
 

 

 
Content-based Publish-Subscribe Over Structured P2P Networks 

 
 

Peter Triantafillou and Ioannis Aekaterinidis 
Research Academic Computer Technology Institute and 

Department of Computer Engineering and Informatics, University of Patras, Greece 
{peter,aikater}@ceid.upatras.gr  

 
 

 

Abstract 
 
In this work we leverage the advantages of the Chord 

DHT to build a content-based publish-subscribe system that 
is scalable, self-organizing, and well-performing. However, 
DHTs provide very good support only for exact-match, 
equality predicates and range predicates are expected to be 
very popular when specifying subscriptions in pub/sub 
systems We will thus also provide solutions supporting 
efficiently subscriptions with range predicates in Chord-
based pub/sub systems. 
  
 
1. Introduction 
 

Publish/subscribe systems are becoming very popular for 
building large scale distributed systems/applications. The 
main functionality of pub/sub systems is the delivery of 
published notifications from every producer (publisher) to 
all interested consumers (subscribers).  Publishers, who are 
completely unaware of the existence of the consumers, 
publish events (information) through the system by 
specifying the values of a set of well defined attributes. The 
consumers are expressing their interest through appropriate 
subscriptions and wait until they are informed about a 
matching event. A publish/subscribe infrastructure is 
responsible for matching events to related subscriptions and 
delivering the matching events to interested consumers.  

Building a centralized publish/subscribe system has the 
advantage of having a global image of the system and thus 
making the matching algorithm much easier to implement. 
This approach suffers from scalability problems as the 
number of publications and subscriptions increases. Thus, 
the decentralized approach is more appropriate. The main 
challenge in a distributed environment is the development 
of an efficient distributed matching algorithm.  

The peer-to-peer (p2p) paradigm is appropriate for 
building large-scale distributed systems/applications. P2p 
systems are completely decentralized, scalable, and self-
organizing.  A popular class of them is the �structured� p2p 
systems. The most prominent of these systems are built 

using a Distributed Hash Table (DHT [7],[8],[9]), which is 
a mechanism that provides scalable resource look-
up/routing. 

 
2. Related work 
 
2.1 Publish/Subscribe systems 
 

There are two types of publish/subscribe systems: i) 
topic based and ii) content based. Topic based systems are 
much like newsgroups. Users express their interest by 
joining a group (a topic). Then all messages related to that 
topic are broadcasted to all users participating to the 
specific group. 

Content-based systems are preferable as they give users 
the ability to express their interest by specifying predicates 
over the values of a number of well defined attributes. The 
matching of publications (events) to subscriptions (interest) 
is done based on the content (values of attributes).  

Publish/subscribe systems can be built in a distributed 
manner, avoiding the lack of scalability and fault-tolerance 
of centralized approaches. Distributed solutions are mainly 
focused on topic-based publish/subscribe systems [1], [2], 
[3]. Some attempts on distributed content-based 
publish/subscribe systems use routing trees to disseminate 
the events to interested users based on multicast techniques 
[4], [5], [15], [16].  Some other attempts use the notion of 
rendezvous nodes which ensure that events and 
subscriptions meet in the system [14].  

Some approaches have also considered the coupling of 
topic-based and content-based systems.  The authors in [6] 
used a topic-based system (Scribe [1]) that is implemented 
in a decentralized manner using a DHT (Pastry [7]). In their 
approach the publications and the subscriptions are 
automatically classified in topics, using an appropriate 
application-specific schema. A potential drawback of this 
approach is the design of the domain schema as it plays 
fundamental role in the system�s performance. Moreover, it 
is likely that false positives may occur. 

 
 



 

 

 
2.2 Chord and DHTs  

 
Distributed Hash Tables (DHTs [7], [8], [9], [11]) have 

been adopted to create peer-to-peer data networks. In a 
DHT each node has a unique identifier (nodeID) selected 
from a very large address space. Each message can be 
associated with a key which is a unique identifier of the 
same type as nodeID. The main functionality of a DHT is 
the following: giving a (message, key) pair the system 
locates (routes the message) to the node whose nodeID is 
numerically closest to that key. DHTs ensure that routing 
requires O(log(N)) hops to locate/store a message (where N 
is the maximum number of nodes in the network). 

