
1

Segmented Virtual Memory of Pentium

MMU translates the Virtual Address to Physical address.

Memory contains a number of program segments. Each

segment has a segment descriptor stored in an

appropriate segment register.

CS segment descriptor

DS segment descriptor

Descriptor
Table

Memory
Management

Unit

2

Segment descriptor

A segment register contains a 16-bit selector

 Pentium selector

13 1 2

M

 Descriptor Table

LDT (Local Descriptor Table): one per process

GDT (Global Descriptor Table): one for the system

Pentium can support (1) pure segmentation or (2)

segmentation and paging

 Index GDT/ Privilege
 LDT Level

descriptor

descriptor

descriptor

3

Example of a descriptor

Descriptor loaded into MMU.

16 16

 A Code

 Descriptor

 Segment type

Granularity bit Privilege level

16/32 bit segment Presence bit

Segment table entry

Index Base Limit P G Others

Base Limit
0-15 0-15

Base Limit Base
24-31 G D 0 16-19 P DPL Type 16-23

4

Page mode off

32-bit address is the physical address.

Page mode on

32-bit address is a virtual address, and the segment is

divided into pages.

Selector Offset

Base

Limit

Others

32-bit Linear Address

5

Physical address computed by a 2-level translation.

10 10 12

 Directory
 Always in M

Pages of
Page Table Pages of program/data

 in M

PGD PMD

Directory Offset in Offset in
index page table page

6

Implementing Protection through VM

User mode

User cannot modify some system states, or execute

certain instructions. The restriction is important so that

user programs cannot cheat

Supervisor mode (or kernel mode or privileged

mode)

The OS takes control

A single bit distinguished between the two modes.

 Return from exception

User mode Supervisor mode

System Call

7

 Memory protection in Pentium

 user

 library

 Systems call

 Kernel

 0

 1

 2

3

Each segment belongs to a ring with a designated

privilege level. Lower numbered rings have higher

security.

8

Mode switch examples

Calls towards segments of lower security are

unrestricted. However, a call to a segment of higher

security is controlled using call gates. When such a

call is allowed, the calling process temporarily

acquires the privilege level of the called program. This

can open the gates for Trojan horse attacks, but there

are safeguards against such attacks.

9

Alpha AXP 21264 Virtual Memory

64–bit virtual address

 21 10 10 10 13

 +

 +

 +

Physical address

Page table entry (PTE)

Notes

Each page table entry is of 64 bits, i.e. 8 bytes.

Page size = 8 KB, so we need 13 bits for the offset.

The size of the page table at each level is 1 page.

A TLB miss can cost up to three levels of memory access.

Linux on IA-64 uses three-level page tables

Segment level 1 level 2 level 3 offset
select

Page table
base register

Block
offset

10

Advanced Pipelining Techniques

1. Dynamic Scheduling

2. Loop Unrolling

3. Software Pipelining

4. Dynamic Branch Prediction Units

5. Register Renaming

6. Superscalar Processors

7. VLIW (Very Large Instruction Word) Processors

8. EPIC (Explicitly Parallel Instruction Computers)

9. IA-64 Features

11

Dynamic Scheduling: CDC 6600 Style

restructure

the pipeline

Issue (I) = decode & wait for all

structural hazards to clear

Read (R) = read operands

In a dynamic pipeline, instructions can be issued

out-of-order and they can complete out-of-order.

First used in CDC 6600.

Dynamic pipelining will need additional buffer space

between stages, but will also speedup computation.

F D X M W

F I X M WR

F I X M WR

F I X M WR

12

The Impact of Dynamic Scheduling

Assume that the processor has an add/subtract unit (2 cycles), a

multiplier (3 cycles) and a division unit (5 cycles).

Example 1 (speedup)

With static scheduling

1. F2 := F4 / F6 F I R X X X X X M W

2. F10 := F2 + F8 F I o o o o o o o R X X M W

3. F12 := F6 – F14 F o o o o o o o o o o I R X X

With dynamic scheduling

1. F2 := F4 / F6 F I R X X X X X M W

2. F10 := F2 + F8 F I o o o o o o o R X X M W

3. F12 := F6 – F14 F I R X X M W

13

Example 2 (Possibility of new hazards)

1. F2 := F4 * F6 F I R X X X M W

2. F8 := F10 * F12 F o o o o I R X X X M W

3. F8 := F14 / F6 F I R X X X X X M W*

Note. Verify that this WAW hazard was not possible with

static scheduling.

