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The Problem

e Large scale P2P system: millions of users
— Wide range of heterogeneity

— Large transient user population (in a system with
100,000 nodes, 1600 nodes join and leave per minute)

e Existing search solutions cannot scale
— Flooding-based solutions limit capacity

— Distributed Hash Tables (DHTs) not necessarily
appropriate (for keyword-based searches)



A Solution: GIA

e Scalable Gnutella-like P2P system
e Design principles:
— Explicitly account for node heterogeneity

— Query load proportional to node capacity

e Results:

— GIA outperforms Gnutella by 3-5 orders of
magnitude
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Distributed Hash Tables (DHT's)

e Structured solution

— Given the exact filename, find its location

 Can DHTs do file sharing?

— Yes, but with lots of extra work needed for
keyword searching

e Do we need DHT's?

e Not necessarily: Great at finding rare files, but most
queries are for popular files

e Poor handling of churn — why?



Other Solutions

e Supernodes [KaZaA]
— Classify nodes as low- or high-capacity

— Only pushes the problem to a bigger scale
e Random Walks [Lv et al]

— Forwarding 1s blind
— Queries can get stuck 1n overloaded nodes

e Biased Random Walks [Adamic et al]

— Right idea, but exacerbates overloaded-node problem
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GIA: High-level view

e Unstructured, but take node capacity into
account

— High-capacity nodes have room for more
gueries: so, send most queries to them

e Will work only if high-capacity nodes:
— Have correspondingly more answers, and

— Are easily reachable from other nodes



GIA Design

Make high-capacity nodes easily reachable!

— Dynamic topology adaptation converts them into high-
degree nodes

Make high-capacity nodes have more answers
— One-hop replication
Search efficiently

— Biased random walks

Prevent overloaded nodes

— Active flow control



Dynamic Topology Adaptation

e Make high-capacity nodes have high degree
(i.e., more neighbors), and keep low capacity
nodes within short reach from them.

e Per-node level of satisfaction, S:
— 0 = no neighbors, 1 = enough neighbors
Satisfaction S is a function of:
e Node’ s capacity e Neighbors capacities
e Neighbors’ degrees

When S << 1, look for neighbors aggressively



Dynamic Topology Adaptation

Each GIA node maintains a host cache containing a
list of other GIA nodes. The host cache is populated
using a variety of methods (like contacting well-
known web-based hosts, and exchanging host
information using PING-PONG messages.

A node X with S <1 randomly picks a node Y from
its host cache, and examines if it can be added as a
neighbor.



Topology adaptation steps

Life of Node X : it picks node Y from its host cache

Case 1 {Y can be added as a new neighbor}

(Let C. represent capacity of node i)

if num nbrsX + 1 < max nbrs that it can handle then there is room
ACCEPTY ; return

Case 2 {Node X explores if to replace an existing neighbor in favor of Y}
subset :=every neighbor i from nbrsX such that C. < C,

if subset is empty, i.e. no such neighbors exist then REJECT Y ; return
else candidate Z := highest-degree neighbor from subset

If Y has higher capacity than Z
or (num nbrsZ > num nbrsY + H) {Y has fewer nbrs}
then DROP Z; ACCEPTY

else REJECTY
{Do not drop poorly connected nodes in favor of well-connected ones}



Topology adaptation steps

Drop Q
AcceptY




Active Flow Control

e Accept queries based on capacity
— Actively allocate “tokens” to neighbors

— Send query to neighbor only if we have received token
from it

e |ncentives for advertising true capacity

— High capacity neighbors get more tokens to send
outgoing queries

— Nodes not using their tokens are marked inactive and
this capacity is redistributed among its neighbors.
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Simulation Results

e Compare four systems
— FLOOD: TTL-scoped, random topologies
— RWRT: Random walks, random topologies

— SUPER: Supernode-based search
— GIA: search using GIA protocol suite

e Metric:

— Collapse point. aggregate throughput that the
system can sustain (per node query rate beyond

which the success rate drops below 90%)



Questions

* What 1s the relative performance of the four
algorithms?

 Which of the GIA components matters the
most?

 How does the system behave 1n the face of
transient nodes?
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Factor Analysis

Algorithm Collapse Algorithm | Collapse
point point
RWRT 0.0005 GIA 7
RWRT+OHR 0.005 GIA - OHR 0.004
RWRT+BIAS 0.0015 GIA — BIAS 6
RWRT+TADAPT 0.001 GIA - TADAPT 0.2
Rle/ /FLWCQJ 0.0006 GIA - FLWCTL 2

Topology
adaptation

No single component is useful by itself; the combination

Flow control

of them all is what makes GIA scalable



Transient Behavior
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Even under heavy churn, GIA outperforms the other

algorithms by many orders of magnitude




Deployment

e Prototype client implementation using C++

e Deployed on PlanetLab:
— 100 machines spread across 4 continents

e Measured the progress of topology
adaptation...



Progress of Topology Adaptation
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Nodes quickly discover each other and soon reach

their target “satisfaction level”
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Summary

e GIA: scalable Gnutella

— 3-5 orders of magnitude improvement in
system capacity

e Unstructured approach is good enough!

— DHTs may be overkill
— Incremental changes to deployed systems



