings of AWB,

and ASB, we provide below the equivalent relations as an alternative definition:

Theorem 11.4.6. For any LTL formulas A and B,

(a) (weak until) AWB ≡ □A ∨ (AUB);
(b) (strong release) ASB ≡ �A ∧ (ARB).

The above theorem shows that W and S can be defined in terms of U and R ,

just like → and ↔ can be defined in terms of ∧ and ∨. R can be defined in terms

of U by duality. In fact, any one of the four binary temporal operators can be used

to define the other three operators. We have seen in Theorems 11.4.2 and 11.4.4

that � and □ can be defined in terms of U and R . Thus, the minimal set of LTL

needs only two temporal operators: ◦ and one of the four binary operators.
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Theorem 11.4.7. For any LTL formulas A and B,

(a) AUB ≡ �B ∧ (AWB);
(b) ARB ≡ □B ∨ (ASB);
(c) AUB ≡ B S (A ∨B);
(d) ARB ≡ BW (A ∧B);
(e) AWB ≡ BR (A ∨B);
(f) ASB ≡ B U (A ∧B);
(g) AWB ≡ AU (□A ∨B);
(h) ASB ≡ AR (�A ∧B);
(i) □A ≡ AW⊥;
(j) �A ≡ AS>;
(k) ¬(ASB) ≡ ¬AW¬B.

The last equivalence is the duality of W and S . The proof of this theorem is

left as exercise.

11.4.3 Extension of Semantic Tableau

Using the duality and the rewrite rules AWB → □A ∨ (AUB) and ASB →
�A ∧ (ARB), the negation can be pushed downward and all the formulas of LTL

can be transformed into negation normal form, where all negations appear only in

front of the propositional variables, and only the temporal operators □, �, ◦, U , and

R can appear. Note that the transformation to the negation normal form does not

blow up the size of the formula.

Constructing a semantic tableau for a formula that uses the AUB and ARB

operators is straightforward. The β-rule for AUB and α-rule for ARB are given

below:

α α1, α2

ARB B,A ∨ ◦(ARB)
β β1 β2

AUB B A, ◦(AUB)

The α-rule is based on Theorem 11.4.4 (f), and the β-rule is based on Theo-

rem 11.4.2 (f).

After a tableau is constructed use these rules, we need to decide if a model can

be generated from the tableau. In this case, Definition 11.3.10 needs to be extended

to consider the occurrence of (AUB) in a node of the tableau: A node n is marked

dead if

• for any formula (AUB) ∈ F (n), there is no node n′ reachable from n

and B ∈ F (n′).
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11.5 Verification of Concurrent Programs

This chapter begins with an example of how to access a bank account con-

currently and correctly. The example serves as a motivation for the application

of temporal logic for formal verification of concurrent programs. We will end this

chapter with an example of formal verification, which is taken from a tutorial of the

software system STeP (Stanford Temporal Prover). STeP is a system developed

by Zohar Manna et al. to support the computer-aided formal verification of con-

current and reactive systems based on temporal logic. STeP was designed with the

objective of combining the expressiveness of deductive methods. Efficient simplifica-

tion methods, decision procedures, and invariant generation techniques are invoked

automatically to prove resulting first-order verification conditions with minimal as-

sistance.

11.5.1 The bakery(2) Program

Figure 11.5.1 1 shows a program that implements Lamport’s Bakery algorithm

for mutual exclusion. The program is accepted as input by STeP. Two processes,

P1 and P2, coordinate access to a critical section, where at most one process should

reside at any given time. For instance, modifying the balance of a bank account

should be done in a critical section. Each process selects a “ticket number” in y1
and y2, as the customers in a bank would, and the process with the lowest number

is allowed to enter the critical section. Initially, y1 = y2 = 0. A ticket with value

0 indicates that the process is not interested in accessing the critical section. Since

there are only two processes, it can be proved that y1, y2 ∈ {0, 1, 2}. This informal

description of the algorithm can be made precise if the system and its properties

are modeled formally.

The meaning of “await (y2 = 0∨ y1 ≤ y2)” is that the execution pauses until

the condition (y2 = 0 ∨ y1 ≤ y2) is true. This is the same as

while ¬(y2 = 0 ∨ y1 ≤ y2) /* do nothing */

The properties we would like to show are:

• Mutual exclusion: control is never at locations l3 and m3 at the same time.

• Accessibility: if control resides at l1 (resp. m1), it will always eventually reach

l3 (resp. m3). That is, once a process has expressed interest in entering the

critical section, it will eventually do so.
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Figure 11.5.1: Program bakery(2)

• One-bounded overtaking: if one process wants to enter the critical section, the

other process can enter the critical section at most once before the first one

does.

Early solutions to mutual exclusion suffered from starvation, where a process

could forever be denied access to the critical section, and other solutions do not

satisfy one-bounded overtaking. Lamport’s Bakery algorithm is the first solution

that satisfied the three main properties above for the general N -process (in our

example, N = 2).

11.5.2 States and Transition Conditions

The computation of a concurrent program is viewed as the interleaving of the

atomic operations of its processes, where each process is a sequential program and

has a control variable to locate the code of the current execution. STeP generates au-

tomatically the control variables π1 for P1 and π2 for P2, where π1, π2 ∈ {0, 1, 2, 3, 4}
and π1 = i (resp. pi2 = i) iff the current execution of P1 (resp. P2) is at the

line labeled by li (resp. mi). A state of bakery(2) is defined by the values of

(π1, π2, y1, y2), called state variables, and the initial state is (0, 0, 0, 0). Since πi has

5 values and y2 has 3 values, the total number of states is 225 (5×5×3×3), though

not all states are accessible from the initial state.

An execution of bakery(2) can be described by a sequence of states. For

instance, the following sequence shows that P1 enters the critical section once,

while P2 is still in the noncritical section.

(0, 0, 0, 0)⇒ (1, 0, 0, 0)⇒ (2, 0, 1, 0)⇒ (3, 0, 1, 0)⇒ (4, 0, 1, 0)⇒ (0, 0, 0, 0)⇒ · · ·
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A transition of the states is just one move in a state sequence. Transitions are

dominated by the variables π1 and π2, and each variable defines five transitions for

a total of 10 transitions. This set of transitions is the basis for the verification of

bakery(2).

The so-called transition condition for li (resp. mi) is an assertion regarding

the states before and after the execution of the program at li (resp. mi). For

instance, the transition condition for the await statement at l2 is:

ρl2 : π1 = 2 ∧ (y2 = 0 ∨ y1 ≤ y2) ∧ π′
1 = 3 ∧ π′

2 = π2 ∧ y′1 = y1 ∧ y′2 = y2

where x′ is the new value of x after the program execution at l2 for any state variable

x. If we use same(π2, y1, y2) for π
′
2 = π2 ∧ y′1 = y1 ∧ y′2 = y2, The above formula will

have a compact form:

ρl2 : π1 = 2 ∧ (y2 = 0 ∨ y1 ≤ y2) ∧ π′
1 = 3 ∧ same(π2, y1, y2)

The transition conditions for l1 and l4 are

ρl1 : π1 = 1 ∧ π′
1 = 2 ∧ y′1 = y2 + 1 ∧ same(π2, y2)

ρl4 : π1 = 4 ∧ π′
1 = 0 ∧ y′1 = 0 ∧ same(π2, y2)

They can be generated automatically by STeP from the program code, as pre-

conditions are generated from post-conditions in Hoare logic. For the programs at

l0 and l3, we cannot prove, for example, that if π1 = 0, then it will eventually be

π′
1 = 1. Thus, we need axioms to ensure that if the noncritical section terminates

and does not change state variables, then π1 = 0 ∧ π′
1 = 1 will be true for l0. Thus

the transition conditions for l0 and l3 are assumed as axioms:

ρl0 : π1 = 0 ∧ π′
1 = 1 ∧ same(π2, y1, y2)

ρl3 : π1 = 3 ∧ π′
1 = 4 ∧ same(π2, y1, y2)

The transition conditions for π2 are defined similarly.

11.5.3 Transition Conditions in LTL

At first, the transition conditions are written in first-order logic and LTL is an

extension of propositional logic. There are two approaches: either we extend LTL to

first-order logic, or we restrict all the temporal operators to propositional formulas.

For simplicity, we take the second approach, since all the state variables take a finite

number of values and we can convert formulas to propositional formulas.

For 0 ≤ i ≤ 2, let propositional variables pi stands for y1 = i and qi stands fro

y2 = i. Then, with the assumption that only one of pi (resp. qj) is true,

(y1 = y2 + 1) ≡ p1 ∧ q0 ∨ p2 ∧ q1
(y1 ≤ y2) ≡ p0 ∧ q0 ∨ p0 ∧ q1 ∨ p0 ∧ q2 ∨ p1 ∧ q1 ∨ p1 ∧ q2 ∨ p2 ∧ q2
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In the following discussion, we will still use y1 and y2 instead of pi and qj for

readability.

For π1 and π2, the labels li and mj will be used as propositional variables for

π1 = i and π2 = j, respectively. Of course, we also need axioms to ensure that only

one of li (resp. mj) is true.

Secondly, given a state variable x, we use x′ for the value of x after the

transition. Since x′ appears in the next state after the transition, we may use ◦x
to denote x′. For instance, y′1 = y1 is written as y1 = ◦y1 and π′

2 = π2 as π2 = ◦π2,

with the understanding that

(y1 = ◦y1) ≡ (p0 ↔ ◦p0) ∧ (p1 ↔ ◦p1) ∧ (p2 ↔ ◦p2)
(π1 = ◦π1) ≡ (l0 ↔ ◦l0) ∧ (l1 ↔ ◦l1) ∧ (l2 ↔ ◦l2) ∧ (l3 ↔ ◦l3) ∧ (l4 ↔ ◦l4)

All the ten transition conditions of bakery(2) are rewritten as follows:

ρl0 : l0 ∧ ◦l1 ∧ same(π2, y1, y2)
ρl1 : l1 ∧ ◦l2 ∧ ◦y1 = y2 + 1 ∧ same(π2, y2)
ρl2 : l2 ∧ ◦l3 ∧ (y2 = 0 ∨ y1 ≤ y2) ∧ same(π2, y1, y2)
ρl3 : l3 ∧ ◦l4 ∧ same(π2, y1, y2)
ρl4 : l4 ∧ ◦l0 ∧ ◦y1 = 0 ∧ same(π2, y2)
ρm0 : m0 ∧ ◦m1 ∧ same(π2, y1, y2)
ρm1 : m1 ∧ ◦m2 ∧ ◦y1 = y2 + 1 ∧ same(π2, y2)
ρm2 : m2 ∧ ◦m3 ∧ (y2 = 0 ∨ y1 ≤ y2) ∧ same(π2, y1, y2)
ρm3 : m3 ∧ ◦m4 ∧ same(π2, y1, y2)
ρm4 : m4 ∧ ◦m0 ∧ ◦y1 = 0 ∧ same(π2, y2)

where same(π1, π2, y1, y2) stands for π1 = ◦π1 ∧ π2 = ◦π2 ∧ y1 = ◦y1 ∧ y2 = ◦y2.
Moreover, we will use l2,3,4 to abbreviate the assertion l2 ∨ l3 ∨ l4.