Chord [9] is a fairly simple structured peer-to-peer 
network based on a DHT. Compared to unstructured peer-
to-peer networks like Gnutella [12] and MojoNation [13] 
where neighbors of peers are defined in rather ad hoc ways, 
Chord is structured because of the way peers define their 
neighbors. Chord provides an exact mapping between node 
identifiers (nodeID) and keys associated with messages 
using consistent hashing Error! Reference source not 
found.. NodeIDs and keys are mapped to a large circular 
identifier space, e.g. 0�2160 for 160-bit IDs. Values in this 
space can be viewed as positions in the ring defining the 
name/identifier space. Thus, given a key, Chord maps it to 
the (ring position) node whose nodeID is equal to the key. If 
this node does not exist, the key is mapped to the first 
successor of this node on the ring. This node is called the 
successor of the key.  

Chord efficiently determines the successor of an 
identifier (key) in ½log(N) hops on average (and in 
O(log(N) hops in the worst case). In the steady state each 
node maintains routing information of up to O(log(N)) other 
nodes. Adding or removing a node from the network can be 
achieved at a cost of O(log2(N)) messages.  Chord has 
become very popular and has been used as a building block 
for several large-scale distributed systems. 

 
2.3 Contribution: Publish/Subscribe systems over 
DHTs 
 

We choose to use Chord because of its simplicity and 
popularity within the peer-to-peer community. We leverage 
the advantages of Chord to build a content-based publish-
subscribe system that is scalable, self-organizing, and well 
performing.  

Furthermore, although DHTs provide very good support 
for exact-match equality predicates (i.e. find the node 
storing the item with id=itemID) they do not provide good 
support for range predicates (which are typically very 
popular when specifying subscriptions in pub/sub systems). 
We will show how to build Chord-based pub/sub systems 

which can support range predicates. We will first provide a 
startup solution and will then extend the Chord substrate to 
further improve the performance of matching events against 
subscriptions with range predicates. As far as we know, this 
is the first work that: (i) leverages DHT research to build 
large scale content-based pub/sub systems and (ii) while 
supporting subscriptions with range predicates efficiently.  

Event 1 

Type Min 
vmin(!)

Max 
vmax(!)

Precision 
vpr(!) 

Name 
 

Value 
v(!) 

string - - - Exchange =NYSE
string - - - Symbol =OTE 
float 0.0 20.0 0.01 Price =8.40 
float 0.0 20.0 0.01 High =8.80 
float 0.0 20.0 0.01 Low =8.22 

Figure 1. An event example. 
 

Subscription 1 

Name Value 
Exchange =NYSE 
Symbol =OTE 

Price <8.70 
Price >8.30  

Subscription 1 

Name Value 
Symbol =OTE 

Price =8.20 
Low <8.05  

        Figure 2. Example with two subscriptions. 
 
3. Publish/Subscribe over Chord 

 
The Event/Subscription Schema. 
The event schema of this model (Figure 1) is a set of typed 
attributes. Each attribute ai consists of a type, a name and a 
value v(ai). The type of an attribute belongs to a predefined 
set of primitive data types commonly found in most 
programming languages. The attribute�s name is a simple 
string, while the value can be in any range defined by the 
minimum and maximum (vmin(ai), vmax(ai)) values along 
with the attribute�s precision vpr(ai). 

The subscription schema is more general (Figure 2), 
allowing to express a rich set of subscriptions which contain 
all interesting subscription-attribute data types (such as 
integers, strings, etc) and all common operators (=, ≠,<, >, 
etc.). An event matches a subscription if and only if all the 
subscription�s attribute predicates/constraints are satisfied. 
A subscription can have two or more constraints for the 
same attribute which can be thought as if we had two or 
more different subscriptions with unique constraints over 
their attributes. Finally, an event can have more attributes 
than those mentioned in the subscription attributes. 
 
