GIA: Making Gnutella-like P2P
Systems Scalable

Yatin Chawathe
Sylvia Ratnasamy, Scott Shenker, Nick Lanham,

Lee Breslau
2003

(Several slides have been taken from the authors’ original presentation)

The Problem

e Large scale P2P system: millions of users
— Wide range of heterogeneity

— Large transient user population (in a system with
100,000 nodes, 1600 nodes join and leave per minute)

e Existing search solutions cannot scale
— Flooding-based solutions limit capacity

— Distributed Hash Tables (DHTs) not necessarily
appropriate (for keyword-based searches)

A Solution: GIA

e Scalable Gnutella-like P2P system
e Design principles:
— Explicitly account for node heterogeneity

— Query load proportional to node capacity

e Results:

— GIA outperforms Gnutella by 3-5 orders of
magnitude

Outline

Existing approaches
GIA: Scalable Gnutella
Results: Simulations & Experiments

Conclusion

Distributed Hash Tables (DHT's)

e Structured solution

— Given the exact filename, find its location

 Can DHTs do file sharing?

— Yes, but with lots of extra work needed for
keyword searching

e Do we need DHT's?

e Not necessarily: Great at finding rare files, but most
queries are for popular files

e Poor handling of churn — why?

Other Solutions

e Supernodes [KaZaA]
— Classify nodes as low- or high-capacity

— Only pushes the problem to a bigger scale
e Random Walks [Lv et al]

— Forwarding 1s blind
— Queries can get stuck 1n overloaded nodes

e Biased Random Walks [Adamic et al]

— Right idea, but exacerbates overloaded-node problem

Outline

Existing approaches

GIA: Scalable Gnutella

Results: Simulations & Experiments

Conclusion

GIA: High-level view

e Unstructured, but take node capacity into
account

— High-capacity nodes have room for more
gueries: so, send most queries to them

e Will work only if high-capacity nodes:
— Have correspondingly more answers, and

— Are easily reachable from other nodes

GIA Design

Make high-capacity nodes easily reachable!

— Dynamic topology adaptation converts them into high-
degree nodes

Make high-capacity nodes have more answers
— One-hop replication
Search efficiently

— Biased random walks

Prevent overloaded nodes

— Active flow control

Dynamic Topology Adaptation

e Make high-capacity nodes have high degree
(i.e., more neighbors), and keep low capacity
nodes within short reach from them.

e Per-node level of satisfaction, S:
— 0 = no neighbors, 1 = enough neighbors
Satisfaction S is a function of:
e Node’ s capacity e Neighbors capacities
e Neighbors’ degrees

When S << 1, look for neighbors aggressively

Dynamic Topology Adaptation

Each GIA node maintains a host cache containing a
list of other GIA nodes. The host cache is populated
using a variety of methods (like contacting well-
known web-based hosts, and exchanging host
information using PING-PONG messages.

A node X with S <1 randomly picks a node Y from
its host cache, and examines if it can be added as a
neighbor.

Topology adaptation steps

Life of Node X : it picks node Y from its host cache

Case 1 {Y can be added as a new neighbor}

(Let C. represent capacity of node i)

if num nbrsX + 1 < max nbrs that it can handle then there is room
ACCEPTY ; return

Case 2 {Node X explores if to replace an existing neighbor in favor of Y}
subset :=every neighbor i from nbrsX such that C. < C,

if subset is empty, i.e. no such neighbors exist then REJECT Y ; return
else candidate Z := highest-degree neighbor from subset

If Y has higher capacity than Z
or (num nbrsZ > num nbrsY + H) {Y has fewer nbrs}
then DROP Z; ACCEPTY

else REJECTY
{Do not drop poorly connected nodes in favor of well-connected ones}

Topology adaptation steps

Drop Q
AcceptY

Active Flow Control

e Accept queries based on capacity
— Actively allocate “tokens” to neighbors

— Send query to neighbor only if we have received token
from it

e |ncentives for advertising true capacity

— High capacity neighbors get more tokens to send
outgoing queries

— Nodes not using their tokens are marked inactive and
this capacity is redistributed among its neighbors.

Outline

Existing approaches

GIA: Scalable Gnutella

Results: Simulations & Experiments

Conclusion

Simulation Results

e Compare four systems
— FLOOD: TTL-scoped, random topologies
— RWRT: Random walks, random topologies

— SUPER: Supernode-based search
— GIA: search using GIA protocol suite

e Metric:

— Collapse point. aggregate throughput that the
system can sustain (per node query rate beyond

which the success rate drops below 90%)

Questions

* What 1s the relative performance of the four
algorithms?

 Which of the GIA components matters the
most?

 How does the system behave 1n the face of
transient nodes?

0.1

pse Point (qps/node)

Colla

0.00001

1000

10 A

System Performance

—— GIA: N=10,000

- SUPER: N=10,000

-#- RWRT: N=10,000
FLOOD: N=10,000

X
X

VN

X

0.001 - /

0.01

0 0.1 o
/°Replication Rate (éercentage)

1 9

ﬁ

GIA outperforms SUPER, RWRT & FLOOD by many.

population of
the object

orders of magnitude in terms of aggregate query load

Factor Analysis

Algorithm Collapse Algorithm | Collapse
point point
RWRT 0.0005 GIA 7
RWRT+OHR 0.005 GIA - OHR 0.004
RWRT+BIAS 0.0015 GIA — BIAS 6
RWRT+TADAPT 0.001 GIA - TADAPT 0.2
Rle/ /FLWCQJ 0.0006 GIA - FLWCTL 2

Topology
adaptation

No single component is useful by itself; the combination

Flow control

of them all is what makes GIA scalable

Transient Behavior

1000
—+replication rate = 1.0%
100 = replication rate = 0.5%
~» replication rate = 0.1%

—_
o

A\

O
—
\

0.01 - X__static RWRT (1% repl)

0.001 | |
10 100 1000 10000

Dar-nada mav._lifatima (earnande)

Collapse point
(gps/node)

Even under heavy churn, GIA outperforms the other

algorithms by many orders of magnitude

Deployment

e Prototype client implementation using C++

e Deployed on PlanetLab:
— 100 machines spread across 4 continents

e Measured the progress of topology
adaptation...

Progress of Topology Adaptation

<+ C=1x

= C=10x
-+ C=100x
— C=1000x

Number of neighbors

0 20 40 60 80 100
Time (seconds)

Nodes quickly discover each other and soon reach

their target “satisfaction level”

Outline

Existing approaches
GIA: Scalable Gnutella

Results: Simulations & Experiments

Conclusion

Summary

e GIA: scalable Gnutella

— 3-5 orders of magnitude improvement in
system capacity

e Unstructured approach is good enough!

— DHTs may be overkill
— Incremental changes to deployed systems