Recall that a state of bakery(2) is a value tuple of the state variables (π1, π2, y1, y2).

Now, using li, mi, pj, and qj, where 0 ≤ i ≤ 4 and 0 ≤ j ≤ 3, for the state variables,

there is a one-to-one correspondence between a state and interpretation of li, mi, pj,

and qj. Hence, a state sequence is equivalent to an interpretation sequence and the

truthfulness of the formulas about bakery(2) will be decided by state sequences.

Now it is easy to express the three desired property in temporal logic:

• Mutual exclusion: □¬(l3 ∧m3), control is never at locations l3 and m3 at the

same time.

• Accessibility: □(l1 → �l3) and □(m1 → �m3). If control resides at l1 (resp.

m1), it will always eventually reach l3 (resp. m3).
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• One-bounded overtaking:

□(l2 → ¬m3W (m3W (¬m3W l3))).

This formula states that whenever control is at l2, meaning that P1 wants

to enter the critical section (l3), the following must occur: there may be an

interval in which P2 is not in the critical section (so all states in the interval

satisfy ¬m3), followed by an interval where P2 is in the critical section (states

satisfying m3), followed by an interval where P2 is again not in the critical

section (states satisfying ¬m3), followed finally by a state where P1 is in the

critical section (l3). Thus, P2 can enter the critical section (m3) at most once

before P1 enters (l3). Each of the intervals ¬m3, m3, and ¬m3 that precede l3
can possibly be empty but (as far as this formula is concerned) could extend

indefinitely as well.

Mutual exclusion and one-bounded overtaking belong to the class of temporal

safety properties. Informally, such properties state that something “bad” can never

happen, and are falsified if a bad state is ever reached: if a safety formula A is false

in a model, then there is a finite prefix of the model such that A is also false in

every extension of this prefix.Mutual exclusion and one-bounded overtaking belong

to the class of temporal safety properties. Informally, such properties state that

something “bad” can never happen, and are falsified if a bad state is ever reached:

if a safety formula A is false in a model, then there is a finite prefix of the model

such that A is also false in every extension of this prefix.

Accessibility, on the other hand, is a response property, and belongs to the

larger class of progress properties. These properties state that something “good”

is guaranteed to happen eventually. The verification of each class of properties has

its particular requirements. For instance, safety properties are independent of the

termination requirements of the given program, whereas the verification of response

properties relies on termination.

11.5.4 Hoare Triples and Invariants

In Chapter 10, we present the concept of Hoare triple which describes how the

execution of a piece of code changes the state of the computation. A Hoare triple

is of the form

{P}C {Q}

where P and Q are assertions, which are formulas in a first-order language, and C is

a program code. For concurrent programs considered in STeP, each line of program
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C has a line label τ and there is transition condition for τ , so we can define the

Hoare triple as follows:

{P (x)} τ : C {Q(x)} def
= P (x) ∧ ρτ (x)→ Q(◦x)

where ρτ is the transition condition of τ , x is the list of state variables appearing

in P and Q, and ◦x denotes the new values of variables x after the execution of

C. Since τ catches all the effect of C regarding the state variables, we may drop C

in {P} τ : C {Q} and simply write {P} τ {Q}, called verification conditions, which

ensures that if C is executed in a state that satisfies P , it will reach to a state that

satisfies Q. Note that this verification condition is trivially true if the transition

condition of τ is false.

We will call formulas of form □A as invariants, as they are always true in any

state sequence. Once the bakery(2) program is loaded, STeP can automatically

generate invariants of the following kinds:

• Local invariants: These invariants relate control and data with implications

of the form ”whenever control resides at location x then the values of the

data variables are y.” STeP automatically generates these local invariants for

bakery(2):

□(l0,1 → y1 = 0)
□(m0,1 → y1 = 0)

• Reaffirmed invariants: These are the assertions derived as as refinement of

l0,1,2,3,4 and m0,1,2,3,4, applying one step of transitions:

□(l0 ∧ y1 = 0 ∨ l1 ∨ l2 ∧ y1 = y2 + 1 ∨ l3 ∧ (y1 ≤ y2 ∨ y2 = 0) ∨ l4∨
m0 ∧ y2 = 0 ∨m1 ∨m2 ∧ y2 = y1 + 1 ∨m3 ∧ (y2 < y1 ∨ y1 = 0) ∨m4)

• Linear invariants: This class of invariants captures relationships between

variables that can be expressed as linear equations. For bakery(2), STeP’s

linear invariant mechanism generates the obvious control invariants, stating

that control will always be at exactly one of l0, ..., l4 and m0, ...,m4:

□(l0 + l1 + l2 + l3 + l4 = 1)
□(m0 +m1 +m2 +m3 +m4 = 1)

These formulas use arithmetization, where the value of a boolean expression

is treated as 0 (false) or 1 (true) within an arithmetic expression.
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• Polyhedral invariants: Finally, polyhedral invariants generalize linear in-

variants, capturing relationships between variables that can be expressed as

linear equivalence and inequalities. The polyhedral invariant generation tools

in STeP add the following two invariants for bakery(2):

□(l2,3,4 → y1 > 0)
□(m2,3,4 → y2 > 0)

All the above are bottom-up invariants, since they are generated from the

analysis of the system independently of any temporal property to be proved. Once

generated, these invariants are part of the set of background properties, which can

also include axioms and previously proved properties.

11.5.5 Verification of Mutual Exclusion

The mutual exclusion of bakery(2) asks the valid of □¬(l3 ∧m3). In STeP,

the first choice for verifying such invariance properties is the basic invariance rule.

Definition 11.5.1. (Basic invariance rule) For any assertion P (x), if (1) P (x)

is true initially and (2) for every transition τ , {P (x)} τ {P (◦x)} is true, then □P (x).

For the mutual exclusion of bakery(2), P is ¬(l3 ∧m3), STeP generates 11

verification conditions: one for each transition, plus (y0 = 0∧ y2 = 0)→ ¬(l3∧m3),

the implication for the initial condition.

Example 11.5.2. Consider now the verification condition for transition l2:

(1) ¬(l3 ∧m3) ∧ ρl2 → ¬(◦l3 ∧ ◦m3)

Its negation is

(2) ¬(l3 ∧m3) ∧ ρl2 ∧ ◦l3 ∧ ◦m3.

Recall that ρl2 is

ρl2 : l2 ∧ (y2 = 0 ∨ y1 ≤ y2) ∧ ◦l3 ∧ same(π2, y1, y2)

The deduction system will simplify (2) to

(3) l2 ∧ ◦l3 ∧m3 ∧ ◦m3 ∧ (y2 = 0 ∨ y1 ≤ y2)

where m3 comes from ◦m3 and same(π2, y1, y2).
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From the polyhedral invariants, □(l2,3,4 → y1 > 0) and □(m2,3,4 → y2 > 0),

we know y1 > 0 and y2 > 0. From the reaffirmed invariants, we obtain l2 ∧ (y1 =

y2 + 1) ∨m3 ∧ (y2 < y1). If l2 ∧ y1 = y2 + 1 is true, then (y2 = 0 ∨ y1 ≤ y2) in (3)

is false. If m3 ∧ (y2 < y1) is true, then (y2 = 0 ∨ y1 ≤ y2) is false, too. Hence, (3) is

false and (1) must be true. 2

The proof for the transition m2 is symmetric to that of l2. The proofs for other

transitions are much easier using the linear invariants. All these verification condi-

tions are valid relative to the previously generated invariants. Using these invariants

as background properties, the STeP validity checker proves them automatically.

11.5.6 Verification of Accessibility

The accessibility means if control resides at l1 (resp. m1), it will always

eventually reach l3 (resp. m3): □(l1 → �l3) and □(m1 → �m3). To prove this

property, we need to know the termination of the program code. For the execution

of l2 : await (y2 = 0∨ y1 ≤ y2), once (y2 = 0∨ y1 ≤ y2) becomes true, l2 changes to

l3; for the other lines of P1, the execution will progress to the next line, assuming

the termination of noncritical and critical.

Definition 11.5.3. (Progress axiom) The following formulas are assumed to be

true for bakery(2):

(1) □(l2 ∧ �(y2 = 0 ∨ y1 ≤ y2)→ �l3)
(2) □(li → �li+1 for i ∈ {0, 1, 3}
(3) □(l4 → �l0)
(4) □(m2 ∧ �(y1 = 0 ∨ y2 < y1)→ �m3)
(5) □(mi → �mi+1 for i ∈ {0, 1, 3}
(6) □(m4 → �m0)

In the definition, (1)− (3) (resp. (4)− (6)) ensure the termination of each line

in P1 (resp. P2). With the progress axioms, the proof of the accessibility property

is straightforward.

Theorem 11.5.4. □((l1 → �l3) ∧ (m1 → �m3)).

Proof. For any state sequence σ, we show that (l1 → �l3) ∧ (m1 → �m3) is true in

σ. By the progress axiom, (l1 → �l2) and (m1 → �m2), so �l2 and �m2 are true in

σ. Since (y1 ≤ y2) ∨ (y2 < y1) is always true, one of (y1 ≤ y2) and (y2 < y1) is true

in any suffix σ′ of σ. If (y1 ≤ y2) is true in σ′, by the progress axiom (1), �l3 is true
in σ′ as well as in σ. By the progress axiom (2), �l4 is true in σ. So y1 := 0 will
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Figure 11.5.2: Program bakery(N)

be executed at l4. y1 = 0 and (y1 = 0 ∨ y2 < y1) will be true in a suffix of σ′, So

�m3 will be true σ by the program axiom (4). The case when (y2 < y1) is true is

symmetric. Since σ is arbitrary, so the theorem holds. 2

Note that in the above proof, we have used the transitivity property of �:

□(A→ �B) ∧ □(B → �C)→ □(A→ �C)

which is a valid formula of LTL.

