
Logic Design  

See Appendix B of your Textbook  

When you write add $t0, $t1, $t2, you imagine something 

like this: 

 

 $t1 

 

             $t0 

 $t2 

 

 

What kind of hardware can ADD two binary integers? 

 

We need to learn about GATES and BOOLEAN ALGEBRA 

that are foundations of logic design. 

 

 
 
 Adder  



AND gate 
 
X Y X.Y 
0 0 0    X    X.Y 
0 1 0    Y 
1 0 0 
1 1 1 
 
 
OR gate 
 
X Y X+Y 
0 0 0    X 
0 1 1         X+Y 
1 0 1    Y 
1 1 1 
 
 
NOT gate 
 
X  X 
0 1   X       X 
1 0 
 
 
Typically, logical 1 = +3.5 volt, and logical 0 = 0 volt. Other 

representations are possible. 



Analysis of logical circuits 

 

X        X.Y 

            F 

 

Y         X.Y  

 

What is the value of F when X=0 and Y=1?  

Draw a truth table. 

 

X Y F 

0 

0 

1 

1 

0 

1 

0 

1 

0 

1 

1 

0 

 

This is the exclusive or (XOR) function. In algebraic 

form F= X.Y + X.Y 



More practice 

 

1.  Let  A.B + A.C = 0. What are the values of A, B, C?  

2.  Let  (A + B + C).(A + B + C) = 0. What are the 

possible values of A, B, C? 

 

• Draw truth tables. 

• Draw the logic circuits for the above two functions. 

 

 

A 

B 

C 

 

 

 

 

 



Boolean Algebra 
A + 0 = A    A + A’ = 1 

 A . 1 = A    A. A’ = 0 

 

1 + A = 1    A + B = B + A 

0. A = 0    A . B = B . A 

 

A + (B + C) = (A + B) + C 

A. (B. C) = (A. B). C 

 

A + A = A 

A . A  = A 

 

A. (B + C) = A.B + A.C  Distributive Law 

A + B.C = (A+B). (A+C) 

 

A . B = A + B  De Morgan’s theorem 

A + B = A . B



 

De Morgan’s theorem  

 

A . B = A + B   

A + B = A . B 

 

Thus,        is equivalent to 

 

Verify it using truth tables.  Similarly, 

 

      is equivalent to 

 

 

These can be generalized to more than two 

variables: to 

 

A. B. C =   A + B + C   

A + B + C =  A . B . C



 

Synthesis of logic circuits 

 

Many problems of logic design can be specified using a 

truth table. Give such a table, can you design the logic 

circuit? 

 

Design a logic circuit with three inputs A, B, C and one 

output F such that F=1 only when a majority of the inputs is 

equal to 1. 

 

 
A B C F  Sum of product form 
 
0 0 0 0  F = A.B.C + A.B.C + A.B.C + A.B.C 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1  Draw a logic circuit to generate F 
 



 
Simplification of Boolean functions 
 
Using the theorems of Boolean Algebra, the algebraic 

forms of functions can often be simplified, which leads to 

simpler (and cheaper) implementations. 

 

Example 1 

 

F  = A.B + A.B + B.C 

 = A. (B + B) + B.C  How many gates do you save 

 = A.1 + B.C    from this simplification? 

 = A + B.C 

 

A       A 

          F

       B  

B          C     

      F      

C              



Example 2 

 
F =  A.B.C + A.B.C + A.B.C + A.B.C 
 
 =  A.B.C + A.B.C + A.B.C + A.B.C + A.B.C + A.B.C 
 
 =  (A.B.C + A.B.C) + (A.B.C + A.B.C) + (A.B.C + A.B.C) 
 
 = (A + A). B.C + (B + B). C.A + (C + C). A.B 

 = B.C + C.A + A.B 

 

Example 3 Show that A + A.B = A 

 

A + AB 

= A.1 + A.B 

= A. (1 + B) 

= A. 1 

= A 



Other types of gates 

 

A      A 

    A.B   B        A+B 

B 

 

NAND gate     NOR gate 

 

Be familiar with the truth tables of these gates. 

 

 

A 

B    A + B = A.B + A.B 

 

 

Exclusive OR (XOR) gate 

 



 

NAND and NOR are universal gates 

 

Any function can be implemented using only NAND 

or only NOR gates.  How can we prove this? 