The Subscription Identifier. 

A subscription id is the concatenation of three parts: 



 

 

1. c1: The id of the node receiving the subscription (i.e., 
where the subscription �belongs�). The size of this field 
is m bits in a Chord ring with an m-bit identifier address 
space.  

2. c2: The id of the subscription itself. The size of this field 
in bits is equal to the rounded-up base-2 logarithm of the 
maximum number of outstanding subscriptions a node 
can have (e.g. if each node needs to manage 1,000,000 
of subscriptions, c2 will be 20-bits long). 

3. c3: The number of attributes on which constraints are 
declared. The maximum value of this field is equal to the 
total number of attributes supported by the system.  

1 0 0 0 1 1 1 0 1 
!   c1=2   " !   c2=2  " !   c3=5   " 

Figure 3. An example subscription id (subID). 
 

Assume an example Chord ring with a 3-bit identifier 
address space. Each node can support 8 outstanding 
subscriptions with an attribute schema including 7 
attributes. The subscription id depicted in Figure 3 
identifies subscription 3 (c2=3), belonging to node 4 (c1=4), 
comprised of constraints on 5 attributes (c3=5).  

We should note that for every subscription there is a 
node in the network storing metadata information for it. 
That node is identified by the c1 field of the subscription id 
and it keeps metadata information about the subscription 
(for example the IP address of the user that generated the 
subscription etc.). 
 
3.1 Processing subscriptions 

 
Consider, for simplicity, that there is an example pub/sub 

system supporting only one attribute (a1). In general, 
subscriptions specify a single value or a range of values for 
the attribute a1. The main idea behind our approach is to 
store the subscription ids into those nodes of the Chord ring 
that were selected by appropriately hashing the values of 
the attributes in the subscriptions. The matching of an 
incoming event can be performed simply by asking those 
nodes for stored subscription ids. 

 
3.1.1 Storing subscriptions. Storing subscription is done 
using the hash function provided by Chord (later we will 
change this to improve performance). Consider that this 
hash function h() (e.g., SHA-1) returns an identifier 
uniformly distributed in the address space used for node 
identifiers. Thus, the result of this hash function h() for the 
value v(ai) of the attribute ai   is k (k=h(v(ai))).  

In the case where a subscription contains an equality 
operator on the single attribute of the example schema, we 
place the subscription id at the node whose id is the least id 
which is equal or greater to k (that is successor(k) from the 
Chord API). Therefore, the subID will be placed at the 

following node: successor(h(v(ai))).  
Things are slightly more complicated with ranges of 

values. In this case, we map the range on the Chord network 
storing the subID to all the mapped nodes. Suppose that 
there is a subscription declaring a range of values over the 
attribute, ai which is defined to be between vlow(ai) and 
vhigh(ai). Since all values between vlow(ai) and vhigh(ai) are 
finite, e.g. n (remember that the attribute ai was declared 
with a specific precision vpr(ai)), we follow n steps and at 
each step we store at a Chord node, which is chosen by 
hashing the previous value incremented by the precision 
step, the subID of the given subscription (the algorithm can 
be seen in Figure 4). 

 

 
Figure 4. The procedure of storing subscriptions 

 
 If our schema consists of many attributes, we follow the 

above procedure for each attribute in every subscription. 
The only difference is that we keep a different list of 
subscription ids at each Chord node for every attribute in 
our schema. For example, consider the case of subscription 
1 of         Figure 2. The attributes are being processed one at 
a time starting with Exchange. The subscription id of 
subscription 1, say subID1 will be placed at 
successor(h(�NYSE�)) node in the list dedicated for 
attribute Exchange and at successor(h(�OTE�)) node in the 
list dedicated for attribute Symbol. As you can see, there is a 
range constraint over the Price attribute, 8.30<Price<8.70. 
Since the precision of the attribute Price is defined to be 
0.01, the subID1 will be placed in 39 Chord nodes defined 
by successor(h(vj(Price))) for the following sequence of 
values 8.31, 8.32, �, vj(Price), �, 8.68, 8.69.  
 
