Pastry

Peter Druschel, *Rice University*Antony Rowstron, *Microsoft Research UK*

Some slides are taken from the authors original presentation

What is Pastry?

Pastry is a structured P2P network

What is Pastry

- Self-organizing overlay network
- Lookup/insert object in < log₁₆ N routing steps (expected)
- O(log N) per-node state (for routing table)
- Network proximity routing

Pastry: Object distribution

Pastry: Routing

0	1	2	3	4	5		7	8	9	а	b	С	d	е	f
Х	X	X	X	X	X		X	X	Х	Х	X	Х	X	X	X
6	6	6	6	6		6	6	6	6	6	6	6	6	6	6
0	1	2	3	4		6	7	8	9	а	b	С	d	е	f
Х	X	X	X	Х		X	X	X	Х	Х	X	X	X	X	X
6	6	6	6	6	6	6	6	6	6		6	6	6	6	6
5	5	5	5	5	5	5	5	5	5		5	5	5	5	5
0	1	2	3	4	5	6	7	8	9		b	С	d	е	f
X	X	X	Х	X	X	X	Х	Х	X		Х	Х	Х	X	Х

Log ₁₆ N rows

Leaf set

Pastry Node State

State of node 10233102

Leaf set 10233033 10233001	SMALLER 10233021 10233000	10233120 10233230	10233122 10233232	 	Set of nodes with L /2 smaller and L /2 larger numerically closest NodeIds				
Routing ta	ble			1					
-0-2212102	1	-2-2301203	-3-1203203						
0	1-1-301233	1-2-230203	1-3-021022						
10-0-31203	10-1-32102	2	10-3-23302		Drofiv based routing entries				
102-0-0230	102-1-1302	102-2-2302	3	-	Prefix-based routing entri				
1023-0-322	1023-1-000	1023-2-121	3	ľ					
10233-0-01	1	10233-2-32							
0		102331-2-0							
		2	- 13						
Neighborh	ood set	1	M "physically" closest						
13021022	10200230	11301233	31301233	-	nodes				
02212102	22301203	31203203	33213321		110000				

Pastry: Routing

Pastry: Leaf sets

Each node maintains IP addresses of the nodes with the L/2 numerically closest larger and smaller nodelds, respectively.

- routing efficiency/robustness
- fault detection (keep-alive)
- application-specific local coordination

Pastry: Routing procedure

```
if (destination is "within range of our leaf set") forward to numerically closest member
else
let I = length of shared prefix
let d = value of I-th digit in D's address
if (R<sub>I</sub><sup>d</sup> exists) forward to R<sub>I</sub><sup>d</sup>

(R<sub>I</sub><sup>d</sup> = I<sup>th</sup> row & d<sup>th</sup> col of routing table)
else forward to a known node that
(a) shares at least as long a prefix, and
(b) is numerically closer than this node
```

[Prefix routing]

Pastry: Performance

Integrity of overlay/ message delivery:

 guaranteed unless L/2 simultaneous failures of nodes with adjacent nodelds occur

Number of routing hops:

- No failures: < log₁₆ N expected
- O(N) worst case (why?), average case much better

Pastry: Self-organization

Initializing and maintaining routing tables and leaf sets

- Node addition
- Node departure (failure)

Pastry: Node addition

Node departure (failure)

Leaf set members exchange heartbeat messages

- Leaf set repair (eager): request set from farthest live node in set
- Routing table repair (lazy): get table from peers in the same row, then higher rows

Node departure (failure)

Leaf set members exchange heartbeat

- Leaf set repair (eager): request the set from farthest live node
- Routing table repair (lazy): get table from peers in the same row, then higher rows

Pastry: Average # of hops

L=16, 100k random queries

Pastry: Proximity routing

Proximity metric = time delay estimated by a ping A node can probe distance to any other node

Each routing table entry uses a node close to the local node (in the proximity space), among all nodes with the appropriate node Id prefix.

Pastry: Routes in proximity space

Pastry: Distance traveled

L=16, 100k random queries, Euclidean proximity space

PAST: File storage

Storage Invariant:

File "replicas" are stored on k nodes with nodelds closest to fileId

(k is bounded by the leaf set size)

PAST: File Retrieval

PAST API

- Insert store replica of a file at k diverse storage nodes
- Lookup retrieve file from a nearby live storage node that holds a copy
- Reclaim free storage associated with a file

Files are immutable

SCRIBE: Large-scale, decentralized multicast

- Infrastructure to support topic-based publish-subscribe applications
- Scalable: large numbers of topics, subscribers, wide range of subscribers/topic
- Efficient: low delay, low link stress, low node overhead