The proof of one-bounded overtaking is beyond the scope of this book due to

long length; the interested reader may consult the STeP survey paper by Zohar

Manna et al. A general version of bakery(N) is given in Figure 11.5.2. All the

three properties of bakery(2) can be carried over to bakery(N).

The computation of a concurrent program is an interleaving of the atomic

operations of its processes. There are a huge number of execution sequences when

N > 2 in bakery(N). Since a concurrent program must be correct for every

possible computation, it is very difficult to test or debug programs by exhausting

all interleaving sequences. Formal verification provides a feasible tool to verify the

correctness of concurrent programs. We presentation is limited to LTL and there

are approaches based on automaton theory and model checking, which are out of

the scope of this book on logic.

11.6 Exercise Problems

Drill Questions

1. For the MTL formula A = p→ □p, find two Kripke frames such that A is true

in one and false in the other.



399

2. For the MTL formula A = □(p ∨ q)→ (□p ∨ □q), find two Kripke frames such

that A is true in one and false in the other.

3. For the LTL formula A = p→ □p, find two interpretation sequences such that

A is true in one and false in the other.

4. For the LTL formula A = □(p ∨ q) → (□p ∨ □q), find two interpretation

sequences such that A is true in one and false in the other.

5. Find an equivalent negation formal form for the following formulas:

(a) (AUB)↔ �B ∧ (AWB);
(b) (ARB)↔ □B ∨ (ASB);
(c) (AUB)↔ B S (A ∨B);
(d) (ARB)↔ BW (A ∧B);
(e) (AWB)↔ BR (A ∨B);
(f) (ASB)↔ B U (A ∧B);
(g) (AWB)↔ AU (□A ∨B);
(h) (ASB)↔ AR (�A ∧B);
(i) □A↔ AW⊥;
(j) �A↔ AS>;
(k) ¬(ASB)↔ ¬AW¬B.

6. A state of program bakery(2) is (π1, π2, y1, y2). List all the state sequences

of length 10 such that in the first state, π1 = 0 and the values of π1 and π2

alternate in the sequence.

Exercises

1. Prove that the following formulas are valid in MTL:

(a) □□p ≡ □p;
(b) � � p ≡ �p.

2. Write a Prolog program nnf(X,Y ), which takes LTL formula X as input and

output Y as a negation normal form of X.

3. Prove by semantic tableau that the LTL formulas are valid:

(a) (□p ∨ □q)→ (□p ∨ □);
(b) � � p→ �p;
(c) □ � □p→ �□p;
(d) �□ � p→ □ � p.
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Figure 11.6.1: Program bakery(N)

4. Prove by semantic tableau that the LTL formulas are valid:

(a) pRp→ p;
(b) ⊥Rp→ □p;
(c) pR (pRq)→ pRq;
(d) (pRq)Rq → pRq;
(e) pRq → q ∧ (p ∨ ◦(pRq));
(f) pRq → ¬(¬pU¬q).

5. Prove by semantic tableau that the LTL formulas are valid:

(a) pU q → �q ∧ (pW q);
(b) pRq → □q ∨ (pS q);
(c) pU q → q S (p ∨ q);
(d) pRq → qW (p ∧ q);
(e) pW q → qR (p ∨ q);
(f) pS q → q U (p ∧ q);
(g) pW q → pU (□p ∨ q);
(h) pS q → pR (�p ∧ q);
(i) □p→ pW⊥;
(j) �p→ pS>;
(k) ¬(pS q)→ ¬pW¬q.

6. Prove the mutual exclusion and accessibility properties of the program given

in Figure 11.6.1.
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CHAPTER 12

DECISION PROCEDURES

Recall that in Chapter 1, a decision procedure is defined as a procedure which

always halts with a correct answer to a decision question. For propositional logic,

most decision questions are decidable, such that questions regarding satisfiability,

validity, or entailment. For linear temporal logic introduced in the previous chap-

ter, these questions are also decidable. For first-order logic, these questions are

undecidable in general. However, we restrict ourselves to some segments of firt-

order logic, these questions may become decidable. In the literature, the selection

of these segments is motivated by formal verification of programs as discussed in

Chapter 10.

For ease of exposition, we consider only formulas in conjunctive normal form

in each theory T that we examine. Conjunctive normal forms are conjunctions of

literals. This restriction does not limit the scope of the decision procedures. For

given arbitrary quantifier-free formula A, we will appeal to DPLL(T ), an extension

of the DPLL procedure, where we only need to work on conjunctive normal forms.

DPLL(T ) will be discussed in the last section of this chapter.

12.1 Equality with Uninterpreted Functions
(EUF)

12.1.1 Uninterpreted Functions

In first-order logic, a function symbol can be interpreted as any function of

the same arity. By default, every function symbol is an uninterpreted function. In

some applications, it is convenient and efficient to keep in mind the definitions of

some functions. For example, in program verification, 1 + 3 can be replaced by 4

because + is the addition of integers. In equational logic, the equality predicate “=”

is assumed to satisfy the axioms of equality (Section 7.1.1). Functions like + and

= with their intended meanings are called “interpreted functions”. Thus, functions

which can take any interpretation are called “uninterpreted functions”.

Replacing interpreted functions by uninterpreted functions in a formula is a

way of generalization (or abstraction) and can be useful in obtaining stronger results

or simplifying proofs.
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Example 12.1.1. We wish to prove the equivalence of the programs P1 and P2:

int a[1..3] int a[1..3]

int i := 2, x := a[3] int y

while (i > 0)

x := a[i] + x; i := i− 1 y := a[1] + (a[2] + a[3])

return x return y

P1 P2

Since the body of the while loop in P1 executed twice, we may unroll the loop by

introducing auxiliary variables x0, x1, x2 to record the values of x before and after

x := a[i] + x. The relationship between them can be expressed by

x0 = a[3] ∧ x1 = a[2] + x0 ∧ x2 = a[1] + x1

Together with y = a[1]+(a[2]+a[3]), we would like to prove x2 = y. Note here that

x and y in the formulas are variables of the program and are regarded as identifiers

in the first-order logic.

If + is an interpreted function, we will have difficulty to decide the value of

a[2]+a[3], x2, and y. If we replace + by an uninterpreted function f , the verification

becomes to prove the following theorem:

(x0 = a[3]∧ x1 = f(a[2], x0)∧ x2 = f(a[1], x1)∧ y = f(a[1], f(a[2], a[3])))→ x2 = y.

This can be shown to be true by rewriting, viewing each equality as a rewrite rule

from left to right. Once the theorem is proved, the equivalence of P1 and P2 holds

for any binary operation f on any type of a[1..3] (e.g., double, or matrix).

On the other hand, if the generalized formula cannot be proved, it does not

mean the equivalence of the programs does not hold. For instance, in P2, if we let

y := (a[1] + (a[2]) + a[3], then the two programs are still equivalent because + is

associative. However, f(a[1], f(a[2] + a[3])) = f(f(a[1], a[2]), a[3]) is no longer true,

unless f is known to be associative. 2

We would like to point out that x and y used in P1 and P2 are variables of the

code; they are not variables of first-order logic. The formula for the equivalence of

P1 and P2 is indeed ground (i.e., variable-free) because x and y are 0-arity functions

in first-order logic. To avoid confusion, we call these 0-arity functions identifiers.
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12.1.2 The Congruence Closure Problem

Recall that the axioms of equality introduced in Chapter 7 are the following

five formulas, where the variables are assumed universally quantified.

reflexivity : x = x;
symmetry : (x = y)→ (y = x);
transitivity : (x = y) ∧ (y = z)→ (x = z);
function congruence : xi = yi → f(..., xi, ...) = f(..., yi, ...);
predicate congruence : xi = yi ∧ p(..., xi, ...)→ p(..., yi, ...).

A set A of literals is called ground equality if the only predicate in A is “=”

and no literals contain variables. We often write ¬(s = t) as s 6= t. A positive literal

s = t is called equation and a negative literal s 6= t is called unequality. If constants

c1 and c2 appear in A, we assume that (c1 6= c2) ∈ A, so that we do not distinguish

identifiers (i.e., functions of zero arity) and constants. If predicates other than =

are needed, we treat them as functions: replace positive literal p(x) by p(x) = true

and negative literal ¬p(x) by p(x) =false, and add true 6= false into A.

Given a set A of ground equality, is A satisfiable with the axioms of equal-

ity? This decision problem is traditionally called the congruence closure problem of

equality with uninterpreted functions. For instance, in Example 12.1.1, let A be

{x0 = a[3], x1 = f(a[2], x0), x2 = f(a[1], x1), y = f(a[1], f(a[2], a[3])),¬(x2 = y)},

then A is unsatisfiable iff x2 = y is a logical consequence of the first four equations.

Since a function is uninterpreted by default in first-order logic, we prefer to

call it the congruence closure problem of ground equality. Note that = is the only

interpreted function and the axioms of equality contain variables.

Some people also called it the congruence closure problem of quantifier-free

equality. In the literature, the quantifier-free fragment of a theory T consists of the

axioms of T and valid formulas of the form

∀x1, ..., xn F (x1, ..., xn),

or of form

∃x1, ..., xn F (x1, ..., xn),

where F is quantifier-free and free(F ) = {x1, ..., xn} and only one of the two forms

is allowed in any given input. While such formulas have quantifiers, the point is

that they do not have quantifier alternations: either all quantifiers are universal or

all quantifiers are existential. For instance, clauses in resolution contain universally

quantified variables and terms in unification contain existential variables. For the
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congruence closure problem to be discussed, no variables are allowed, with the only

exception of the variables appearing in the equality axioms. Thus, “quantifier-free”

is not a right label for the congruence closure problem.

The conventional approach, proposed by Nelson and Oppen, as well as Shas-

tak, consists of the following steps:

1. Divide a set A of ground equality into equations E (positive literals) and

unequalities D (negative literals);

2. Compute the congruence closure =E, which is the congruence closure gener-

ated by E (Definition 7.1.6). It is the minimum equivalence relation satisfying

the congruence property.

3. If there exists (s 6= t) ∈ D such that s =E t, then return “unsatisfiable”;

otherwise return “satisfiable”.