3.1.2 Updating subscriptions. Updating a subscription 
involves a procedure during which the values of all 
attributes contained in the subscription are updated using 
the standard API of the Chord system. In the case of 

subID : subscription id 
ai : attribute i , Lai : List of subIDs for attribute ai 
vpr(ai) : precission of attribute ai 
v(ai) : value of attribute ai, h() : Chord hash function 
 
 
1.  For every attribute ai in subscription 
2.  if ai has equality constraint 
3.    store subID in node = successor(h(v(ai)) 
    in the Lai list. 
4.  else if ai has a constraint in  [vlow(ai), vhigh(ai)] 
5.   v = vlow(ai) 
6.   while v ≤ vhigh(ai) 
7.    store subID in node = successor(h(v)) 
    in the Lai list. 
8.    v = v + vpr(ai) 



 

 

equality only two nodes are affected. First, the node that is 
mapped to the old, stale, value is forced to delete the subID 
for the attribute that belongs to the subscription with 
identifier subID. Second, a new node is going to store the 
subID, depending on the id returned from the Chord�s hash 
function passing the new updated value. In other words, we 
delete the subID from the node with 
nodeID=successor(h(vstale_value(ai))) and  then we add it to 
the node with nodeID = successor(h(vupdated_value(ai))). 
 

 
Figure 5. The matching algorithm. 

 
As we said before, ranges are spread all over the Chord 

ring. Thus, updating a range (in other words updating the 
vlow(ai) and vhigh(ai) values) results in following the above 
procedure for all Chord nodes that store the subID for the 
given range of values. The procedure we follow depends on 

the new values of the range bounds (vlow_NEW(ai) and 
vhigh_NEW(ai) ) compared to the old ones. If vlow_NEW(ai)  < 
vlow(ai) we store the subID to a number of nodes that are 
going to cover the [vlow_NEW(ai), vlow(ai)) range. The same 
procedure holds when vhigb_NEW(ai) > vhigh(ai) resulting in 
covering the range (vhigh(ai), vhigb_NEW(ai)]. In the case where 
vlow_NEW(ai)  > vlow(ai) or  vhigb_NEW(ai) < vhigh(ai) we delete 
the subID form the nodes covering the range [vlow(ai), 
vlow_NEW(ai))and (vhigh_NEW(ai), vhigb(ai)] respectively.    

Deleting subscriptions is done as explained above since 
the updating includes the deleting procedure.  
 
3.2 Processing events: The matching algorithm 

 
The distributed matching algorithm should be able to 

cope with expected very high loads, determined by high 
event arrival rates. 

Suppose that an event arrives at the system with Na-event 
attributes defined.  The matching algorithm starts by 
processing each attribute separately. It first tries to find the 
node which stores subIDs for the value v(ai) of the attribute 
ai. This node is the n=successor(h(v(ai))). The algorithm, 
then, stores the list of unique subIDs found to be stored in 
node n in the list Lai designated for ai. After processing all 
attributes, Na-event lists of subIDs will be stored. Suppose, 
now, that a subIDk presented in at least one of those lists 
consists of Nk-sub attributes (Nk-sub can be easily derived from 
the field c3 of the subID defined in section 3). Then, the 
subIDk matches the event if it appears in exactly Nk-sub lists 
collected from the Chord ring.  The matching algorithm can 
be seen in Figure 5. 

 
Example: Matching events with subscriptions. 

Suppose that we have the subscriptions of         Figure 2 
generated by two clients connected to a Chord node and the 
event of Figure 1. First, the algorithm will collect all the 
subIDs lists in which the values of the event attributes, 
satisfy the corresponding constraints of the subscriptions.  