 

(Proof for NAND gates) Any boolean function 

can be implemented using AND, OR and NOT gates. 

So if AND, OR and NOT gates can be implemented 

using NAND gates only, then we prove our point. 

 

 

1. Implement NOT using NAND 

 

     

  A       A  

 

 



 

2. Implementation of AND using NAND 

 

 

  A     A.B      

  B          A    

 

 

3.  Implementation of OR using NAND 

 

 A     A 

 

            A.B = A+B 

 B      

      B 

 

               

Exercise. Prove that NOR is a universal gate. 



Logic Design (continued) 
XOR Revisited 

XOR is also called modulo-2 addition. 

 

A B C F 
0 0 0 0  A ⊕ B = 1 only when there are an  
0 0 1 1  odd number of 1’s in (A,B). The 
0 1 0 1  same is true for A  ⊕ B ⊕  C also. 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 0 
1 1 1 1 
 

 

  1 ⊕ A = A  Why? 

  0 ⊕ A = A 

 



 

Logic Design Examples 

 

Half Adder 

 

       A B S C 

A    Sum (S)  0 0 0 0 

B    Carry (C)  0 1 1 0 

       1 0 1 0 

 S = A      B    1 1 0 1 

 C = A.B 

  

   

A 

      Carry 

B    

      Sum 

 

 

Half 
Adder 



Full Adder 

  

    Sum (S)  A B Cin S Cout 

A      0 0 0 0 0  

B      0 0 1 1 0 

Cin    Carry (Cout) 0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

  

 S = A   B   Cin 

Cout = A.B + B.Cin + A.Cin 

 

1. Design a full adder using two half-adders (and a 

few gates if necessary).  

 

2. Can you design a 1-bit subtractor?

 
Full 

Adder 



Decoders 

A typical decoder has n inputs and 2n outputs. 

 Enable    A B D3 D2 D1 D0 

      D0  0 0 0 0 0 1  

A      D1  0 1 0 0 1 0 

B      D2  1 0 0 1 0 0 

      D3  1 1 1 0 0 0 

 

A 2-to-4 decoder and its truth table 

 

D3 = A.B    Draw the circuit of this decoder. 

D2 = A.B    

D1 = A.B   The decoder works per specs  

D0 = A.B   when (Enable = 1). When Enable = 0,  

    all the outputs are 0. 

 

Exercise.  Design a 3-to-8 decoder. 

Question. Where are decoders used? 

Can you design a 2-4 decoder using 1-2 decoders? 



Encoders 

A typical encoder has 2n inputs and n outputs. 

 

      D0 D1 D2 D3 A B 

D0       1 0 0 0 0 0  

D1      A  0 1 0 0 0 1 

D2      B  0 0 1 0 1 0 

D3        0 0 0 1 1 1 

 

 

A 4-to-2 encoder and its truth table 

 

 A = D1 + D3 

 B = D2 + D3 

 

 

 

 

 



Multiplexor 

 

It is a many-to-one switch, also called a selector. 

 

 

 A 0     F    S = 0, F = A 

 B 1     S = 1, F = B 

   

 Control S    Specifications of the mux 

  

A 2-to-1 mux 

 

 

    F = S. A + S. B 

 

 

Exercise.  Design a 4-to-1 multiplexor using two 2-to-

1 multiplexors. 

 



Demultiplexors 

 

A demux is a one-to-many switch. 

 

     0  X  S = 0, X = A 
 A 
     1  Y  S = 1, Y = A 

 
     S  

   

 A 1-to-2 demux  and its specification 

 

 So,  X = S. A, and Y = S. A 

 

 

Exercise.  Design a 1-4 demux using 1-2 demux. 



A 1-bit ALU     Operation 

 

Operation = 00 implies AND    A             Result 

Operation = 01 implies OR     B 

Operation = 10 implies ADD     

 

      Operation 

Carry in        

A       

B      00 

      01     Result 

      10 

 

 

         Carry out 

♦ Understand how this circuit works. 

♦ Let us add one more input to the mux to implement 

slt when the Operation = 11

Adder 

?       