The soundness of the above approach is stated as the following theorem:

Theorem 12.1.2. Given a set A of ground equality, including both equations and

unequalities, let E ⊆ A be the set of all equations in A. If there exists (s 6= t) ∈ A

such that s =E t, then A is unsatisfiable, otherwise A is satisfiable.

The proof can be done by Herbrand models (Proposition 7.1.3) and is left as

an exercise. Now we ready for the proof of the following theorem:

Theorem 12.1.3. The congruence closure of ground equality is decidable.

Proof. Given a set A of ground equality, including both equations and unequalities,

let E ⊆ A be the set of all equations in A. According to Theorem 7.2.22, there is a

decision procedure for =E. For each s 6= t ∈ A, we check if s =E t: if yes, return

“unsatisfiable”. If every check says “no”, return “satisfiable”. Theorem 12.1.2

ensures the correctness of the answer. 2

Example 7.2.21 shows how A = {f(a) 6= a, f 3a = a, f 5a = a}, where f 3a is

f(f(f(a))) and f 5a is f(f(f(f(f(a))))), is unsatisfiable.

12.1.3 Nelson and Oppen’s Algorithm

Congruence is an equivalence relation satisfying the congruence axiom. To

store an equivalence relation in computer, the best data structure is sets: Equivalent

elements are stored in the same set so that reflexive, symmetric, and transitive

properties are easily maintained. Each set represents an equivalent class and the

collection of equivalent classes is a partition of all the elements.
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The Nelson and Oppen’s algorithm is based on this idea: To compute =E for

a set E of ground equations,

1. Place each subterm of E into its own congruence class;

2. For each s = t ∈ E, if s and t are not in the same class, the merge operation

will (i) union the two classes containing s and t; and (ii) propagate s = t by

the congruence axiom.

The propagation of s = t through the congruence axiom is done as follows: If s

appears in f(..., s, ...) and t appears in f(..., t, ...), then the NelsonOppen algorithm

will ensure that f(..., s, ...) and f(..., t, ...) should be in the same class by checking

if their arguments are pair-wisely equivalent.

The NelsonOppen algorithm uses term graphs and the Union-Find data struc-

ture for sets, in a way very similar to the unification algorithm (Alg. 6.1.19).

The algorithm NelsonOppen(E) takes a set E of ground equations as input,

create the term graph G = (V,E) from all the terms in E, sharing subterms as

much as possible. If a set D of unequalities is provided, the terms in D are also

added into G. G = (V,E) has the following properties:

1. G is a directed acyclic graph (DAG) with possibly multiple edges between two

nodes;

2. Each node v ∈ V has a label, denoted by label(v), which is a function symbol

of E;

3. If label(v) = f and arity(f) = k, then v has k ordered successors in G. The

ith successor can be accessed by child(v, i). Obviously, if f is an identifier

(arity(f) = 0), v has no successors.

4. Each subterm t of E is represented by a unique node vt ∈ V such that (a) t is

an identifier and label(vt) = t; or (b) if t = f(t1, ..., tk), then label(vt) = f and

vt has k successors vt1 , ..., vtk , each vti represents ti for 1 ≤ i ≤ k.

5. To implement the Union-Find algorithm, we add two data structures to each

node v ∈ V :

• up(v) defines the parent of v in a tree, which also represents an equiva-

lence relation among the nodes. Initially, up(v) = v. That is, v is a root

and each node is initially in its own equivalence class.

• w(v) records the weight of the tree representing the class of v, which is

the size of the class. Initially, w(v) = 1, that is, the tree is a single node.
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Figure 12.1.1: DAG G = (V,E) for A = {f(a, b) = a, f(f(a, b), b) 6= a}, where
V = {1, 2, 3, 4}, use(1) = ∅, use(2) = {1}, use(3) = {2}, use(4) = {1, 2}

• To implement the congruence propagation, we add a list to each node

v ∈ V : use(v) records the list of all predecessors (also called parents) of

v in G; this should not be confused with up(v), which is the parent of v

in the tree.

Example 12.1.4. Let A = {f(a, b) = a, f(f(a, b), b) 6= a}. The DAG for the terms

of A is shown in Figure 12.1.1. 2

Once DAG G is created, for each equation s = t, we will call merge(vs, vt),

where vs and vt are the nodes of G representing s and t.

proc merge(v1, v2)

1 s1 := Find(v1); s2 := Find(v2)

2 if s1 = s2 return // already in the same class, exit

3 P1 := use(s1);P2 := use(s2)

4 Union(s1, s2) // Union two classes into one

5 for (t1, t2) ∈ P1 × P2 do // Congruence propagation

6 if Find(t1) 6= Find(t2) ∧ congruent(t1, t2)

7 merge(t1, t2)

The pseudo-code for congruent, Union and Find are given below.

proc congruent(t1, t2) : Boolean
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1 if label(t1) 6= label(t2) return false

2 for i := 1 to arity(label(t1)) do

3 if Find(child(t1, i)) 6= Find(child(t2, i)) return false

4 return true

proc Union(s1, s2)

// Initially, for any node s, w(s) = 1, the weight of a singleton tree.

1 if w(s1) < w(s2) x := s1; s1 := s2; s2 := x // switch s1 and s2
2 up(s2) := s1 // s2’s representative is s1
3 use(s1) := use(s1) ∪ use(s2); use(s2) = ∅
4 w(s1) := w(s1) + w(s2)

proc Find(v)

1 r := up(v) // look for the root of the tree containing v

2 while (r 6= up(r)) r := up(r) // r is a root iff r = up(r)

3 if (r 6= v) // compress the path from v to r

4 while (r 6= v) up(v) := r; v := up(v)

5 return r

Algorithm 12.1.5. The algorithm NelsonOppen(A) takes a set A of ground equal-

ity, which is a mix of equations or unequalities, as input, create the term graph

G = (V,E) from all the terms in A, construct the congruence classes for equations

in A and check the satisfiability of A.

proc NelsonOppen(A) : Boolean

1 G = createGraph(A) // up(v) = v for each v in G

2 for (s = t) ∈ A do merge(vs, vt) // vs, vt represent s, t in G

3 for (s 6= t) ∈ A do

4 if Find(vs) = Find(t) return “unsatisfiable”

5 return “satisfiable”

Example 12.1.6. Continue from Example 12.1.4: To handle f(a, b) = a,merge(2, 3)

is called. The first line of merge calls Find twice with the result s1 = Find(2) = 2

and s2 = Find(3) = 3. Since s1 6= s2, we get P1 = {1} and P2 = {2}, preparing for

congruence propagation.

At line 4 of merge, Union(2, 3) is called. Because w(2) = w(3) = 1, the second

part of line 1 is skipped. At line 2, up(3) is changed to 2, meaning node 3 uses

node 2 as its class name. At line 3, w(2) is changed from 1 to 2, as the class tree

increases its weight. At line 4, the parents of node 3 move to those of node 2.
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Now back to line 5 of merge: Since P1 × P2 = {〈1, 2〉}, t1 = 1 and t2 = 2

are the only case for t1 and t2. Since Find(1) = 1 and Find(2) = 2, congruent(1, 2)

is called and returns true, because Find(child(1, 1)) = Find(2) = 2 = Find(3) =

Find(child(2, 1)) and Find(child(1, 2)) = Find(child(2, 2)) = 4. Now merge(1, 2) is

recursively called at line 7 and it will merge node 1 into {2, 3} (i.e., up(1) = 2). The

final congruence classes are {1, 2, 3} and {4}.
For the unequality f(f(a, b), b) 6= a of A, since f(f(a, b), b) (represented by

node 1) and a (node 3) are in the same class, f(f(a, b), b) 6= a is false and A is

unsatisfiable. 2

Nelson and Oppen proved that the time complexity of NelsonOppen(A) is

O(n2), where n is the number of symbols of A. Various improvements and extensions

of NelsonOppen(A) have been proposed, including Shastak’s algorithm. Shastak’s

algorithm improves Nelson and Oppen’s algorithm in three ways:

1. At line 7 of merge, merge(t1, t2) is replaced by merge(Find(t1),Find(t2)).

2. Introduce a data structure sig(t) for each term t such that sig(f(t1, ..., tn)) =

f(Find(t1), ...,Find(tu)). This data structure will reduce substantially the

time spent at lines 5-6 of merge.

3. Allow the handing of equations in an “on-the-fly” manner so that equations

can be added dynamically. This optimization widens the application of con-

gruence closure algorithms.

Instead of presenting Shastak’s algorithm in details, we will take Kapur’s

approach and present Shastak’s algorithm in the context of the Knuth-Bendix com-

pletion procedure.

12.1.4 Ground Congruence by Knuth-Bendix Comple-
tion

According to Theorem 12.1.3, the Knuth-Bendix completion procedure for

ground equations can be used as a decision procedure for the ground congruence

problem. To make the completion procedure efficient, Kapur suggested two prepro-

cessing steps which make equations or rewrite rules “flat” and “singleton”.

Definition 12.1.7. A term t is said to be flat if either t is an identifier or t =

f(a1, ..., ak) and a1, ..., ak are identifiers. An equation s = t (or a rewrite rule

s → t) is flat if both s and t are flat. s = t (or s → t) is singleton if t is an

identifier. s = t (or s→ t) is unit if both s and t are identifiers.
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The two preprocessing steps over E of ground equations will flatten terms if

the terms in an equation are not flat and slicing an equation if no identifier appears

either side of the equation. Flattening and slicing are done by introducing new

identifiers, so that the generated rewrite rules will be flat and singleton. This is

achieved by the following operations:

• flattening: If t in E is not flat, then t is f(..., g(s), ...) and we replace t by

f(..., c, ...) and add g(s) = c into E, where c is a new identifier.

• slicing: If (s = t) ∈ E, neither s nor t is an identifier, then we replace s = t

by s = c and t = c in E, where c is a new identifier.

• switching: If (s = t) ∈ E, s is an identifier and t is not, then we replace

s = t by t = s in E.

Let E1 = flattenSlicing(E0) denote the procedure which applies the above

operations to E0 until E1 is flat and singleton.

Proposition 12.1.8. Assuming the arity of any function symbol is a constant. If

E1 = flattenSlicing(E0), then n = O(|E1|), where n is the total of function symbols

(including identifiers) appearing in E0.