For this to be done, the algorithm starts with attribute 
Exchange and retrieves the subID list (LExchange) from node 
successor(h(�NYSE�)). This list contains only the subID1. 
Hence, we have LExchange"subID1. For the attribute Symbol 
the corresponding list is LSymbol"subID1, subID2, since 
both subscriptions are satisfied for the specific event. For 
the attribute Price only subscription 1 is satisfied and, thus, 
the list is LPrice"subID1. Finally, for the attribute Low only 
subscription 2 is satisfied and the list is LLow"subID2. 
 After this phase of the matching process the collected 
subscription ID lists are: 

LExchange��. 
LSymbol��� 
LPrice���.. 
LLow���... 

"subID1 
"subID1, subID2 
"subID1 
"subID2 

subIDi : subscription id of subscription i 
Na-event-i : number of attributes defined in the event i 
Na-sub-i : number of attributes defined in a subscription i 
Nlist-sub-i : number of collected lists that subIDi is stored 
ai : attribute i 
Lai : List of subIDs for attribute ai 
v(ai) : value of attribute ai 
h() : Chord hash function 
Delivery List: the list of subIDs that the event is going to 
be delivered. 
 
 
1. for every eventj arriving at the system 

subIDs lists collection phase 
2.  for every attribute ai in eventj with value v(ai)  
3.   go to node successor( h( v(ai) ) ) 
4.   retrieve the list Lai of subIDs found there 

Matching phase 
5.  for every list Lai of subIDs  
6.   for every subIDk  
7.    retrieve the number of attributes defined  

from the c3 field: Na-sub-k 

8.    count the number of collected lists that subIDk 
is stored: Nlist-sub-k 

9.    if Na-sub-k equals Nlist-sub-k 
10.    we have a match  
11.    remove subIDk from all lists 
12.    store subIDk in the Delivery List 

Delivery phase 
13. for every subIDi in the Delivery List  
14.  contact the node that keeps the subscription. Its 
   nodeID is the c1 field of the subIDi   
15.   retrieve the IP of the client that generated the  

subscription with id : subIDi 

16.  deliver the event to the client 



 

 

Subscription 1 was found in three lists while subscription 
2 was found in two lists. By processing appropriately the 
subIDs of subscriptions 1 and 2 (the c3 part) we can find out 
that both subscriptions have constraints over three 
attributes. Since subscription 1 was found in three lists, a 
match is implied and so we keep the subID1 in order to 
inform the node which generated the subscription about the 
matched event. This is done by consulting the node storing 
the subscription (with nodeID equal to the c1 field of the 
subID1) and holding metadata information for subID1, in 
order to locate the IP address of the client that generated the 
subscription. Then, the event is delivered to the interested 
client. Subscription 2 on the other hand is dropped since the 
number of lists that the subID2 was found in is 2 while the 
number of attributes defined in it is 3.     
 
3.3 Expected performance 

 
In a Chord network with N nodes and 2m-bit address 

space the average number of nodes that must be contacted 
to find a successor is ½log(N) hops.  

 
Figure 6. Storing range values with Chord. 

 
During the subscription storage procedure, the average 

number of hops needed to store a subID depends on the 
type of constraints over the attributes. In equality 
constraints, the average number is ½log(N), since the subID 
is stored in a single node, i.e. the successor(h(v(ai))). When 
the constraint is a range of values (e.g. [vlow(ai), vhigh(ai)]) 
over the attribute ai with precision vpr(ai) (in   Figure 1 the 
vpr(Price) of attribute Price is 0.01) then 

)(
)()(

ipr

ilowihigh

av
avav

r
−

=  nodes are affected leading to r!½log(N) 

hops on average in order to store the subID. 
The update/deletion of subscription again depends on the 

type of constraints over the attributes. For an equality 
constraint, an update can be performed by contacting 
2!½log(N)=log(N) nodes. For ranges the number of nodes is 
k!log(N) on average, where k depends on whether the new 
range is smaller or wider compared to the previous one. 
 The event-processing (matching) process involves 
contacting Na-event!½log(N) nodes to collect the subscription 
ids lists. Thus, we see that, by design, our proposal leads to 

fast and scaleable event matching. 
 
