
Important Architectural Issues

1. General purpose or Special purpose

2. Programmability or Semantic gap

Gap between what the high-level language software

needs and what the hardware provides. Determined

by the Instruction Set Architecture.

3. Operating Systems Support

Support for Virtual memory, Protection, Interrupt

processing etc.

4. Speeding Up Applications

Pipelining, instruction scheduling, branch processing

code morphing, hardware accelerators etc. are dealt

at the Microarchitecture level.

5. Cost-Performance, Power Consumption etc

What price will you pay for performance? How much

power will the processor consume?

Measuring the Speed
MIPS = Million Instructions Per Second

MFLOPS = Million FLOating point ops Per Sec

GFLOPS = Billion (Giga) FLOating point ops Per Sec

TERAFLOPS = Trillion FLOating point ops Per Sec

PETAFLOPS = 1015 FLOating point ops Per Sec

Moore’s Law.

The packaging density of transistors on an integrated

circuit increases 2x every 18 months.

Gates Law.

The speed of software halves every 18 months

(Microsoft is the worst offender. Software bloat almost

compensates for hardware improvement due to Moore’s

law).

What do we do with a PETAFLOP machine? Do we have

enough work for them?

Laws of Architecture
• Signals cannot travel faster than the speed of light.

• Memory is always slower than the CPU.

• Software is slower than hardware.

• Moore’s Law

• Amdahl’s law

Techniques for enhancing speed

• Faster circuits

• Pipelining

• Instruction Level Parallelism (ILP)

• Single Instruction Multiple Data

• Multiple Instruction Multiple Data

• Better Algorithms

• Factors influencing computer performance

 problem algorithm HLL machine

program code

How fast can you solve a problem on a given machine?

Depends on

• The algorithm used

• The HLL program code

• The efficiency of the compiler

And, of course, the target machine

If the algorithm is lousy, then do not blame the

computer!

Classical Von Neumann machine
• Stored program computer

• Sequential execution of instructions

• Indistinguishability of data and instructions:

instructions can be manipulated as data.

Memory Unit

Instruction or data
Instruction or data

Sample Instruction Formats

Load 1234

 Opcode Address or Data

x:=y+z

 Opcode Address1 Address2 Address3

 ADD X Y Z

Data Formats

• One or more bytes.

• No special representation for typed data. The data

type is determined by the opcode.

Can represent 773 if the type is binary

Can represent 305 if the type is BCD

Can represent 3.05 if the type is fixed point BCD

Can even represent an instruction!

Exception

Tagged Architecture (like Burroughs B6700)

3-bit 48-bit

Advantages? Disadvantages?

 0 0 0 0 0 0 1 1 0 0 0 0 0 1 0 1

Data type Data

Basic Instruction Cycle

 PC

 IR

Memory Control Registers ALU

Fetch Execute

IR := M[PC] Decode instruction

Increment PC Compute operand addresses

Go to execute phase Fetch operands

Complete the operation

Go to fetch phase

Fetch Execute

Other Views of Instruction Cycle

If each phase takes one clock cycle (this may

not always be true), then each instruction will

take 3 clock cycles.

 Instruction 1

 Instruction 2
Instruction 3

 F D O O X S X:= Y + Z

Instruction cycle with six phases: Fetch, Decode, Op

fetch, Op fetch, Execute, Store (result). CPI (Cycles Per

Instruction) is an important metric for a processor.

Fetch Decode Execute

Amdahl’s Law
FP (50%)

Integer (25%)

 Branch (10%)

Others (15%)

How to invest your $$ to speedup the above machine?

 x 1-x

before enhancement

x/k 1-x after enhancement

x = fraction to be enhanced k = enhancement factor

Overall speedup = 1/(x/k + (1-x))

Maximum possible speedup = 1/(1-x)

Law of diminishing return.

Little Endian vs. Big Endian

How will you store the following two 32-bit

words in the memory?

X = 11223344 (hex)

Y = 55667788 (hex)

0 1 1 0 4 4
1 2 2 1 3 3
2 3 3 2 2 2
3 4 4 3 1 1
4 5 5 4 8 8
5 6 6 5 7 7
6 7 7 6 6 6
7 8 8 7 5 5

Big Endian Little Endian

Motorola 680x0 Intel 80x86
(Matter of convention)

Instruction Set Design

What is the minimum number of instructions required

in a processor to write any program?

The answer is ONE!

Address Address Address

 This instruction does the following operation:

M[j] := M[i] – M[j]

If the result is negative, then jump to address k

A processor with only one instruction will be cheap!

Why don’t we design such processors?

Large Semantic Gap …

 i j k

Exercise 1. Write a program to compute y:= x+y

0
1 19 0, 0, 20 *M[0] = 0*
2 20 0, y, 21 *y := 0-y*

21 x, y, 22 *y := x-(-y)*
x 72
y 48

Non-trivial program writing is an exercise in frustration.

Semantic Gap

Gap between what the application needs, and what the

processor provides

Large semantic gap leads to explosive code sizes, and

increased chance of errors.

Semantic gap decreases, when the processor supports

more instructions and more data types.

