
Sorting algorithms: Quicksort

Numerous sorting algorithms are there. We have

discussed so far about

• Insertion sort

• Merge sort

• Heap sort

We now take a look at Quicksort that on an

average runs 2-3 faster that Merge sort or Heap

sort.

Quicksort (Divide-and-conquer)

The major steps:

(Pivot) Given an array of numbers, choose a pivot p

(Partition) Reorder the elements, so that all elements

< p appear before p, and all elements > p appear after

p. The elements equal to p can appear anywhere in

between the smaller (than p) and the larger (than p)

elements.

(Recursion) Apply this to the sub-arrays in the

partition, until their sizes become one, the base case.

(Concatenation) Combine the sorted sub-arrays

into a sorted queue

Any element can be chosen as the pivot, but usually the

last one is picked since it gives the best performance.

Assume that the initial values are in a queues S

 //partition the queue

 public static int void(quicksort Queue S){

 int pivot = S.last();

 // construct three queues L, G, E (not shown)

 while !S.isEmpty() {

 int element = S.dequeue();

 if (element < pivot)

 L.enqueue (element);

 else if (element = pivot)

 E.enqueue (element)

 else G.enqueue (element);

 }

 // Recursive step

 quicksort(L);

 quicksort(G);

 //Concatenate results

 while (!L.isEmpty)

 S.enqueue(L.dequeue());

 while (!E.isEmpty)

 S.enqueue(L.dequeue());

 while (!G.isEmpty)

 S.enqueue(L.dequeue());

 }

Example

Complexity: Best case O(n log n) Why?

Complexity: Worst case O(n2) Why?

Can we avoid using queues and shuffle the elements in-

place within the array to sort the elements? Yes.

85 24 63 45 12 31 96 50

24 45 12 31 85 6350

24 12 31 45 63 85

96

96

63 8512 24

L

L L

E G

E G E

E GE G

Array Version: Algorithm 1

Pseudocode for Quicksort

 QuicksortInPlace (A, p, r)

 If p < r then

 q = partition (A, p, r)

 QuicksortInPlace (A, p, q-1)

 QuicksortInPlace (A, q+1, r)

The value of q divides the array into two parts.

The initial call is

 QuicksortInPlace (A, 0, length(A)-1)

rp0 n-1

sub-array

Pseudo-code for partition in QuickSortInPlace

 partition (A, p, r)

 pivot = A[r]

 i = p-1

 for j = p to r-1 {

 if A(j) < pivot {

 i=i+1

 swap (A[i], A[j])

 }

 swap (A[i+1], A[r])

 // q = i+1 divides the array

An example of partition

Performance of Quicksort

Quick sort vs Merge sort

Both are comparison-based sorts.

Merge sort simply divides the list into two (almost)

equal parts, but does some extra work before merging

the parts.

Quicksort does the extra work before dividing it into

parts, but merging is simple concatenation.

Quicksort is the fastest known comparison-based sort

The link

https://www.youtube.com/watch?v=YvTW7341kpA

Contains an old (1980’s) but nice video on three sorting

techniques

What if all keys equal?

Such keys can go to either half. Algorithm 1 discussed

earlier will lead to O(n2) time complexity

What if all the keys are already sorted?

Again, Algorithm 1 will lead to O(n2) time complexity.

85 85 85 85 85 85 85 85A[]
i j

p r

85 85 85 85 85 85 85 85A[]
i j

p r

85A[]

i j

p r
2 7 8 17 48 60 75

85A[]

i j

p r
2 7 8 17 48 60 75

Randomly choosing the pivot overcomes the second

problem.

Randomly choose pivot and swap it with the last item

Random pivot helps (1/ 4 − 3 / 4) split in most cases).

Also, for large arrays, Median of three (random choices)

works even better. Take three randomly chosen array

indices and pick the middle one to pick the pivot.

Quicksort on Linked List

Split into three lists L (less than) G (greater than), E

(equal to pivot). Of these, sort only L, G not E. It reduces

the effort, but does not work with array in-place)

Sort (5, 7, 5, 0, 6, 5, 5)

0 | 5, 5, 5, 5 | 7, 6

Random pivot choice is annoying for Linked List.

Quicksort Algorithm 2

It is a better version of Quicksort.

To sort A[p] – A[r], use two pointers i and j

Initialize i= p-1 and j = r

(Between i,j sandwich the items to be sorted).

Move i from left to right as long as A[i]<pivot,

Move j from right to left as long as A[j]>pivot.

Swap (A[i], A[j])

3 40 98 7 5

i j

3 40 98 7 5

i j

3 4 0 9 8 7 5

i j

3 4 0 9 8 7 5

i j

now swap

now swap

3 4 0 9 8 7 5

i

i > j

j

public static void quicksort(int[] a, int low, int high){

 if (low < high) {

 int pivotIndex = random number from low to high;

 pivot = a[pivotindex];

 a[pivotIndex] = a[high]; // Swap pivot with last

 a[high] = pivot;

 int i = low - 1;

 int j = high;

 do {

 do { i++; } while (a[i] < pivot);

 do { j--; } while ((a[j] > pivot)&&(j > low));

 if (i < j) {

 swap a[i] and a[j];

 }

 } while (i < j);

 a[high] = a[i];

 a[i] = pivot; // Put pivot where it belongs

 quicksort(a, low, i - 1); // Sort left sub-array

 quicksort(a, i + 1, high); // Sort right sub-array

 }

 }

Notes

Works great with both arrays containing all equal elements,

and already sorted arrays,

Can the "do {i++}" loop walk off the end of the array and

generate an out-of- bounds exception? No, because a[high]

contains the pivot, so i will stop advancing when i == high

(if not sooner).

There is no such assurance for j, so the "do {j--}" loop

explicitly tests whether "j > low" before retreating.