4. Improving performance 

 
When trying to store a subscription over the Chord ring 

with attributes defined by a range of values, we need 
perform r!½!log(N) hops on average for every attribute 
(note that r depends on the precision of the value as well as 
the vlow(ai),  and vhigh(ai),  values of the range interval). In 
this section we extend the Chord�s functionality so that 
range attributes will require r+½!log(N) hops.    
 
4.1 OPChord : Order Preserving Chord 

 
We use a  2m-order preserving hash function (OPHF) in 

order to store the sequential values of a range interval in 
sequential nodes over the Chord ring. 

 
Expected performance. 

We need to perform ½!log(N) hops on average to locate 
the node which will store the minimum value of the range 
(that is vlow(ai) for the attribute ai). Then, we have to 
perform r hops to store the remaining values in the range. 
This approach leads to r+½!log(N) hops in total. 

 
The Order Preserving Hash Function. 

Suppose, now, that every attribute ai is characterized by 
vmin(ai): the minimum value that ai can take, vmax(ai): the 
maximum value that ai can take, and vpr(ai): the precision of  
ai . If vj(ai) is defined to be any value in the interval 
[vlow(ai),vhigh(ai)], the OPHF is: 

mm

ii

iij
ioij avav

avav
asavh 2mod2

)()(
)()(

)())((
minmax

min








⋅

−

−
+=  

The so(ai) is defined to be: 
))(_()( iio anameattributehashas =  

and is used to randomize the node on the Chord ring where 
the minimum values of different attributes will be stored, 
leveraging thus different subsets of the Chord network. 
Hash() is the base hash function used by Chord (e.g. SHA-
1). Note that there is a different OPHF for every attribute. 
 
4.2 Subscription and event processing with OPHF 

 
The algorithms are generally the same as the ones 

presented earlier. The only main difference is the use of 
OPHF instead of the base hash function of Chord. 

 
Example: Storing subscription. 

Consider a Chord ring with 3-bit identifiers and 8 nodes 
and a subscription of a single integer attribute a arriving at 
node 3 with constraint: 0< v(a) <4.  Using Chord (Figure 6) 
would require O(r!log(N)) hops to store the subID at three 



 

 

nodes (in this example r equals 3, as there are 3 distinct 
values in the interval (0,4)), Hashing the first value (a=1) 
returns node 6 requiring to access O(log(N)) nodes to reach 
node 6 (½!log(N) on average). Repeating the previous step, 
the other nodes that will store the subID are 2 and 4, 
requiring overall O(r!log(N)) hops at most (in our example, 
6 hops). 

 
Figure 7. Storing range values with OPHF/Chord. 

 
Suppose, now, that we use OPHF/Chord (Figure 7). We 

need to perform O(log(N)) hops only once at the very first 
time when trying to reach the first node (node 6). Then, 
storing the subID at nodes 7 and 0 requires two more hops.    
 
4.3 Discussion 

 
Load balancing in the Chord system is based on the 

randomness guarantees of the consistent hashing function. 
We have investigated load balancing within the OPHF 
architecture, but it is beyond the scope of this paper.  

We should also briefly note the �small domain problem�: 
when the number of nodes in the network is much greater 
than the domain of attribute values, this could lead to have k 
�useless� nodes between two consecutive (ring positions) 
values in the range. In this case we need to pay an overhead 
of extra hops in order to store subIDs for a range of values, 
in the OPHF design. We have developed solutions that 
alleviate the extra-hop problems; however, they are beyond 
the scope of this paper. 

 
5. Concluding remarks  

 
In this work we have shown how to leverage a popular 

DHT, Chord, towards building scalable, self-organizing, 
well-performing, content-based pub/sub systems. We have 
shown how to support subscriptions that involve equality 
and range predicates and the associated performance 
benefits. Our proposal favors fast and scaleable event 
processing. This is achieved by essentially turning the task 
of event processing into a DHT lookup operation. To our 
knowledge this is the first work that meets these goals. 

 
 
 

6. References 
 
[1] M. Castro, P. Druschel, A. Kermarrec, and A. Rowstron., 

Scribe: A large-scale and decentralized application-level 
multicast infrastructure. Journal on Selected Areas in 
Communication, vol. 20, Oct. 2002. 