Proof. Let n1 be the total of function symbols (including identifiers) appearing in

E1. Then n ≤ n1 ≤ 3n, because for the flattening rule, two copies of a new

constant are added into E for each non-identifier subterm position other than the

root position. Similarly, for the slicing rule, a new identifier is introduced for the

root position of a non-identifier term. In other words, the total number of new

identifier occurrences introduced by flattenSlicing(E0) cannot be more than twice

of the total number of subterm positions in E0.

Since E1 is flat and singleton, if k is the arity of the root symbol appearing in

the left side of an equation, then this equation has k+2 symbols. By the assumption,

k is a constant, so n1 = O(|E1|). Thus n = O(|E1|) because n ≤ n1 ≤ 3n. 2

Example 12.1.9. Let E0 = {f(a, g(a)) = g(g(a))} be the input to the modified

Knuth-Bendix completion procedure. Then E1 = flattenSlicing(E0), where E1 con-

tains the following equations:

{g(a) = c1, f(a, c1) = c3, g(a) = c2, g(c2) = c3}

where new identifiers c1 and c2 are introduced by flattening, and c3 by slicing. If we

feed E1 to the Knuth-Bendix completion procedure, the procedure ends with the

following rewrite rules:

(1) g(a)→ c1, (2) f(a, c1)→ c3, (3) g(c1)→ c3, (4) c2 → c1
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This rewrite system is canonical (confluent and terminating), flat and singleton. It

can serve as a decision procedure for =E0 . 2

Any rule in U whose left side is an identifier introduced by flattening and

slicing can be removed, because this identifier occurs nowhere other than in this

rule; thus there is no chance to use this rule. Thus, for the above example, the last

rule, i.e., c2 → c1 can be deleted.

Example 12.1.10. Let E0 = {f 3a = a, f 5a = a}. Then E1 = flattenSlicing(E0),

where E1 contains the following equations:

{f(a) = c1, f(c1) = c2, f(c2) = a, f(c2) = c3, f(c3) = c4, f(c4) = a}

The first three equations come from f 3a = a; all the equation excluding f(c2) = a

come from f 5a = a, as we reuse the first two equations.

Feeding E1 to the Knuth-Bendix procedure, the first three equations will pro-

duce three rewrite rules:

{(1) f(a)→ c1, (2) f(c1)→ c2, (3) f(c2)→ a}

The fourth equation, f(c2) = c3, is rewritten to a = c3, from which we obtain

(4) c3 → a.

The fifth equation, f(c3) = c4, is rewritten by (4) and (1) to c1 = c4, from

which we obtain (5) c4 → c1.

The last equation, f(c4) = a, is rewritten by (5) and (2) to c2 = a, from which

we obtain (6) c2 → a. (2) becomes f(c1)→ a by (6).

(6) reduces (3) to f(a) = a, then by (1) to c1 = a, from which we obtain

(7) c1 → a. (1) becomes f(a)→ a by (7). (7) also reduces (2) to f(a) = a, then by

(1) to a = a.

The final rewrite system is

{(1) f(a)→ a, (4) c3 → a, (5) c4 → a, (6) c2 → a, (7) c1 → a}

If we remove those rules in U whose left side is a new identifier, then only the

first rule, i.e., f(a)→ a, is needed for the decision procedure of =E0. 2

During the execution of the Knuth-Bendix completion procedure (Proc. 7.2.15),

let E be the set of remaining equations and R be the current set of rewrite rules,

both E and R are ground, flat and singleton. R can be partitioned into U and N ,

i.e., R = U ∪N , where U are unit rules and N are non-unit rules. The above two

examples illustrate some properties of (E,R):
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1. If R = U ∪N is inter-reduced (Def. 7.2.16), and u → v ∈ U , i.e., it is a unit

rule, then u → v will never be deleted by any other rule l → r, because if

l → r is older than u→ v, then R is not inter-reduced; if l → r is newer, see

the next point.

2. When s = t ∈ E is made into a unit rule l → r, {l, r} are normal forms of

{s, t} by R. This unit rule can rewrite some rules of N , but cannot rewrite

the left side of any rule of U . If l → r could rewrite u, where u → v ∈ U ,

then l = u and l cannot a normal form of U . In other words, all rules of U

will stay forever.

3. When s = t ∈ E is made into a non-unit rule s′ → t′, s′ and t′ are normal

forms of s and t by R, respectively. This non-unit rule cannot rewrite any

rule of R, because if s′ → t′ can rewrite l → r ∈ R, then it must be the case

that s′ = l and this is a contradiction to the fact that s′ is a normal form of

R. Later, s′ → t′ may be removed from R and added into E if one of the

arguments of s′ is writable by another rule.

Based on the above properties and borrowing some ideas from Kapur’s algo-

rithm as well as Nieuwenhuis and Oliveras’ algorithm, we modify the Knuth-Bendix

procedure by using the following three data structures for each identifier c:

• nf(c): the normal form of c by U ; initially, nf(c) = c.

• class(c): the set of all identifiers b such that nf(b) = c; initially, class(c) =

{c}.

• use(c): the set of rules in N which uses c in its left-hand side; initially use(c) =

∅.

Procedure 12.1.11. The procedure KBG(E,�) takes a set E of ground, flat and

singleton equations and a total order � where f � c for any function symbol f and

identifier c, and generates a canonical rewrite system from E.

proc KBG(E)

1 U := N := ∅; initialize nf(), class(), and use()

2 while (E 6= ∅) do
3 (s = t) := pickEquation(E); E := E − {(s = t)}
4 s := NF (s); t := NF (t) //normalize s and t by R = U ∪N

5 if (s = t) continue // identity is discarded

6 else if identifier?(s) // if s is also an identifier
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7 if |class(t) < |class(s)| x := s; s := t; t := x // switch s and t

8 U := U ∪ {s→ t} // s→ t is a unit rule

9 for c ∈ class(s) do nf(c) := t

10 class(t) := class(t) ∪ class(s); class(s) := ∅
11 for (l→ r) ∈ use(s) do // inter-reduction

12 N := N − {l→ r};E := E ∪ {l = r}
13 else // s→ t is non-unit

14 N := N ∪ {s→ t} // suppose s = f(a1, ..., ak)

15 for i := 1 to k do use(ai) := use(ai) ∪ {s→ t}
16 return U ∪N

proc NF (t)

17 if identifier?(t) return nf(t)

18 else assume t = f(t1, ..., tk)

19 s := “f(NF (a1), ..., NF (ak))
′′

19 if s is flat and (s→ b) ∈ N return nf(b)

20 else return s

Like the Knuth-Bendix completion procedure (Proc. 7.2.15), the above pro-

cedure takes one equation from E at each iteration of the main loop, normalizes

the equation by R = U ∪N , and tries to make a rewrite rule from the normalized

equation and add the rule into R, while keeping R inter-reduced. Some rules of R

go back to E as the result of inter-reduction. The main loop terminates when E

becomes empty. However, KBG has special features which make it efficient than

the general completion procedure:

• Critical pair computation is omitted because inter-reduction is sufficient for

ground equations.

• The normalization procedure NF (t) uses nf(c) instead of U for each identifier

c; the rules of N can be used at most once because t is flat. In fact, NF (t)

can be done in O(|t|) time since we can use a hash table or a trie structure to

store N .

• When a unit rule s→ t is created, we update nf(c) by t for any c ∈ class(s)

(line 9) and merge class(s) into class(t) (line 10). Recall that nf(c) is the

normal form of c by U . Due to the existence of nf(c), rewrite rules in U are

superficial and never deleted nor simplified.
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• The data structure use(s) records the set of non-unit rules which use identifier

s in its left-side (line 14). This data structure is useful at line 9 to remove

rules l→ r from N when l is rewritable by a new rule s→ t.

• When a non-unit rule is added into N (line 14), N as well as R = U ∪ N

remains inter-reduced, so there is no need to rewrite N by the new rule.

The correctness of the above procedure comes directly from Theorem 7.2.22.

Theorem 12.1.12. If E is a set of ground, flat and singleton equations, and n is

the total number of symbols in E, then the procedure KBG runs in O(n log(n)).

Proof. The main loop (lines 3–15) handles s = t of E and each line of the main

loop takes various times to execute. Line 4 takes O(|s| + |t|) or O(1) time if we

consider the arity of any symbol is a constant. Line 9 takes O(|class(s)|) time, lines

11-12 takes O(|use(s)|) time. All other lines take constant time. If each equation

of E is processed only once, then the total time would be O(n), because the sums

of |s| + |t|, |class(s)| or |use(s)| for all equations s = t and identifies c are bound

by O(n). If no equations are processed more than m times, then the total time of

KBG would be O(nm).

How many times an equation can go back from N to E (line 12)? Note that

the root cause of moving an equation from N to E at line 12 is that we have

a new unit rule s → t (line 8) and s appears in the moved equations. Usining

Nieuwenhuis and Oliveras’ idea, when making a rewrite rule s → t from s = t, we

ensure that |class(s)| ≤ |class(t)| (line 7), and then merge class(s) into class(t)

(line 10). In other words, an equation moves from N to E only when (the left-

side of) this equation contains an identifier whose class will be merged into another

class. Since a smaller class cannot be merged into a larger class more than log(n)

times, no equation can be moved from N to E more than log(n) times. So the total

complexity of KBG is bound by O(n log(n)). 2

Theorem 12.1.13. The congruence closure problem for ground equality can be

decided in O(n log(n)), where n is the input size, i.e., the total number of symbols

appearing in the input.

Proof. Given a set A of ground equality, let E ⊆ A be all the equations of A. At

first, we call KBG(flattenSlicing(E)) to obtain a decision procedure R for =E. Next,

for each unequality (s 6= t) ∈ A, we check if NF (s) = NF (t) using R; if yes, return

“unsatisfiable”. The whole process takes O(n log(n)) time (Theorem 12.1.12) as

NF (s) and NF (t) take O(|s|+ |t|) time. 2
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Kapur’s idea of flattening and slicing has been used sucessfully to handle func-

tion symbols which are commutative and associative. Nieuwenhuis and Oliveras’

algorithm can also produce automated proofs of s =E t.

