
 Draft notes of CS:2630

 1

Computer
Organization

 Draft notes of CS:2630

 2

Introduction

Here are some natural questions:

How does a computer execute a program?

What is there inside a computer?

Do all computer have identical hardware ?

What is the difference between a PC and a Mac?

 Draft notes of CS:2630

 3

Technologies

A computer is an instruction-execution engine.

Different hardware technologies are possible:

• Mechanical

• Pneumatic

• Electronic

• Quantum

• Biological

We will focus on electronic technology only, which

is the most common technology used today. It

primarily uses silicon-based integrated circuits.

 Draft notes of CS:2630

 4

Classification

General purpose

Your PC

Special purpose

 The computers in your car

 The computer in your cell phone

 The computer inside your camera

 The computer in your washing machine

 Draft notes of CS:2630

 5

Partial History of modern day computers

Eckert and Mauchley

Moore School of the U. of Pennsylvania, ENIAC

John Von Neumann

 Princeton U.

EDVAC, the blueprint of the first stored program

digital computer

Maurice Wilkes

Cambridge U., EDSAC, the first operational stored-

program digital computer

John Vincent Atanasoff

Iowa State University

Designed a machine in 1939-1940 to solve

differential equations. Recognition came much later.

 Draft notes of CS:2630

 6

Generations

First generation: vacuum tubes

Second generation: transistors

Third generation: integrated circuits

Fourth generation: LSI and VLSI

Units of time

1 second

1 millisecond (ms) = 10-3 second

1 microsecond (µs) = 10-6 second

1 nanosecond (ns) = 10-9 second

1 picosecond (ps) = 10-12 second

 Draft notes of CS:2630

 7

Questions

My PC has a 3 GHz clock. What does the clock do?

How much time does it take to add two integers?

How much time does your computer take to read a

1 MB (megabyte) file from a disk?

What distance does an electronic signal travel in 1

nanosecond?

 Draft notes of CS:2630

 8

A Basic Digital Computer

CPU or Processor MEMORY I/O

There are different ways of designing the “boxes”

or the functional units. At the upper level, we care

only about the functionality and not so much about

their internal construction.

Data

Program

Control

Unit

Arithmetic
Logic Unit

Input
Unit

Output
Unit

 Draft notes of CS:2630

 9

Measuring the Speed

MIPS = Million Instructions Per Second

MFLOPS = Million FLOating point ops Per Sec

GFLOPS = Billion (Giga) FLOating point ops Per Sec

TERAFLOPS = Trillion FLOating point ops Per Sec

PETAFLOPS = 1015 FLOating point ops Per Sec

What do we do with a TERAFLOP or a PETAFLOP

machine? Do we have enough work for them (other than

playing video games)?

 Draft notes of CS:2630

 10

Laws of Hardware

• Signals cannot travel faster than the speed of light.

• Memory is always slower than the CPU.

• Software is slower than hardware.

Moore’s Law.

The packaging density of transistors on an integrated

circuit increases 2x every 18 months.

Gates Law.
The speed of software halves every 18 months

(Microsoft is the worst offender. Software bloat almost compensates for

hardware improvement due to Moore’s law).

Amdahl’s law

Concerned with the speedup achievable from an

improvement to a computation that affects a fraction of

that computation.

 Draft notes of CS:2630

 11

Factors influencing computer performance

Problem algorithm HLL machine

 program code

How fast can you solve a problem on a machine?

Depends on

• The algorithm used

• The HLL program code

• The efficiency of the compiler

And, of course, it also depends on the target machine. If

the algorithm is lousy, then do not blame the computer!

 P

Compiler

 Draft notes of CS:2630

 12

Assembly Language

Programming

 Draft notes of CS:2630

 13

Program a robot

It should move on a 2D plane, or sometimes jump

(without moving)

What should a typical program look like?

How will you encode it?

How will the robot understand your language?

 Draft notes of CS:2630

 14

High-level vs. Assembly language

Consider the following statements

1. a = x + y – z

2. if x > y

then x:= x + y

else x:= x - y

HLL (High Level Language) programs are machine

independent. They are easy to learn, easy to use,

and convenient for managing complex tasks.

Assembly language programs are machine

specific. It is the language that the processor

“directly” understands.

Compiler HLL Assembly
Language

 Draft notes of CS:2630

 15

 Draft notes of CS:2630

 16

Understanding Assembly Language

Let	
 us	
 begin	
 with	
 data	
 representation.	
 How	
 to	
 represent	

• Signed integers

• Fractions

• Alphanumeric characters Review

• Floating point numbers

• Pictures?

