
Logic Design

See Appendix B of your Textbook

When you write add $t0, $t1, $t2, you imagine something

like this:

 $t1

 $t0

 $t2

What kind of hardware can ADD two binary integers?

We need to learn about GATES and BOOLEAN ALGEBRA

that are foundations of logic design.

 Adder

AND gate

X Y X.Y
0 0 0 X X.Y
0 1 0 Y
1 0 0
1 1 1

OR gate

X Y X+Y
0 0 0 X
0 1 1 X+Y
1 0 1 Y
1 1 1

NOT gate

X X
0 1 X X
1 0

Typically, logical 1 = +3.5 volt, and logical 0 = 0 volt. Other

representations are possible.

Analysis of logical circuits

X X.Y

 F

Y X.Y

What is the value of F when X=0 and Y=1?

Draw a truth table.

X Y F

0

0

1

1

0

1

0

1

0

1

1

0

This is the exclusive or (XOR) function. In algebraic

form F= X.Y + X.Y

More practice

1. Let A.B + A.C = 0. What are the values of A, B, C?

2. Let (A + B + C).(A + B + C) = 0. What are the

possible values of A, B, C?

• Draw truth tables.

• Draw the logic circuits for the above two functions.

A

B

C

Boolean Algebra
A + 0 = A A + A’ = 1

 A . 1 = A A. A’ = 0

1 + A = 1 A + B = B + A

0. A = 0 A . B = B . A

A + (B + C) = (A + B) + C

A. (B. C) = (A. B). C

A + A = A

A . A = A

A. (B + C) = A.B + A.C Distributive Law

A + B.C = (A+B). (A+C)

A . B = A + B De Morgan’s theorem

A + B = A . B

De Morgan’s theorem

A . B = A + B

A + B = A . B

Thus, is equivalent to

Verify it using truth tables. Similarly,

 is equivalent to

These can be generalized to more than two

variables: to

A. B. C = A + B + C

A + B + C = A . B . C

Synthesis of logic circuits

Many problems of logic design can be specified using a

truth table. Give such a table, can you design the logic

circuit?

Design a logic circuit with three inputs A, B, C and one

output F such that F=1 only when a majority of the inputs is

equal to 1.

A B C F Sum of product form

0 0 0 0 F = A.B.C + A.B.C + A.B.C + A.B.C
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1 Draw a logic circuit to generate F

Simplification of Boolean functions

Using the theorems of Boolean Algebra, the algebraic

forms of functions can often be simplified, which leads to

simpler (and cheaper) implementations.

Example 1

F = A.B + A.B + B.C

 = A. (B + B) + B.C How many gates do you save

 = A.1 + B.C from this simplification?

 = A + B.C

A A

 F

 B

B C

 F

C

Example 2

F = A.B.C + A.B.C + A.B.C + A.B.C

 = A.B.C + A.B.C + A.B.C + A.B.C + A.B.C + A.B.C

 = (A.B.C + A.B.C) + (A.B.C + A.B.C) + (A.B.C + A.B.C)

 = (A + A). B.C + (B + B). C.A + (C + C). A.B

 = B.C + C.A + A.B

Example 3 Show that A + A.B = A

A + AB

= A.1 + A.B

= A. (1 + B)

= A. 1

= A

Other types of gates

A A

 A.B B A+B

B

NAND gate NOR gate

Be familiar with the truth tables of these gates.

A

B A + B = A.B + A.B

Exclusive OR (XOR) gate

NAND and NOR are universal gates

Any function can be implemented using only NAND

or only NOR gates. How can we prove this?

(Proof for NAND gates) Any boolean function

can be implemented using AND, OR and NOT gates.

So if AND, OR and NOT gates can be implemented

using NAND gates only, then we prove our point.

1. Implement NOT using NAND

 A A

2. Implementation of AND using NAND

 A A.B

 B A

3. Implementation of OR using NAND

 A A

 A.B = A+B

 B

 B

Exercise. Prove that NOR is a universal gate.

Logic Design (continued)
XOR Revisited

XOR is also called modulo-2 addition.

A B C F
0 0 0 0 A ⊕ B = 1 only when there are an
0 0 1 1 odd number of 1’s in (A,B). The
0 1 0 1 same is true for A ⊕ B ⊕ C also.
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

 1 ⊕ A = A Why?

 0 ⊕ A = A

Logic Design Examples

Half Adder

 A B S C

A Sum (S) 0 0 0 0

B Carry (C) 0 1 1 0

 1 0 1 0

 S = A B 1 1 0 1

 C = A.B

A

 Carry

B

 Sum

Half
Adder

Full Adder

 Sum (S) A B Cin S Cout

A 0 0 0 0 0

B 0 0 1 1 0

Cin Carry (Cout) 0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

 S = A B Cin

Cout = A.B + B.Cin + A.Cin

1. Design a full adder using two half-adders (and a

few gates if necessary).

2. Can you design a 1-bit subtractor?

Full

Adder

Decoders

A typical decoder has n inputs and 2n outputs.

 Enable A B D3 D2 D1 D0

 D0 0 0 0 0 0 1

A D1 0 1 0 0 1 0

B D2 1 0 0 1 0 0

 D3 1 1 1 0 0 0

A 2-to-4 decoder and its truth table

D3 = A.B Draw the circuit of this decoder.

