Floating point representation

A scheme for representing a number very small to very large. It is

widely used in the scientific world. Consider, the floating point number

Exponent E Mantissa or Significand F

XX XX YYYYYYYYYYYY

In decimal it means (+/-) D. yyyyyyyyyyyy X 10708 (D>0)

. . XXXX
In binary, it means (+/-) 1. yyyyyyyyyyyy X 2

(The 1 is implied)

IEEE 754 representation

S| XXXXXXXX| YYYYYYYYYYYYYYYYYYYYYYY Single precision

T 8 23 bits
Largest = 1.111... x 2127 ~2x10 ™
Smallest = 1.000 ... x2 '8 =1x10 ™8
Sign = (-1) °

These can be positive and negative, depending on s.

IEEE 754 double precision (64 bits)

S | exponent significand
1 11 bits 52 bits
Largest = 1.111...x2+1023
Smallest= 1.000... X 2 0%

Overflow and underflow in FP

An overflow occurs when the number if too large to fit in the
frame. An underflow occurs when the number is too small to

fit in the given frame.

Biased Representation

Exponent = 11111111 2" } awkward for sorting

Exponent = 00000000 2°

However, to facilitate sorting, IEEE 754 treats 00...0 as the
most negative, and 1,11..1 as the most positive exponent.

This amounts to using a bias of 127.

00000000 (=-127) 11111111 (=+128)
A bias +127 A
smallest > largest

So, value = (1)S x (1+significand) x 2(exponent— bias)

0011

0100

0101

1000

Floating Point Addition

1. Align (Shift the smaller number to the right until
the exponents are equal)
2. Add the significand
3. Normalize
4. If underflow or overflow then
round-off to the right number of bits

else flag exception

Note that these stages can be pipelined.

Floating Point Multiplication

1. Add the (biased) exponents and subtract the bias
to get the new exponent

2. Multiply the significands

3. Normalize (if necessary)

4. If overflow or underflow then exception else
round off the significand

5. Set the sign appropriately

These steps can be pipelined, if necessary

Restoring division algorithm for integer operands

Divide x by y: quotient = q, remainder =r

Il [

0

Subtract

Shift (Q, A) left

Q=Q-B

If Q <0then A[0]: =0
Q:=Q+B

else A[0] := 1

After N cycles, A = quotient, Q = remainder