Memory

0 1 0 0 1 0 1 1
1 1 0 1 1 0 1 0

1 00 1 1 0 0 0
0o00

Can you read
the contents
of these
memory
cells?

 Draft notes of CS:2630

 17

Visualizing instruction execution

(The main concept is register-transfer operation.

 registers

 Memory

0 x r0

1 y r1 ALU

2 z r2

3 a r3

Address data processor

A register is a fast storage within the CPU

 load x into r1

 load y into r2

a = x + y - z load z into r0

 r3 ← r1 + r2

 r0 ← r3 – r0

 store r0 into a

500

24

-32

0

 Draft notes of CS:2630

 18

Assembly language instructions for a

hypothetical machine (not MIPS)

Load x, r1

Load y, r2

Load z, r0

Add r3, r1, r2

Sub r0, r3, r0

Store r0, a

Each processor has a different set of registers, and

different assembly language instructions. The assembly

language instructions of Intel Pentium and MIPS are

completely different.

Motorola 68000 has 16 registers r0-r15

MIPS has 32 registers r0-r31

Pentium has 8 general purpose & 6 segment registers.

 Draft notes of CS:2630

 19

Binary or Machine Language program

Both program and data are represented using

only 0’s and 1’s inside a computer. Here is a

sample:

 0 31

 Load address of x

 0 31

 Add r3 r1 r2 unused

These are instruction formats. Each instruction

has a specific format.

0 1 0 1 0 0 1 1 0 0 1 1 0 0 … 0 0 0
0

1 1 0 0 1 0 1 1 0 1 1 0

Operation
code

 Draft notes of CS:2630

 20

Can we distinguish program from data?

 Both are bit strings.

 Indistinguishable.

 MEMORY

Normally, the programmer has to tell the machine

(or use some convention) to specify the address of

the first instruction. Incorrect specification will

lead to errors, and the program is most likely to

crash.

 Program

Data

 Draft notes of CS:2630

 21

Bits, bytes, words

Bit: 0, 1

Byte: string of 8 bits. Each byte has an address.

Word: one or more bytes (usually 2 or 4 or 8).

0

1 word 0

2

3

4

5 word 1

6

7

01010000

11110000

0000000

11111111

00001111

10111011

00111100

00000111

 Draft notes of CS:2630

 22

 0

 4

 8

 12

Byte order in a word

Big Endian order [byte 0, byte 1, byte 2, byte 3]

Little Endian order [byte 3, byte2, byte 1, byte 0]

Word 0

Word 1

Word 2

Word 3

 Draft notes of CS:2630

 23

Registers vs. memory

Data can be stored in registers or memory

locations. Memory access is slower (takes

approximately 50 ns) than register access (takes

approximately 1 ns or less).

To increase the speed of computation it pays to

keep the variables in registers as long as possible.

However, due to technology limitations, the number

of registers is quite limited (typically 8-64).

MIPS registers

MIPS has 32 registers r0-r31. The conventional

use of these registers is as follows:

 Draft notes of CS:2630

 24

register assembly name Comment

r0

r1

r2-r3

r4-r7

r8-r15

r16-r23

r24-r25

r26-r27

r28

r29

r30

r31

$zero

$at

$v0-$v1

$a0-$a3

$t0-$t7

$s0-$s7

$t8-$t9

$k0-$k1

$gp

$sp

$fp

$ra

Always 0

Reserved for assembler

Stores results

Stores arguments

Temporaries, not saved

Contents saved for later use

More temporaries, not saved

Reserved by operating system

Global pointer

Stack pointer

Frame pointer

Return address

 Draft notes of CS:2630

 25

Example assembly language programs

Example 1 f = g + h – i

Assume that f, g, h, i are assigned to $s0, $s1, $s2, $s3

add $t0, $s1, $s2 # register $t0 contains g + h

sub $s0, $t0, $s3 # f = g + h – i

Example 2. g = h + A[8]

Assume that g, h are in $s1, $s2. A is an array of words,

the elements are stored in consecutive locations of the

memory. The base address is stored in $s3.

lw t0, 32($s3) # t0 gets A[8], 32= 4x 8

add $s1, $s2, $t0 # g = h + A[8]

 Draft notes of CS:2630

 26

Machine language representations

Instruction “add” belongs to the R-type format.

 6 5 5 5 5 6

 src src dst

add $s1, $s2, $t0 will be coded as

 6 5 5 5 5 6

The function field is an extension of the opcode, and

they together determine the operation.

Note that “sub” has a similar format.

opcode rs rt rd shift amt function

 0 18 8 17 0 32