D2 = A.B

D1 = A.B The decoder works per specs

D0 = A.B when (Enable = 1). When Enable = 0,

 all the outputs are 0.

Exercise. Design a 3-to-8 decoder.

Question. Where are decoders used?

Can you design a 2-4 decoder using 1-2 decoders?

Encoders

A typical encoder has 2n inputs and n outputs.

 D0 D1 D2 D3 A B

D0 1 0 0 0 0 0

D1 A 0 1 0 0 0 1

D2 B 0 0 1 0 1 0

D3 0 0 0 1 1 1

A 4-to-2 encoder and its truth table

 A = D1 + D3

 B = D2 + D3

Multiplexor

It is a many-to-one switch, also called a selector.

 A 0 F S = 0, F = A

 B 1 S = 1, F = B

 Control S Specifications of the mux

A 2-to-1 mux

 F = S. A + S. B

Exercise. Design a 4-to-1 multiplexor using two 2-to-

1 multiplexors.

Demultiplexors

A demux is a one-to-many switch.

 0 X S = 0, X = A
 A
 1 Y S = 1, Y = A

 S

 A 1-to-2 demux and its specification

 So, X = S. A, and Y = S. A

Exercise. Design a 1-4 demux using 1-2 demux.

A 1-bit ALU Operation

Operation = 00 implies AND A Result

Operation = 01 implies OR B

Operation = 10 implies ADD

 Operation

Carry in

A

B 00

 01 Result

 10

 Carry out

♦ Understand how this circuit works.

♦ Let us add one more input to the mux to implement

slt when the Operation = 11

Adder

?

Acts like a traffic light

Converting an adder into a subtractor

A - B (here - means arithmetic subtraction)

= A + 2’s complement of B

= A + 1’s complement of B + 1

 operation

Carry in

A

B 00

 01 Result

 0 10

 1

 11

B invert Carry out

1-bit adder/subtractor

For subtraction, B invert = 1 and Carry in = 1

Adder

1-bit ALU for MIPS

Assume that it has the instructions add, sub, and, or, slt.

 Operation

Carry in

A

B 00

 01 Result

 0 10

 1

Less 11

B invert Set

 Carry out

Less = 1 if the 32-bit number A is less than the 32-bit

number B. (Its use will be clear from the next page)

We now implement slt (If A < B then Set = 1 else Set = 0)

Adder

A 32-bit ALU for MIPS

 B invert C in operation

 A0

 B0

 Less

 C in

 A1

 B1

 0

 ..

 ..

 A31

 B31 Result 31

 0 Set overflow

ALU

Cout

ALU

Cout

ALU

Cout

Fast Carry Propagation; Carry Look Ahead

During addition, the carry can trigger a “ripple” from the

LSB to the MSB. This slows down the speed of addition.

 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 +

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

Calculate the max time it takes to complete a 32-bit

addition if each stage takes 1 ns. How to overcome this?

Consider the following:

 a0 s0

c1 = a0.b0 + a0.c0 + b0.c0

 = a0.b0 + (a0 + b0).c0 b0 c1

 = g0 + p0.c0 c0

(where g0 = a0.b0, p0 = a0+b0)

c2 = a1.b1 + (a1 + b1).c1

 = g1 + p1.(g0 + p0.c0)

 = g1 + p1.g0 + p1.p0.c0

c4 = g3 + p3.g2 + p3.p2.g1 + p3.p2.p1.g0 + p3.p2.p1.p0. c0

We could calculate c32 in this way.

G0	

G0	

P0	

You can always use a two-level circuit to generate c32,

which will speed-up addition (do 32-bit addition in 2 ns),

but it is impractical due to the complexity.

Many practical circuits use a two-phase approach.

Consider the example of a 16-bit adder, designed from

four 4-bit adders. Let

G0 = g3 + p3.g2 + p3.p2.g1 + p3.p2.p1.g0

G1 = g7 + p7.g6 + p7.p6.g5 + p7.p6.p5.g4

G2 = g11 + p11.g10 + p11.p10.g9 + p11.p10.p9.g8

G3 = g15 + p15.g14 + p15.p14.g13 + p15.p14.p13.g12

P0 = p3.p2.p1.p0

P1 = p7.p6.p5.p4

P2 = p11.p10.p9.p8

P3 = p15.p14.p13.p12

Then if C1, C2, C3, C4 are the output carry bit from the 1st, 2nd,

3rd, 4th 4-bit adders, then we can write

C1 = G0 + P0.c0

C2 = G1 + P1.C1 = G1 + P1.G0 + P1.P0.c0

C3 = G2 + P2.C2 = G2 + P2.G1 + P2.P1.G0 + P2.P1.P0.c0

C4 = G3 + P3.C3 = G3 + P3.G2 + P3.P2.G1 + P3.P2.P1.G0 + P3.P2.P1.P0.c0

How does it help? Count the number of levels. The

smaller is this number, the faster is the implementation

This is implemented in the carry look-ahead adder.

There are other implementations too.

Combinational vs. Sequential Circuits

Combinational circuits

The output depends only on the current values of

the inputs and not on the past values. Examples are

adders, subtractors, and all the circuits that we have

studied so far

Sequential circuits

The output depends not only on the current values

of the inputs, but also on their past values. These hold

the secret of how to memorize information.

We will study sequential circuits later.

