
Public and Private

public class Date {

 private int day;

 private int month;

 private void setMonth(int m)

 month = m;

 }

public Date(int month, int day) {

Implementation includes error-checking

}

	

public class TamperMonkey {

public void tamper() {

Date d = new Date(9, 25);

d.day = 75; // Will it work?

d.setMonth(20); // Will it work	
 	
 	
 	

}	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

Will TamperMonkey compile?

Abstract Data Type

The Interface of a class =

A set of public methods +

Descriptions of the methods' behaviors

(but not how they are implemented).

An Abstract Data Type (ADT) is a well-defined Interface

without any details about its implementation. Treat this as a

user-defined data-type. An ADT as a mathematical model of the

data objects that make up a data type as well as functions that

operate on these objects.

Some examples are:

• List

• Stack

• Queue

• Tree

• Heap

The List ADT

Here is a sample list:

Bread cheese, tea, coffee, milk, honey, pizza,

Java defines a general interface java.util.List that includes

the following index-based methods (since that provides more

general support for addition or deletion of items) and many

more

Size () return the SIZE

isEmpty() returns TRUE or FALSE

get(i) returns element with index i

 Error occurs when index is outside the range

set(i, e) updates element i to e

Error occurs when index is outside the range
add (i, e) inserts item e after element with index i

 Error occurs when index is outside the range

remove (i) deletes the ith element

 Error occurs when index is outside the range

Stack ADT
What is a stack?

What are the invariants?

From abstract to concrete

One way to implement the list ADT is to use an array. ArrayList

creates the illusion of an unbounded array, by repeatedly

copying fixed size arrays into a larger space when new

elements are inserted.

Public class ArrayList <E> implements list <E>

There can be other implementations of the list ADT.

Each ADT should have one or more invariants that are true,

regardless of the implementation.

What is the invariant of a list ADT?

“There is always a tail “ (so no circular structure)

The Singly Linked List

Inserting at the Head

Removing the Head

Removing the tail : why is it slow?

Inserting at the tail

Doubly Linked List

Circular Linked Lists

Skip List

Helps manage a list efficiently

	

	

	

	

Figures taken from Wikipedia

