Peer-to-Peer and Social
Networks



The small-world model

[Watts and Strogatz (1998)]

They followed up on Milgram’s work and reason about why there
is a small degree of separation between individuals in a social
network. Research originally inspired by Watt’s efforts to
understand the synchronization of cricket chirps, which show a
high degree of coordination over long ranges, as though the
insects are being guided by an invisible conductor.

Disease spreads faster over a small-world network.



Questions not answered by Milgram

Why six degrees of separation? Any scientific reason?
What properties do these social graphs have?

Is clustering the only missing link? (Human beings prefer
clustered environments). But the diameter must also be
low!

Time to reverse engineer this.



What are small-world graphs

Completely regular

N

Small-world graphs ( > k > logn)

N\,

Completely random

n = number of nodes, k= number of neighbors of each node



Completely regular

Regular

If k=4 then
Clustering coefficient CC = % = /2

. n
Diameter L =—

The clustering coefficient is OK, but
Diameter is too large!

A ring lattice



Completely random

Handom

k
n

L=log, n

Diameter is small, but the
Clustering coefficient is too small!




Small-world graphs

Start with the regular graph, and with probability p rewire each
link to a randomly selected node. It results in a graph that has
high clustering coefficient but low diameter ...

Regular Smali-world

p=0 » p=1
Increasing randomness
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Limitation of Watts-Strogatz model

Jon Kleinberg argues ...

Watts-Strogatz small-world model illustrates the existence of

short paths between pairs of nodes. But it does not give any clue
about how those short paths will be discovered. A greedy search

for the destination will not lead to the discovery of these short

paths.



Kleinberg’s Small-World Model

Consider an (nXn) grid. Each node has a link to every node at lattice distance
p (shortrange neighbors) & q long range links. Choose long-range links at

lattice distance  with a probability proportional to d_r (**See note below)
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**Here I denotes the dimension of the space. Since we are considering a 2D grid, r=2



Results

Theorem 1. Thereis a constant () (depending on p and dq

but independent of 71 ), so that when r =(), the expected

delivery time of any decentralized algorithm is at least ¢¢(). n2/3

** The above result is valid for a 2D grid only. For a 1D space like a
Linear topology of a ring, the expected time will be different
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Proof of theorem 1

Probability to reach within

, _ 2/3
a lattice distance 7 from

the target is

4/3
2n

2
n

-2/3
=2n

So, it will take an expected

0(”2/3) steps

to reach the target.



More results

Theorem 2. There is a decentralized algorithm A and a constant o2
(dependent on p and g) but independent of n, such that when r=2
and p=¢=1, the expected delivery time of A is at most «2.log’ n

(

gr —]) i.e the expected delivery time is O(log?n) when long-range

\. W,

For a one-dimensional search space, the same result will hold for

inks at distance d are chosen with probability proportional to d-*




Variation of search time with r
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Proof of Theorem 2

Main idea.

We show that in phase j, the expected time before the
current message holder has a long-range contact within
lattice distance 2) from t is O(log n); at this point, phase |
will come to an end. As there are at most log n phases,

a bound proportional to log’n follows.



Proof of Kleinberg’s theorem

For simplicity we prove it for a one

dimensional ring topology, so r =1

1 1
Probability (u linking to v) = 7 dovu)

2j+1
d(u,v)=n/2 1 1
Since 2 —. >1/2
e dim= £ d(v,u)
phase |

1 1 1 1
Z<2(14+4Z44+=++—).
< <+2+3+4+ +n/2>



Proof continued

y = 1/x 232(1+T§.dx)=2+21n(%)

<2log,n

1/2 -
1/3 - .

An upper bound of the normalizing constant is the area
under the curve whichis Z <2logn



Proof continued

1
logn

Thus, probability that a link (v,w) exists is = ld(fU, w)—l > d(’U, w)_l
7 -

We now calculate the time taken in one phase (implies that the distance
to the target becomes less than d/2.

Probability in one step the search reaches a given node in the target zone >

1

1 1 2
—1 >
log nd(v7 w)

= logn 3d/2 B 3dlogn

Why?

Probability that in one step the search reaches some node within distance d/2 >

2 2

d. - =
3dlogn  3logn




Proof continued

How can this continue? Let X, be the number of steps in phase ]

The probability that this phase continues for at least i steps <

9 i—1

3logn

The expected number of steps to complete phasej is

E[Xj]:l'Pr[Xj:1]+2-PI‘[XJ-=2]—I-3-P1*[X]-:3]_|_...

=Pr[X; >1]+Pr[X; >2]+Pr[X; >3] +---

So, E[X;] <1+ (1-— 2 +(1-— 2 2+ 1 — 2 3+
> 7= 3logn 3logn 3logn

3
This leads to EX;] < 5 log n.




Proof continued

The expected number of steps for the total search

E(X)=E(X)+E(X,)+..+ E(X,,,) < %(log n)’

2 l.e. O(log2 n)

distance d

distance at most d/2?



