
Chapter 7
!(Sent by Simin Nadjm-Tehrani)
!
In the presentation of the Lamport mutual exclusion protocol (chapter 7, p107), the
program will terminate immediately as all guards are false to begin with.
!
I think the code misses two important lines that include the code for the CS-operations
and the code for non-CS-operations in each process.
!
Chapter 8
In page 135, Fig. 8.7, on the line showing the events of process 2, the second letter should
be j instead of a.

Chapter 9
In page 143 Section 9.3.2 line 5, N should be n.
In page 147 Section 9.4.2 line 8, the correct line is “A knot is a subgraph of a directed
graph …”)

!(Sent by Simin Nadjm-Tehrani)

In page 139, the sentence "Process i will execute statement 1 for the (r+1)st time when
(V^r.i \superset W^r.i)” is not true. According to definition of X^r it denotes the value of
X after process i executing statement 1. At this point W.i is always = V.1!! So if the
intention is to refer to W.i and V.i *before* executing statement 1 then V^r.i and W^r.i
cannot be used for that purpose.
!
Equation (9.1) holds under a hidden assumption. The assumption is that the when process
k receives and delivers the increment from i, process i is still in its r+1 round (i.e. it has
not received messages from other nodes and acted upon statement 2 - once or several
times - thus changing its V.i during the interval that k is receiving and acting on the
increment from i). This is a hidden synchrony assumption.
!
I think Theorem 9.2 is not correctly formulated. Or rather the presented proof is not
proving that theorem. I think your intention might be to say that:
!
- If the algorithm terminates then it is correct in the sense that every process has received
the state from every other process.
!
Whether the algorithm terminates or not must be subject to the condition that delivery of
messages!can be done within a!finite time bound! (otherwise channels do not get empty).
I think that a fixed-point type of argument might be needed to show that the increments
will become empty after a finite number of message exchanges.
!

Chapter 10
!(Sent by Simin Nadjm-Tehrani)

1) The code for the initiator on page 153 will not allow the neighbors of the initiator to
ever reach deficit=0. Since the initiator never acks, the neighbors will forever remain at



deficit=1 once they reach that stage.
!
The correction could be to add the following rule to the initiator:
[] message = (S,k) and S>=D! ‡ send ack to sender
!
Chapter 11
!(Sent by Simin Nadjm-Tehrani)

In the bully algorithm on page 174, the processes with id<i will never be informed of the
election of the new leader. This is an unclear question. Perhaps the formulation intends
that each lower id j should in turn discover the failed leader and initiate an election
(thereby repeating the process for election N-1 times in the worst case). However, this is
highly unlikely to have been meant as it is extremely inefficient.
!
Another interpretation is that the second line from bottom on page 174 is incorrect and it
should say: send leader to all j (instead of: to all j >i). If we check the proof on page 175
it seems that your proof in the bold font part assumes the latter.
!