12.2 Linear Arithmetic

Linear arithmetic is a theory of first-order logic where formulas contain vari-

ables over a domain D, where D can be of type rational or integer, and usual

arithmetic operators such as +, −, ·, =, ≤, ≥, etc., in addition to the conventional

Boolean operators. The formulas are linear as the multiplication, i.e., ·, is not

allowed over two variables. An atomic linear arithmetic formula looks like

a1 · x1 + · · ·+ an · xn ≤ b, or a1x1 + · · ·+ anxn ≤ b,

where ≤ can be replaced by other relation operators, variables x1, ..., xn are

of type D, and constants a1, ..., an, b ∈ D. Complex linear arithmetic formulas

can be obtained from atomic formulas by Boolean operators as in first-order logic.

The theory of linear arithmetic also defines the interpretation of linear arithmetic

formulas: all arithmetic functions, predicates, and constants are interpreted by their

well-known mathematical denitions and all Boolean connectives are interpreted as

we are used to from rst-order logic.

Linear arithmetic is very expressive as numerous problems in scientific and in-

dustrial computation can be expressed in linear arithmetic. Linear arithmetic is rel-

evant to automated reasoning because most programs use arithmetic variables (e.g.,

integers) and perform arithmetic operations on those variables. Therefore, software

verication has to deal with arithmetic. Linear arithmetic has been thoroughly in-

vestigated in at least two directions: (i) optimization via linear programming (LP),

integer programming (ILP), and mixed real integer programming (MILP). (ii) first-

order quantifier elimination. In this chapter, we will focus on (i) only. In particular,

we are interested in the satisability of linear arithmetic constraint problems in the

context of the combination of theories, as they occur, e.g., in SMT (satisability

modulo theories) solving. .

12.2.1 Simplex Method by Example

Dantzig’s simplex method (or simplex algorithm) is a popular method for lin-

ear equational systems. Each equational system defines an optimization problem

over the domain of reals by an objective function and a list of linear arithmetic equa-

tions. The simplex algorithm is regarded by many as one of the 10 algorithms with
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the greatest influence on the development and practice of science and engineering

in the 20th century.

Let us consider the following example of a linear equational system:

Maximize 4x1 + 3x2 (12.1)
subject to

x1 + 2x2 + x3 = 16
x1 + x2 + x4 = 9

3x1 + 2x2 + x5 = 24
x1, x2, x3, x4, x5 ≥ 0

For the objective function x0 = 4x1 + 3x2, we may introduce a new variable

x0 and write it in standard form as x0− 4x1− 3x2 = 0, then (12.1) becomes (12.2):

Maximize x0 where (12.2)
(a) x0 − 4x1 − 3x2 = 0
(b) x1 + 2x2 + x3 = 16
(c) x1 + x2 + x4 = 9
(d) 3x1 + 2x2 + x5 = 24

x1, x2, x3, x4, x5 ≥ 0

Note that (12.2) has a simple matrix representation, which is used for the

implementation of the simplex method.

x0 x1 x2 x3 x4 x5 rhs
1 −4 −3 0 0 0 0
0 1 2 1 0 0 16
0 1 1 0 1 0 9
0 3 2 0 0 1 24

Gien a linear equational system, a basic variable is a variable which appears

only once in the system. In its standard form, the coefficient of a basic variable is

1. For the present example, x0, x3, x4, and x5 are basic variables; x1 and x2 are

non-basic variables. It is easy to spot the basic variables in the matrix where the

column corresponding to the variable has only one non-zero entry. The objective

function x0 is always basic. In a linear equational system, if the number of variables

is more than the number of equations, it is easy to locate a basic variable for each

equation by arithmetic operations.

In the simplex method, a basic variable and a non-basic variable can exchange

their status if this exchange increases the objective function value. The simplex

method repeats this kind of exchanges until an optimal value is obtained.

In the present example, x0 is a function of x1, x2, x3, x4, x5. The value of

(x1, x2, x3, x4, x5) defines a point in the search space. The points considered by the
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simplex method are those points where non-basic variables are zero and the values

of the basic variables are decided by the equations. In the present example, we set

non-basic variables x1 = x2 = 0. From the four equations of (12.2), we have x0 = 0,

x3 = 16, x4 = 9, and x5 = 24. So the starting point considered by the simplex

method is (0, 0, 16, 9, 24).

The simplex method searches an optimal solution by repeatedly exchanging a

basic variable and a non-basic variable. Next, let us see how to choose basic and

non-basic variables for exchange.

From (12.2)(a), x0 = 4x1 + 3x2. In order to increase the value of x0, we need

to increase x1 or x2, one variable at a time. If x1 increased by 1, x0 gains 4. If x2

is increased by 1, x0 gains 3. Obviously, x1 is preferred for the faster increment of

x0. Hence, x1 is chosen for exchange.

Once the non-basic variable is chosen, what basic variable, x3, x4, or x5,

should we replace? To answer this question, consider (12.2)(b)− (d) in the situation

of x2 = 0:

x1 + x3 = 16
x1 + x4 = 9
3x1 + x5 = 24

which give us
x3 = 16− x1 ≥ 0
x4 = 9− x1 ≥ 0
x5 = 24− 3x1 ≥ 0

because x3, x4, x5 ≥ 0. From 16 − x1 ≥ 0, x1 ≤ 16; from 9 − x1 ≥ 0, x1 ≤ 9; from

24 − 3x1 ≥ 0, x1 ≤ 8. Since x1 must satisfy all the three inequalities, we choose

x1 = min{16, 9, 8} = 8. Since this value comes from x5 = 24 − 3x1 ≥ 0, x5 is

chosen for becoming non-basic. The equation 3x1+2x2+x5 = 24 is called the pivot

equation and x5 is called the pivot variable; the process of choosing a pivot equation

is called pivoting.

From x1 = 8 and x1 + x3 = 16, x3 has a new value 8. From x1 + x4 = 9,

x4 = 1. So the next search point consider by the simplex method is (8, 0, 8, 9, 0),

where x2 and x5 are non-basic.

Now, we need to normalize (12.2) so that basic variables appear only once and

x0 is expressed as a function of non-basic variables. This can be done as follows:

from the pivot equation ((12.2)(c)), we have

x1 + (2/3)x2 + (1/3)x5 = 8 (12.3)

Adding (12.3) 4 times to (12.2)(a), we obtain

x0 − (1/3)x2 + (4/3)x5 = 32

Subtracting (12.3) from (12.2)(b), we obtain

(4/3)x2 + x3 − (1/3)x5 = 8
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Subtracting (12.3) from (12.2)(c), we obtain

(1/3)x2 + x4 − (1/3)x5 = 1

Putting these equations together, we obtain a new equational system in standard

form:

Maximize x0 where (12.4)
(a) x0 − (1/3)x2 + (4/3)x5 = 32
(b) (4/3)x2 + x3 − (1/3)x5 = 8
(c) (1/3)x2 + x4 − (1/3)x5 = 1
(d) x1 + (2/3)x2 + (1/3)x5 = 8

x1, x2, x3, x4, x5 ≥ 0

The corresponding matrix is given below:

x0 x1 x2 x3 x4 x5 rhs
1 0 −1/3 0 0 4/3 32
0 0 4/3 1 0 −1/3 8
0 0 1/3 0 1 −1/3 1
0 1 2/3 0 0 1/3 8

At the point (8, 0, 8, 9, 0), the value of x0 is 32. Is this the optimal value for

x0? From (12.4)(a), we have

x0 = (1/3)x2 − (4/3)x5 + 32

Now x0 = 32 when x2 = x5 = 0. If x2 is increased by 1, x0 gains 1/3. That is, there

is a space for increment of x0 by choosing x2 as a new basic variable.

The process of selecting an existing basic variable for exchange is the same

as before: Finding the pivot variable in a pivot equation. Assuming x5 = 0, from

(12.4)(b)− (d), we have

(4/3)x2 + x3 = 8
(1/3)x2 + x4 = 1
x1 + (2/3)x2 = 8

which give us
x3 = 8− (4/3)x2 ≥ 0
x4 = 1− (1/3)x2 ≥ 0
x1 = 8− (2/3)x2 ≥ 0

From 8− (4/3)x2 ≥ 0, x2 ≤ 6; from 1− (1/3)x2 ≥ 0, x2 ≤ 3; from 8− (2/3)x2 ≥ 0,

x2 ≤ 12. Hence, we choose x2 = 3 to satisfy all the three inequalities, and the pivot

equation is (1/3)x2 + x4 − (1/3)x5 = 1 ((12.4)(c)). Now, multiply (12.4)(c) by 3,

we obtain

x2 + 3x4 − x5 = 3 (12.5)
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Multiply (12.5) by 1/3 and add the result to (12.4)(a), we have

x0 + x4 + x5 = 33 (12.6)

Multiply (12.5) by −4/3 and add the result to (12.4)(b), we have

x3 − 4x4 + x5 = 4

Multiply (12.5) by −2/3 and add the result to (12.4)(d), we have

x1 − 2x4 + x5 = 6

The matrix representation of these equations is given as follows.

x0 x1 x2 x3 x4 x5 rhs
1 0 0 0 1 1 33
0 0 0 1 −4 1 4
0 0 1 0 3 −1 3
0 1 0 0 −2 1 6

From (12.6), we have x0 = 33 − x4 − x5. Since x4, x5 ≥ 0, x0 has the maximal

value 33 when x4 = x5 = 0. The values of basic variables can be computed from

the equations with x4 = x5 = 0: x1 = 6, x2 = 3, and x3 = 6. That is, x0 has the

optimal value at point (x1, x2, x3, x4, x5) = (6, 3, 4, 0, 0). The simplex method stops

with this result.

From this example, we can see that the simplex method is a local search pro-

cedure which starts from (0, 0, 16, 9, 24), finds its best neighboring point (8, 0, 8, 9, 0)

through the pivot equation, then finds the next point (6, 3, 4, 0, 0). The search stops

when it reaches a local optimum. Fortunately, since all the constraints are linear, a

local optimum is the global optimum.

12.2.2 The Simplex Algorithm

Suppose the linear equational system has m constraints and n variables, with

the first m+ 1 variables as basic variables. Its standard form is then:

Maximize x0 where (12.7)
x0 + · · · + a0,m+1xm+1 + · · ·+ a0,nxn = b0

x1 + · · · + a1,m+1xm+1 + · · ·+ a1,nxn = b1
x2 + · · · + a2,m+1xm+1 + · · ·+ a2,nxn = b2

. . .
...

xm + am,m+1xm+1 + · · ·+ am,nxn = bm
x1, x2, ..., xn ≥ 0
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Theorem 12.2.1. (optimality criterion) For the linear equational system of

(12.7), if a0,j ≥ 0 for j = m + 1, ..., n, then the maximal value of x0 is b0 and

is attained at the point (b1, b2, ..., bm, 0, ..., 0).

