Logic Design

See Appendix B of your Textbook

When you write add $10, $t1, $t2, you imagine something
like this:

$11

[ — Adder S
T — 61

$12

What kind of hardware can ADD two binary integers?

We need to learn about GATES and BOOLEAN ALGEBRA

that are foundations of logic design.



X Y | XY

O 0o X }x.\/
0 1|0 y —

1 0|0

1 1 |1

OR gate

X Y | Xy

0 0o X

o 1 |1 X+Y
1 0 |1 y

1 1 |1

NOT gate

X X .
0 1 X X
1 0

Typically, logical 1 = +3.5 volt, and logical O = O volt. Other

representations are possible.



Analysis of logical circuits
X —%jjv
v Ty | )

What is the value of F when X=0 and Y=1?

Draw a truth table.

X Y F
o) o) o)
o) 1 1
1 o) 1
1 1 o)

This is the exclusive or (XOR) function. In algebraic

form  F= XY + XY



More practice

1. Let A.B+ A.C=0.What are the values of A, B, C?
2. Let (A+B+ C).(A_+ B_+ C) = 0. What are the

possible values of A, B, C?

e Draw truth tables.

e Draw the logic circuits for the above two functions.

ks 2




Boolean Algebra
A+0=-A A+A =1
A l=A A A=0
1+A=1 A+B=B+A
0.A=0 A.B=B.A

A+(B+C0)=(A+B)+C }
A.(B.C)=(A.B).C

A+A=A}
A.A=A

A (B+C0)=AB+AC } Distributive Law

A + B.C = (A+B). (A+C)

A.B=A+B } De Morgan's theorem
A+B=g.é




De Morgan's theorem
AB=A+B }
A+B=g.é

Thus, :DD* is equivalent to :@

Verify it using truth tables. Similarly,

@O— is equivalent to :@7

These can be generalized to more than two

variables: to

A.B.C= A+B+C}
A+B+C-= ;.é.g




Synthesis of logic circuits

Many problems of logic design can be specified using a
truth table. Give such a table, can you design the logic

circuit?

Design a logic circuit with three inputs A, B, C and one

output F such that F=1 only when a majority of the inputs is

equal to 1.

A B C|F Sum of product form

o 0 o0]o F=ABC+ABC+ABC+ABLC
O 0 1 0

0o 1 010

0 1 1 |14

1 O 010

1 0O 1 1

1 1 0 | 11

1 1 1

1 Draw a logic circuit to generate F




Simplification of Boolean functions

Using the theorems of Boolean Algebra, the algebraic
forms of functions can often be simplified, which leads to

simpler (and cheaper) implementations.

Example 1

F = AB+AB+BC

= A (B+B)+BC How many gates do you save

= Al+B.C from this simplification?
= A+BC
A A
@
9

")




Example 2

‘ABC+ABC+ABC+ABC

)
i

- ABC+ABC+ABC+ABC+ABC+ABC
= (ABC+ABC)+(ABC+ABC)+(ABC+ABC)

= (Z+ A). B.C+(§+ B). C.A+(E+ C).AB
= BC+CA+AB

Example 3 Show that A+ AB=A

A+ AB
= Al+AB
= A .(1+B)
= Al



Other types of gates

A A

NAND gate NOR gate

Be familiar with the truth tables of these gates.

A
B — ADB=AB+AB

Exclusive OR (XOR) gate



NAND and NOR are universal gates

Any function can be implemented using only NAND

or only NOR gates. How can we prove this?
(Proof for NAND gates)  Any boolean function
can be implemented using AND, OR and NOT gates.

So if AND, OR and NOT gates can be implemented

using NAND gates only, then we prove our point.

1. Implement NOT using NAND

ctp




2. Implementation of AND using NAND

:} A_BT_}—A

3. Implementation of OR using NAND

>} /_\lg = A+B

[
s 1

T

Exercise. Prove that NOR is a universal gate.



Logic Design (continued)

XOR Revisited

XOR is also called modulo-2 addition.

A ® B = 1 only when there are an
odd number of 1'sin (A,B). The
same is true for A ® B ® C also.

_ ===, 0000
=, 00+ O0OO0O|w
OO O OO
P OO, Or P OmMm

1@A=A Why?
0D A=A



Logic Design Examples

Half Adder

A —P

Half 1= sym (S)

Adder
—> Carry (C)

S=ADB
C=AB

w

o O | >

o O O | O

Carry

D




Full Adder

sum(s) | A B Cu|lS Cou

A—» Full —>» O O 0|0 O
p —» 144 0 0 1|1 O
Cin | ?a:ry Cw) | O 1 0|1 O

o 1t 1|0 1

1 0 o1 o

1 0 1|0 1

1 1 0|0 1

1 1 1|1 1
s=AD B D¢,

Couf AB+ B.Cin + A.C,‘n

1. Design a full adder using two half-adders (and a

few gates if necessary).

2. Can you design a 1-bit subtractor?



Decoders

A typical decoder has n inputs and 2" outputs.