Acts like a traffic light 



Converting an adder into a subtractor 

A - B (here - means arithmetic subtraction) 

=  A + 2’s complement of B 

= A + 1’s complement of B + 1 

 

      operation 

Carry in        

A       

B      00 

      01     Result 

  0    10 

  1 

      11 

B invert      Carry out 

    

1-bit adder/subtractor 

 

For subtraction, B invert = 1 and Carry in = 1 

Adder 



1-bit ALU for MIPS 

Assume that it has the instructions add, sub, and, or, slt. 

 

      Operation 

Carry in        

A       

B      00 

      01     Result 

  0    10 

  1 

Less      11 

B invert      Set 

           Carry out 

 

Less = 1 if the 32-bit number A is less than the 32-bit 

number B.  (Its use will be clear from the next page) 

 

We now implement slt (If A < B then Set = 1 else Set = 0) 

 

Adder 



A 32-bit ALU for MIPS  

 

 B invert       C in  operation 

  A0 

  B0 

  Less 

         C in 

  A1 

  B1 

  0 

    .. 

    .. 

 

       A31       

       B31        Result 31 

  0    Set  overflow 

 

 

ALU 
 

Cout 

ALU 
 

Cout 

ALU 
 

Cout 



 

 

 

 



 

 

 

 



 

 

 



Fast Carry Propagation; Carry Look Ahead 

During addition, the carry can trigger a “ripple” from the 

LSB to the MSB. This slows down the speed of addition.  

 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 + 

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

Calculate the max time it takes to complete a 32-bit 

addition if each stage takes 1 ns. How to overcome this?  

Consider the following: 

 a0  s0 

c1  =   a0.b0 + a0.c0 + b0.c0 

 = a0.b0 + (a0 + b0).c0 b0  c1 

 = g0 + p0.c0  c0 

(where g0 = a0.b0, p0 = a0+b0)  

c2 = a1.b1 + (a1 + b1).c1 

 = g1 + p1.(g0 + p0.c0) 

 = g1 + p1.g0 + p1.p0.c0  

 

c4 = g3 + p3.g2 + p3.p2.g1 + p3.p2.p1.g0 + p3.p2.p1.p0. c0 

 

We could calculate c32 in this way. 

G0	
  

G0	
  

P0	
  



 



You can always use a two-level circuit to generate c32, 

which will speed-up addition (do 32-bit addition in 2 ns), 

but it is impractical due to the complexity. 

 

Many practical circuits use a two-phase approach. 

Consider the example of a 16-bit adder, designed from 

four 4-bit adders. Let 

G0 = g3 + p3.g2 + p3.p2.g1 + p3.p2.p1.g0  

G1  = g7 + p7.g6 + p7.p6.g5 + p7.p6.p5.g4  

G2 = g11 + p11.g10 + p11.p10.g9 + p11.p10.p9.g8 

G3 = g15 + p15.g14 + p15.p14.g13 + p15.p14.p13.g12 

 

P0 = p3.p2.p1.p0 

P1 = p7.p6.p5.p4 

P2 = p11.p10.p9.p8 

P3 = p15.p14.p13.p12 

 

Then if C1, C2, C3, C4 are the output carry bit from the 1st, 2nd, 

3rd, 4th 4-bit adders, then we can write 

 

 



 

C1 = G0 + P0.c0 

C2 = G1 + P1.C1 = G1 + P1.G0 + P1.P0.c0 

C3 = G2 + P2.C2 = G2 + P2.G1 + P2.P1.G0 + P2.P1.P0.c0 

C4 = G3 + P3.C3 = G3 + P3.G2 + P3.P2.G1 + P3.P2.P1.G0 + P3.P2.P1.P0.c0 

 

How does it help? Count the number of levels. The 

smaller is this number, the faster is the implementation 

This is implemented in the carry look-ahead adder.  

 

There are other implementations too. 



 

 



 

 

 

 



 





Combinational vs. Sequential Circuits 

 

Combinational circuits  

The output depends only on the current values of 

the inputs and not on the past values.  Examples are 

adders, subtractors, and all the circuits that we have 

studied so far 

 

Sequential circuits  

The output depends not only on the current values 

of the inputs, but also on their past values. These hold 

the secret of how to memorize information. 

We will study sequential circuits later. 
 

 