Proof. From the first row of (12.7), we have x0 = b0 − (a0,m+1xm+1 + · · ·+ a0,nxn).

Since a0,j ≥ 0 and xj ≥ 0 for j = m+1, ..., n, a0,m+1xm+1 + · · ·+ a0,nxn ≥ 0. Hence

the maximal value of x0 is b0 when xj = 0 for j = m + 1, ..., n. In this situation,

xi = bi for i = 1, ...,m. 2

Theorem 12.2.2. (Unbounded criterion) For the linear equational system of

(12.7), if there is an index j, m+ 1 ≤ j ≤ n, such that a0,j < 0 and ai,j ≤ 0 for all

i = 1, ...,m then the optimal value of x0 is ∞.

Proof. If there is an index j, m+1 ≤ j ≤ n, a0,j < 0, and ai,j ≤ 0 for all i = 1, ...,m,

then we have infinite many points, where xj can have any value, xi = bi− ai,jxj for

i = 1, ...,m, and xi = 0 for m + 1 ≤ i ≤ n and i 6= j. Each of these points defines

a feasible solution point for x0, i.e., x0 = b0 − a0,jxj. Thus, x0 goes to ∞ when xj

goes to ∞ because a0,j < 0. 2

Example 12.2.3. Suppose we wish to maximize x0 with

x0 + 2x3 − 3x4 = 10
x1 + 2x3 − x4 = 3

x2 − x3 − 2x4 = 2

Let x3 = 0, then (x1, x2, x3, x4) = (x4 + 3, 2x4 + 2, 0, x4) is a feasible solution point

for x0 = 3x4 + 10, which goes to ∞ when x4 does. 2

The above two theorems give us two halting criteria for the simplex algorithm:

one gives us the optimum solution and the other gives us an unbound solution. Let

haltCondition(M) be the Boolean function which checks the conditions in the above

two theorems. Then the outline of the simplex algorithm can be described below,

following the illustration by the example in the previous subsection.

proc Simplex(S)

1 Convert S in standard form and store it in matrix M .

2 Let r be the row of M with basic variable x0, which is to be maximized.

3 while ¬ haltCondition(M) do

4 select a non-basic variable v1 in r with the minimal coefficient.

5 select a basic variable v2 by pivoting with respect to v1.

6 switch the roles of v1 and v2 and convert M in standard form.
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The complexity of the simplex algorithm is exponential in the worst case.

Since there are polynomial decision procedures for linear programming, this means

that there are at least theoretically faster decision procedures. But in contrast

to those polynomial decision procedures, the simplex algorithm has all properties

necessary for an efficient linear programming solver: It produces minimal conflict

explanations, handles backtracking e However, in practice, ciently, and is highly

incremental. In practice, these properties are more important than the dierence

between polynomial and exponential worst-case complexity [61]. It also helps that

the simplex algorithm rarely reaches its st case in practice.

12.2.3 Linear Programming

The name of “linear programming” exists before the age of computers. Here

“programming” means “table”, as the data of a linear programming problem, or

linear program for short, are usually stored in a table.

The standard form of a linear program is give as follows:

Maximize a0,1x1 + · · ·+ a0,nxn (12.8)
subject to

a1,1x1 + a1,2x2 + · · ·+ a1,nxn ≤ b1
a2,1x1 + a2,2x2 + · · ·+ a2,nxn ≤ b2

· · ·
am,1x1 + am,2x2 + · · ·+ am,nxn ≤ bm

x1, x2, ..., xn ≥ 0

where each ai,1x1+ai,2x2+ · · ·+ai,nxn ≤ bi is a atomic linear constraint and we are

looking for values of xi, 1 ≤ i ≤ n, such that the objective function is maximized.

Example 12.2.4. Below is a linear program with n = 2 and m = 3:

Maximize 4x1 + 3x2 (12.9)
subject to

x1 + 2x2 ≤ 16
x1 + x2 ≤ 9
3x1 + 2x2 ≤ 24
x1, x2 ≥ 0

Its solution will be discussed shortly. 2

Many application problems can be specified as linear programs. To solve this

problem using the simplex method, we introduce m new variables, called slack, one

for each of the m constraints, to convert inequalities into equations.
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Example 12.2.5. Continue from the previous example, we introduce three vari-

ables, x3, x4, and x5, and convert (12.8) into a linear equational system.

Maximize 4x1 + 3x2 (12.9)
subject to

x1 + 2x2 + x3 = 16
x1 + x2 + x4 = 9
3x1 + 2x2 + x5 = 24
x1, x2, x3, x4, x5 ≥ 0

(12.9) is identical to (12.1) in section 12.2.1 and we have seen how (12.1) is

solved by the simplex method. Hence, the optimal solution of 4x1 +3x2 is 33 when

x1 = 6 and x2 = 3. 2

By definition, linear programming is an optimization problem. We can convert

it into a decision problem by introducing a constant c, so that “Maximize a0,1x1 +

· · ·+ a0,nxn” becomes “Decide a0,1x1 + · · ·+ a0,nxn ≥ c”. Another decision problem

related to linear programming is to decide if the set of all constraints consistent.

That is, can we find values of x1, x2, ..., xn such that all constraints are true? This

problem can be easily solved if we convert linear programming into linear equational

system through slack variables.

12.2.4 Integer Programming

The standard form of an integer program is the same as that of linear pro-

gramming, with the additional constraints that the variables take only integers.

Maximize a0,1x1 + · · ·+ a0,nxn (12.10)
subject to

a1,1x1 + a1,2x2 + · · ·+ a1,nxn ≤ b1
a2,1x1 + a2,2x2 + · · ·+ a2,nxn ≤ b2

· · ·
am,1x1 + am,2x2 + · · ·+ am,nxn ≤ bm

x1, x2, ..., xn ≥ 0x1, x2, ..., xn are integers,

where ai,j, bi are assumed to be integers.

If the variables take only 0 or 1, integer programming becomes 0-1 linear

programming. While linear programming can be solved in polynomial time, 0-1

linear programming is NP-complete.

Whereas the simplex method is effective for solving linear programs, there is

no single technique for solving integer programs. Instead, a number of procedures
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have been developed, and the performance of any particular technique appears to be

highly problem-dependent. Methods to date can be classified broadly as following

one of three approaches:

• Enumeration techniques: The well-known enumeration technique is the branch-

and-bound procedure. This procedure is very much like the branch-and-bound

procedure for maximum satisfiability (section 4.5.2) and especially effective for

0-1 linear programming.

• Cutting-plane techniques: The basic idea of the cutting plane method is to

cut off parts of the feasible region of the linear programming search space,

so that the optimal integer solution becomes an extreme point and therefore

can be found by the simplex method. In practice, the branch-and-bound

method outperforms mostly the cutting plane method. Cutting plane is the

first algorithm developed for integer programming that could be proved to

converge in a finite number of steps. Even though the technique is considered

not efficient, it has provided insights into integer programming that have led

to other, more efficient, algorithms.

In addition, several composite procedures have been proposed, which combine

techniques using several of these approaches. In fact, there is a trend in computer

systems for integer programming to include a number of approaches and possibly

utilize them all when analyzing a given problem. The interested reader may consult

a textbook on integer programming for the details of these techniques.

The constraints using other predicates can be easily converted into the stan-

dard form, as shown in the following table.

input output
A ≥ B B ≤ A
A = B A ≤ B ∧B ≤ A
A > B B + 1 ≤ A
A < B A+ 1 ≤ B

input output
¬(A > B) A ≤ B
¬(A < B) B ≤ A
¬(A ≥ B) A+ 1 ≤ B
¬(A ≤ B) B + 1 ≤ A

Example 12.2.6. Consider the constraint ¬(x1 − 2x2 < 3). Apply ¬(A < B) ≡
B ≤ A, 3 ≤ x1 + 2x2. Moving 3 to the right and x1 − 2x2 to the left of ≤, we have

−x1 + 2x2 ≤ −3. 2

The top two rows of the above table can be also used for preprocessing linear

programming problems. Constraints like x ≥ a for a 6= 0 can be replaced by y ≥ 0

with x = y + a.
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12.2.5 Difference Arithmetic

12.3 Finite-length Linear Data Types

12.3.1 Bit Vectors

12.3.2 Arrays

12.3.3 Points

12.4 Satisfiability Modulo Theories (SMT)

Solvers for satisfiability modulo theories (SMT) check the satisfiability of first-

order formulas containing operations from various theories such as the Booleans,

bit-vectors, arithmetic, arrays, and recursive data types. SMT solvers are exten-

sions of Boolean satisfiability solvers (SAT solvers) that check the satisfiability of

formulas built from Boolean variables and operations. SMT solvers have a wide

range of applications in hardware and software verification, extended static check-

ing, constraint solving, planning, scheduling, test case generation, and computer

security.

This section serves as a survey of SMT, demonstrating various concepts and

techniques by examples, and present some of the key algorithms in the form of

pseudo-code. Our survey uses the materials from Albert Oliveras and Cesare

Tinelli’s lectures on SMT.

Many theories of interest have (efficient) decision procedures for the satisfi-

ability of sets (or conjunctions) of literals. In practice, we need to deal with the

following three problems:

1. arbitrary Boolean combinations of literals

2. literals over more than one theory

3. formulas with quantifiers

The suggested solutions to the above problems will (1) DPLL(T ), an extension

of SAT solvers with theories; (2) Combination of theories; and (3) Elimination of

quantifiers. These are the topics of the next three subsections.
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12.4.1 DPLL(T ): Extension of DPLL with Theory T

In Chapter 4, we have presented the DPLL algorithm in details and described

several techniques for the efficient implementation of DPLL for propositional satis-

fiability. DPLL is an enumeration-based search method which tries to find a model

for a set of propositional clauses. Here the model itself can be viewed as a set of

literals which are true in the model.