Enable A B | D3 D2 D!l DO
—» DO O oo O o0 1
A T —p1 [0 1|0 0 1 O
B —» D2 1 00 1 0 O
—>
D3 1 111 O O O
A 2-t0-4 decoder and its truth table
D3=AB Draw the circuit of this decoder.
D2=AB
D1-AB The decoder works per specs
DO = AB when (Enable = 1). When Enable =0,
all the outputs are O.
Exercise. Design a 3-10-8 decoder.

Question. Where are decoders used?

Can you design a 2-4 decoder using 1-2 decoders?



Encoders

A typical encoder has 2" inputs and n outputs.

DO DI D2 D3| A
DO, 1 0 0 01O
DI —» —> A O 1 0 0]0
D2 —» "B O 0 1 O
D3 0O 0 0 1

A 4-t0-2 encoder and its truth table

A=D1+D3
B=D2+D3




Multiplexor

It is a many-to-one switch, also called a selector.

A—» 0 F S=0,F=A
B—™1 S=1,F=B
Control S Specifications of the mux
A 2-to0-1 mux
F=5. A+S.B
Exercise. Design a 4-to-1 multiplexor using two 2-to-

1 multiplexors.



Demultiplexors

A demux is a one-to-many switch.

o , X S=0,X=A
A

1— Y S=1,¥Y=A

S

A 1-to-2 demux  and its specification

So, X=S.A andY=5.A

Exercise. Design a 1-4 demux using 1-2 demux.



A 1-bit ALV Operation

f

Operation = 00 implies AND ) A » ‘? Result

—>

Operation = 01 implies OR

|

Operation = 10 implies ADD )

Operation
Carry in J{
A Acts like a trafﬁ@
—o—
B @1 ) 00
® Q1 » Result
v 10
Adder \j
>
Carry out

¢ Understand how this circuit works.
¢ Let us add one more input to the mux to implement

slt when the Operation = 11



Converting an adder into a subtractor

A - B (here - means arithmetic subtraction)

= A+2'scomplement of B

= A+1scomplement of B+1

operation
Carry in J{
A
o )
B L |/ 00
® ® ) ) 01 » Result
/
0 v 10
% 1 ~’ Adder

T uJ

B invert Carry out

1-bit adder/subtractor

For subtraction, B invert = 1 and Carry in =1



1-bit ALU for MIPS

Assume that it has the instructions add, sub, and, or, slt.

Operation

Carry in J{
A
A —

® 01 » Result

L

00

0 10
% : Adder | @—

Less ‘ 11 \j
|

B invert Set

, Carry out

Less = 1if the 32-bit number A is less than the 32-bit

number B. (Its use will be clear from the next page)

We now implement slt (If A < B then Set = 1 else Set = 0)



A 32-bit ALU for MIPS

B invert C.in operation

AO

| ALU

BO
> Cout >

Less g
Clin

Al v ¥y

—» ALU
Bl >
— > COUT

L Vg

A3l ] A
B31 > Result 31
Cout
o > Set overflow

v >




Ripple Carry Adder

= Addition
« most frequent operation
+ used also for multiplication and division
« fast two-operand adder essential

= Simple parallel adder

for adding Xn-1,Xn-2,...,X0 and Yn-1,Yn-2,...,Yo
using n full adders

= Full adder

combinational digital circuit with input bits Xi,Yi and
incoming carry bit Ci, producing output sum bit Si and
outgoing carry bit Ci+1

incoming carry for next FA with input bits Xi+1,Yi+1
Si=Xi ®Yi®Ci
Ci+1 = Xi- Yi + Ci- (Xi + Vi)



Full-Adder (FA)

Examine the Full Adder table

x y Cin|Cout S

—_— ek L A O 0O 0 O

—_ O - 0O - 0O =+ 0O

Cout=xey+Cine(x+y)
S=xYyc+XyC +Xxyc +Xxyc
=X@yo®c

Cin
e |
X DT{\ Cout
HD D
F }F'/

______________________________

In general, for bit /;
Cipt =X ¥; + G (Xi+Y)
where ¢, = Cout, ¢= Cin



Parallel Adder: Ripple Carry

x€r3 U3 €L Y2 £ N Lo Yo

oL

FA « FA « FA « FA

I

53 59 S1 50

* In a parallel arithmetic unit
« All 2n input bits available at the same time
« Carry propagates from the FA to the right to FA to the left

« Carries ripple through all n FAs before we can claim that the
sum outputs are correct and may be used in further calculations

= Each FA has a finite delay



Fast Carry Propagation; Carry Look Ahead

During addition, the carry can trigger a "ripple” from the

LSB to the MSB. This slows down the speed of addition.

O1111111111111111111 +
00000000000000O0O1

Calculate the max fime it takes to complete a 32-bit
addition if each stage takes 1 ns. How to overcome this?