[2] S. Q. Zhuang, B. Y. Zhao, A. D. Joseph, R. H. Katz, and J. 
D. Kubiatowicz. Bayeux: An architecture for scalable and 
fault-tolerant wide-area data dissemination. 11th ACM 
NOSSDAV, pp. 11-20, �01. 

[3] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker. 
Application-level multicast using content-addressable 
networks. In Proc. 3rd International Workshop of NGC, vol. 
2233, pages 14�29. LNCS, Springer, 2001. 

[4] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. 
Strom, and D. C. Sturman. An efficient multicast protocol for 
content-based publish-subscribe systems. In Proceedings of 
the 19th ICDCS, pp. 262�272, 1999. 

[5] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Design and 
evaluation of a wide-area event notification service. ACM 
Transactions on Computer Systems, 19(3):332�383, 2001. 

[6] D. Tam, R. Azimi, H. Jacobsen, Building Content-Based 
Publish/Subscribe Systems with Distributed Hash Tables, Int. 
Workshop on Databases, Information Systems and Peer-to-
Peer Computing, September 2003. 

[7] A. Rowstron and P. Druschel. Pastry: Scalable, 
decentralized object location and routing for large-scale 
peer-to-peer systems. In Proc. 18th IFIP/ACM Int. 
Conference on Distributed Systems Platforms (Middleware 
2001), pages 329-350, November 2001. 

[8] S. Ratnasamy,P. Francis, M. Handley, R. Karp, and S. 
Shenker. A scalable content addressable network. In 
proceedings of ACM SIGCOMM 2001, 2001. 

[9] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. 
Balakrishnan. Chord: A scalable peer-to-peer lookup service 
for internet applications. In proceedings of ACM 
SIGCOMM 2001, pages 149-160, 2001. 

[10] A. Carzaniga, D. S. Rosenblum, and A. L. Wolf. Achieving 
scalability and expressiveness in an Internet-scale event 
notification service. Proc. ACM PODC, pp 219�227, 2000. 

[11] Zhao, Y. B., Kubiatowitcz, J., Joseph, A.: Tapestry: An 
infrastructure for fault-tolerant wide-area location and 
routing. Tech. Rep. UCB/CSD-01-1141, Univ. of California 
at Berkley, Computer Science Dept. (2001) 

[12] Gnutella: http://gnutella.wego.com 
[13] Wilcox, B., Hearn, O.: Experiences Deploying a Large- 

Scale Emergent Network. In 1st International Workshop on 
Peer-to-Peer Systems, IPTPS�02 (2002) 

[14] P. R. Pietzuch and J. Bacon, Peer-to-Peer Overlay Broker 
Networks in an Event-Based Middleware, in proceedings of 
the DEBS�03 conference, 2003. 

[15] P. Triantafillou, A. Economides, Subscription 
Summarization: A New Paradigm for Efficient 
Publish/Subscribe Systems, In IEEE, ICDCS  2004. 

[16] W. W. Terpstra, S. Behnel, L. Fiege, A. Zeidler, and A. P. 
Buchmann, A Peer-to-Peer Approach to Content-Based 
Publish/Subscribe, in DEBS 2003. 


	Introduction
	Related work
	Publish/Subscribe systems
	Chord and DHTs
	Contribution: Publish/Subscribe systems over DHTs

	Publish/Subscribe over Chord
	Processing subscriptions
	Storing subscriptions. Storing subscription is done using the hash function provided by Chord (later we will change this to improve performance). Consider that this hash function h() (e.g., SHA-1) returns an identifier uniformly distributed in the addres
	Updating subscriptions. Updating a subscription involves a procedure during which the values of all attributes contained in the subscription are updated using the standard API of the Chord system. In the case of equality only two nodes are affected. Firs

	Processing events: The matching algorithm
	Expected performance

	Improving performance
	OPChord : Order Preserving Chord
	Subscription and event processing with OPHF
	Discussion

	Concluding remarks
	References