Example 12.4.1. Consider the problem of deciding the satisfiability of the follow-

ing EUF formula in conjunctive normal form:

g(a) = c ∧ (f(g(a))¬f(c) ∨ g(a) = d) ∧ c 6= d

Let T be EUF. Since this is not a conjunction of literals, the methods proposed

in Section 1 cannot be directly applied. The first step of DPLL(T ) is abstraction:

Using propositional variables for each atomic formula and obtain an instance of

SAT solvers. That is, with p1 for g(a) = c, p2 for f(g(a)) = f(c), p3 for g(a) = c,

and p4 for c = d, we obtain the following propositional clauses:

{p1, ¬p2 ∨ p3, ¬p4}

DPLL(T ) will feed these clauses to a SAT solver which returns {p1,¬p2,¬p4}
as the first model. The EUF formula corresponding to this model is

g(a) = c ∧ f(g(a))¬f(c) ∧ c 6= d

which can be proved to be unsatisfiable by an EUF solver. DPLL(T ) will add the

negation of the model as a new clause (¬p1 ∨ p2 ∨ p4), together with the original

clauses, into the SAT solver to ask for the next model. The SAT solver will return

{p1, p3, ¬p4} as the second model. The EUF formula corresponding to this model

is

g(a) = c ∧ g(a) = d ∧ c 6= d

which can be proved to be unsatisfiable, too. DPLL(T ) then adds (¬p1 ∨ ¬p3 ∨ p4)
to the SAT solver, which will return “unsatisfiable”. Finally, DPLL(T ) claims that

the original formula is unsatisfiable as the SAT solver runs out of the models. 2

The above example illustrates several interesting aspects of DPLL(T ).

1. Atomic formulas in theory T are abstracted to propositional variables. This

abstraction is done once for all before a SAT solver is called.

2. The SAT solver is called multiple times, each time with an increment of input

clauses, Thus, an incremental SAT solver is desired to support DPLL(T ).
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3. A theory solver is called multiple times, each with a conjunction of literals of

the theory as input. Each input corresponds to a propositional model found by

the SAT solver. The theory solver does not need to be incremental because the

input changes unpredictably. That is, the interaction between a SAT solver

and a theory solver goes back and forth in DPLL(T ).

4. This approach of solving theory satisfiability via propositional satisfiability is

said to be lazy: Theory information is used lazily when checking T -consistency

of propositional models. In contrast, the eager approach converts the original

theory satisfiability problem into an equisatisfiable propositional instance.

5. In this lazy approach, every tool does what it is good at:

• SAT solver takes care of Boolean combinations;

• Theory solver takes care of conjunction of literals in theory.

High-level view gives the same algorithm as a CDCL SAT solver:

proc DPLL(T )

S := abstraction(T )

while (true)

while (propagateGivesConflict(T, S))

if (decisionLevel==0) return UNSAT

else analyzeConflict(T, S)

restartIfApplicable(S)

if (!decide(S)) return SAT; // All variables assigned

abstraction(T ): This procedure takes T , a quantifier-free CNF formulas, as

input and replace each atomic formula (treating variables as identifiers) by a propo-

sitional variable so that T is abstracted as a set S of propositional clauses.

propagateGivesConflict(T, S):

proc propagateGivesConflict(T, S): Booleangood := true

while (good do

// unit propagate

if (BCPgivesConflict(S)) return true

// check T -consistency of the model

if (IsModelInconsistent(T, S)) return true

// theory propagation

good := TheoryPropagate(T, S)

return false
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The three procedures in propagateGivesConflict(T, S):

• BCPgivesConflict(S): This is a modification of BCP for propositional logic

(Section 4.1). It returns true if a conflict is found.

• IsModelInconsistent(T, S): This procedure takes the current partial model

from S and checks if the corresponding set of literals is consistent by theory

solver for T . It returns true if the set of literals is inconsistent.

• TheoryPropagate(T, S): This procedure is a continuation of IsModelInconsistent(T, S).

In addition to consistency checking, the theory solver will compute some new

literals in theory as logical consequences of the set of literals. The correspond-

ing propositional literals will be fed to S. This procedure is not needed for

completeness. If the propagation is expensive, it can be omitted, or is called

when a full propositional model is found.

analyzeConflict(T, S) is a modification of analyzeConflict(c) in section 4.2.

proc analyzeConflict(T, S)

if the conflict comes from BCPgivesConflict(T, S)

c := conflictingClause

else c := explainTheoryInconsistency(T )

while c contains more than one literal of last decisionLevel

l := last literal assigned in c

c := resolution(c, reason(l))

undo(secondMaxLevel(c))

insertNewClause(c, S)

The procedures undo and insertNewClause are the same as those in section 4.2

for conflict-directed clause learning. The procedure explainTheoryInconsistency(T )

is a continuation of the procedure IsModelInconsistent(T, S) and perform the fol-

lowing steps:

1. Find a conjunction of literals l1∧· · ·∧ ln such that they are part of the current

partial the model when T-inconsistency was found and their corresponding

literals in theory are T -inconsistent;

2. Return ¬(l1 ∧ · · · ∧ ln) as a propositional clause.

Example 12.4.2. Suppose T contains some clauses plus the following:

(b = c), h(a) = h(c) ∨ p, a = b ∨ ¬p ∨ a = d, a = b ∨ a 6= d
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The abstraction procedure will convert T into S with the following clauses:

(s), (t ∨ p), (q ∨ ¬p ∨ r), (q ∨ ¬r)

where q stands for a = b, r for a = d, s for b = c, and t for h(a) = h(c).

BCP(S) will make s (i.e., b = c) to be true. Suppose Decide chooses ¬t
(h(a) 6= h(c)) to be true. BCP(S) will make p to be true due to (t ∨ p).

T -Propagation will make ¬q (a 6= b) to be true, since h(a) 6= h(c) and b = c are

true. So Explain(a¬b) will be {h(a) 6= h(c), b = c} and Reason(¬q is ( 6= q∨¬s∨ t).
With ¬q being true, BCP(S) will find that (q ∨ ¬p ∨ r) becomes unit, so r

(a = d) becomes true. Continuing BCP(S), (q ∨ ¬r) becomes conflicting.

With (q ∨¬r) being the conflicting clause, conflictAnalysis(T, S) will perform

the following resolutions:

• Resolve on r with Reason(r) = (q ∨ ¬p ∨ r) and (q ∨ ¬r), the resolvent is

(q ∨ ¬p).

• Resolve on 6= q with Reason(¬q) = (¬q ∨ ¬s ∨ t) and (q ∨ ¬p), the resolvent

is (¬p ∨ ¬s ∨ t).

• Resolve on p with Reason(p) = (t ∨ p) and (¬p ∨ ¬s ∨ t), the resolvent is

(¬s ∨ t).

The new clause generated by conflictAnalysis(T, S) is (¬s ∨ t). 2

For certain theories, consistency checking requires case reasoning. Example:

consider the theory of arrays and the set of literals read(write(A, i, x), j) 6= x

read(write(A, i, x), j) 6= read(A, j)

A complete T-solver might need to reason by cases via internal case splitting

and backtracking mechanisms. An alternative is to lift case splitting and backtrack-

ing from the T-Solver to the SAT engine. Basic idea: encode case splits as sets of

clauses and send them as needed to the SAT engine for it to split on them. Possible

benefits: All case-splitting is coordinated by the SAT engine Only have to imple-

ment case-splitting infrastructure in one place Can learn a wider class of lemmas

(more details later)

12.4.2 Combination of Theories

In software verification, formulas like the following one arise:

a = b+ 2 ∧ A = write(B, a+ 1, 4) ∧ read(A, b+ 3) = 2 ∧ f(a− 1) 6= f(b+ 1)

To deal efficiently with this formula, we need the following theories:
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• The theory of linear arithmetic (TLA)

• The theory of arrays (Tarr)

• The theory of uninterpreted functions (TEUF )

Now the question is: Given T -solvers for the three individual theories, can we

combine them to obtain one for (TLA ∪ Tarr ∪ TEUF )? Under certain conditions the

Nelson-Oppen combination method gives a positive answer.

12.4.2.1 Nelson-Oppen Combination

Definition 12.4.3. A theory T is stably-infinite if every T -satisfiable quantifier-free

formula has an infinite model.

Definition 12.4.4. A theory T is convex if for any set S of literals, S |= a1 =

b1 ∨ · · · an = bn, then S |= ai = bi for some 1 ≤ i ≤ n.

proc NelsonOppen(S): BooleanPurify S and split it into S1 and S2.

while (true do

if S1 is T1-unsatisfiable return false

if S2 is T2-unsatisfiable return false

if S1 |= (x = y) for (x = y) ∈ E − S2

S2 = S2 ∪ {x = y}
if S2 |= (x = y) for (x = y) ∈ E − S1

S1 = S1 ∪ {x = y}
return true

Theorem 12.4.5. Given two signature-disjoint, stably-infinite and covex theories

T1 and T2, and a set S of literals over the signature of T1 ∪ T2, the (T1 ∪ T2)-

satisfiability of S can be checked with the Nelson-Oppen algorithm.

12.5 Exercise Problems

Drill Questions

1. In Example 12.1.1, the rewrite rules are made from

{(x0 = a[3], x1 = f(a[2], x0), x2 = f(a[1], x1), y = f(a[1], f(a[2], a[3]))}

by orienting them from left to right. Please show x2 = y by the rewrite rules

obtained by orienting the above equations from right to left and list each step

of rewriting.



429

2. Run NelsonOppen(A) by hand for A = {f 3a = a, f 5a = a}. Using Exam-

ple 12.1.6 as model to describe the changes of up(v), h(v), use(v) for any

node v.

3. If you have a software tool to solve a linear program for maximizing an objec-

tive function, how to use this tool to solve a linear program where the goal is

to minimize an objective function?

Exercises

1. Given the set E of ground equations from Example 12.1.10,

{f(a) = c1, f(c1) = c2, f(c2) = a, f(c2) = c3, f(c3) = c4, f(c4) = a}

please run the Knuth-Bendix procedure on E1 with the ordering f > a > c1 >

c2 > c3 > c4, and list all the rewrite rules made from the procedure in the

order they were created.

2. Let E0 = {f(a, g(a)) = g(g(a))} (Example 12.1.9). Please runKBG(flattenSlicing(E0))

by hand and show the contents of nf(c), class(c), and use(c) for each identifier

c before the main loop of KBG.

3. The final matrix given in section 12.2.1 is

x0 x1 x2 x3 x4 x5 rhs
1 0 0 0 1 1 33
0 0 0 1 −4 1 4
0 0 1 0 3 −1 3
0 1 0 0 −2 1 6

Please write the corresponding linear equational system in standard form and

show step by step how the initial matrix became the final matrix through

operations on the matrices (such as multiplying one row by constant, or sub-

tracting one row by another row). [2] [1]
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