Consider the following:

a0 sO

cl = a0.b0 + a0.cO + b0.cO
= a0.b0 + (a0 + b0).cO b0 | cl
= g0 + p0.cO cO
(where g0 = a0.b0, pO = a0+b0)
c2 = al.bl + (al + bl).cl
= gl + p1.(g0 + p0.cO)

= gl + pl.g0 + p1.p0.cO

A — N
— - N

c4 = g3 + p3.g2 + p3.p2.g1 + p3.p2.p1.g0 + p3.p2.p1.p0. cO

We could calculate ¢32 in this way.




Gates are limited to two inputs

" C4=g3 + P59, + P5P,9; + P3P,P190 + ( P3P2P1PoCy

.
= e

What if there were 6 inputs?
What if there were 7 inputs?
What if there were 8 inputs?
What if there were 9 inputs?




You can always use a two-level circuit to generate c32,
which will speed-up addition (do 32-bit addition in 2 ns),

but it is impractical due to the complexity.

Many practical circuits use a fwo-phase approach.
Consider the example of a 16-bit adder, designed from

four 4-bit adders. Let

G0 = g3 + p3.g2 + p3.p2.91 + p3.p2.p1.90

Gl =g7 +p7.96 + p7.p6.95 + p7.p6.p5.94

G2 = g1l + p11.g10 + p11.p10.99 + p11.p10.p9.98

63 = g15 + p15.g14 + p15.p14.913 + p15.p14.p13.912

PO = p3.p2.p1.p0

Pl = p7.p6.p5.p4

P2 = p11.p10.p9.p8
P3 = p15.p14.p13.p12

Then if C1, C2, C3, C4 are the output carry bit from the 15, 2",

34 4™ 4_bit adders, then we can write




C1=G0 +P0.cO

C2=G1+P1.C1=G1+P1.G0 + P1.P0.cO

C3=G2+P2.C2=G2 +P2.G1 + P2.P1.G0 + P2.P1.P0.c0
C4=G3+P3.C3=G3 +P3.G2 + P3.P2.G1 + P3.P2.P1.G0 + P3.P2.P1.P0.c0

How does it help? Count the number of levels. The
smaller is this number, the faster is the implementation

This is implemented in the carry look-ahead adder.

There are other implementations too.




Birmaart Operation
Alrisart
Carryln
# l *
—
1 L ¥
al) —»{  Carryin - RasultD
bl —n AL
o Less
CarryOut
[ ¥
—
1 L r
al —s  Carryin # Hasulti
b1 —m ALl
0 —- Lass
CarryOut
[ ]
[
* ¥ 1 r
a2 —w  Carryin # Rasult2
b2 —nd ALLI2
0 — Liss
CarryOut
P | : - Carryln
3 4 4
a3l—sd  Carryin = Result3
b3l—ey AL Sal
0 —. Liess = Chverfiow

AGURE B.511 A 32-bit ALU constructed from the 31 copies of the 1-bit ALU in the top
of Figure B.5.10 aml one 1-bit ALY in the bottom of thad figure. The Less inputs are connected
to 0 except for the least significant bit, which is connected to the Set output of the most significant bit. If the
ALL performs 2 — b and we select the input 3 in the multiplexor in Figure B.5.10, then Result = 0. .. 001 if
a« by and Result=0. .. 000 otherwise,



Delay of Carry Look Ahead Adders

= Let T be the delay of a gate
X3 Y3 X2 Y2

S

1 '1

|

T Wl el W

= If inputs are available at time t=0, when are p and g signals
available?

C3 C2 C1
il T olle ] elle 1 o] fuc
«— CLL (carry look-ahead logic)
C4




Total Delay

C3 C2 C1 l l
% %] o1 % o
P3| |93 P2l |G Pi| |94 Po| |9
« CLL (carry look-ahead logic) *
C4
" T+3T+ T +2T = 71 la* lP*
* What is the delay of
a 5 bit CLA?

. 6bitCLA? 7bitclA? G = G+ GaP3s+ GiPyPs+ GoP PPy
* 8 bit CLA? pP* = P()P1P2P;3.



2-level Carry Look Ahead (16-bit)

T15-12 Y15-12 T11-8 Y11-8 T7-4  Y7-4 T3-0  Y3-0
C12 C8 C4 co
Group 3 1 Group 2 1 Group 1 1 Group 0 1

IR i

#1815 19 * * * VS * * 1 83
P3 15—12 GQV\ Gl‘ P1 7—4 G0 ,Po 3-0

* n=16 - 4 groups, 4-bit each

Carry-Look-Ahead Generator CLL —

Cy = GS‘FC()PS‘,
cg = Gy +GoPf +coFy P,
iy = G5+ GiPy+GyPiPs + cyPiP; Py



Combinational vs. Sequential Circuits

Combinational circuits

The output depends only on the current values of
the inputs and not on the past values. Examples are
adders, subtractors, and all the circuits that we have

studied so far

Sequential circuits

The output depends not only on the current values

of the inputs, but also on their past values. These hold
the secret of how to Memorize information.

We will study sequential circuits later.



