Replication Strategies in
Unstructured Peer-to-Peer Networks

Edith Cohen Scott Shenker

Some slides are taken from the authors’ original presentation

Search strategies in P2P Networks

Search is performed by probing peers

— Structured (DHTSs): (Freenet, Chord,etc) location is

coupled with topology - search is routed by the query.
Only exact-match queries, tightly controlled overlay.

— Unstructured: (Gnutella, FastTrack); search is “blind” -

probed peers are unrelated to query.
Resilient to transient peers; versatile queries

Replication in P2P architectures

 No proactive replication (Gnutella)
— Hosts store and serve only what they requested
— A copy can be found only by probing a host with a copy

e Proactive replication of “keys” (= meta data +
pointer) for search efficiency (FastTrack, some DHTs)

e Proactive replication of “copies” — for search and
download efficiency, anonymity. (Freenet)

The Focus of this paper

How to use replication to improve search
efficiency in unstructured networks with a
proactive replication mechanism ?

Search and replication model

Unstructured networks with replication of keys or copies. Peers
probed are unrelated to query/item. Success likelihood can not be
better, on average, than random probes.

e Search: probe hosts, uniformly at random, until the query
is satisfied (or the search max size is exceeded)

e Replication: Each host can store up to r copies (or keys =
metadata + pointer) of items.

Goal: minimize average search size (number of probes till query
is satisfied)

Search size

Query is soluble if there are sufficiently many copies of
the item. Query is insoluble if item is rare or non existent.

What is the search size of a query ?
Insoluble queries: maximum search size

Soluble queries: number of visited nodes until answer is
found.

We look at the Expected Search Size (ESS) of each item.
The ESS is inversely proportional to the replication
factor (fraction of peers with a copy of the item).

Search Example

Looking for the green object

2 probes 4 probes

Random walk is sometimes
a popular tool

Expected Search Size (ESS)

Consider m items with relative query rates

qir>0g2>0g3> ..>qm. 2iqi=1

o Allocation : p1, p2, p3,..., pm 2ipi=1

ith item is allocated pi fraction of storage. (keys
placed in pi r fraction of hosts)

e Search size for it" item is a geometric random
variable with mean Ai = 1/(p pi).

e ESSis DiqiAi=(Qiqi/pi)/p

Model and notations

d [G e [

B0 o |
m objects Object j has r, copies
_ 1, _ 1, _ Population density of object i
P R np p

Query vector §=1(4{,9,,93:-Gm)

Model and notations

g, q, g5
P y20) Ps

Total space =1

Allocation vector p=(P,Py>P3s->Pm)
Query vector q=(4,,95:93>-:9m)
g, =normalized query rate for object ¢

4129,2432...2q,

i= m

m
ij=1

Jj=1 J=1

qj=1'

What is an allocation?

Allocation means how many copies of each object
will be made. A natural question is to relate this
to the query rate. So

Allocation: ¢ = D

Uniform and Proportional Replication

Uniform Allocation: pi=1/m
eSimple, resources are divided equally

e Proportional Allocation: pi= qi
*“Fair”, resources per item proportional to demand
e Reflects current P2P practices

Example: 3 items, q1=1/2, g2=1/3, 93=1/6

Uniform Proportional
® ® O L N N

Basic Questions

e How do Uniform and Proportional allocations
perform/compare ?

e Which strategy minimizes the Expected Search
Size (ESS) ?

e |sthere a simple protocol that achieves optimal
replication in unstructured P2P networks ?

Insoluble queries

Search always extends to the maximum limit size.

If we fix the available storage for copies, the query rate
distribution, and the number of items that we wish to
be “locatable”, then

The maximum required search size depends on the
smallest allocation of an item. Thus,

This means that uniform allocation minimizes this
maximum and thus the cost induced by insoluble
gueries.

Soluble queries

What about the cost of soluble queries?
Answer is more surprising ...

Soluble queries

ESS of an object is derived from a geometric
distribution.

ESS of an object is inversely proportional to
population density of that object.

Thus ESS< 1/pi.p

ESS under Uniform and Proportional
Allocations (soluble queries)

e Lemma: The ESS under either Uniform or
Proportional allocations is m/p

— Independent of query rates (!!!)
— Same ESS for Proportional and Uniform (!!!)

* Proof...
Proportional:
ESS is (&igi/ pi)/p = (Zigi/ qi)/p = m/p

Uniform:
ESS is (Ziqi/ pi)/p = (Zim qi)/p = (m/p) Zi gi=m/p

Space of Possible Allocations

Proportional Allocation means q i+1/qi= pi+1/pi(“fair share”)
Uniform Allocation means p i+1/pi=1

In-between allocation is: (q i+1/qi< pi+1/pi)and (pi+1/pi<1)
(less popular gets more than its “fair share”)

Other possibilities: pi+1/pi>1 (more popular gets less) OR
qi+1/qi> pi+1/pi(less popular gets less than “fair share”)

Space of Possible Allocations

Theorem1: All (strictly) in-between strategies are (strictly)
better than Uniform and Proportional

Theorem?2: p is worse than Uniform/Proportional if
foralli, pi+1/pi>1 (more popular gets less) OR
foralli, gi+1/gi> pi+1/pi(less popular gets less than “fair share”)

Proportional and Uniform are the worst
“reasonable” strategies (!!!)

So, what is the best strategy
for soluble queries ?

Square-Root Allocation

Consider a pair of items i, j: i > g j; and parameterize
the allocations by a variable x (0 £ x <1)

pi = x (pi + pj), pj = (1-x) (pi + pj)

Proportional => pi=qi, sox=qi/ (qi + qj)
Uniform => pi=pj= Y

ESS < gi/x + qj/(1-x) [inversely proportional to population]
(convex function) ESS equal for proportional & uniform
ESS is minimum when x= sqgrt(qi)/(sart(qi) + sqrt(qj))

So, pi o< sqgrt(qi)

Square-Root Allocation

piis proportional to square-root(qi)

Ja:
S0

e Lies “In-between” Uniform and Proportional

P =

e Theorem: Square-Root allocation minimizes the
ESS (on soluble queries)

Space of allocations on 2 items
1.2 _

]

Uniform

4

How much can we gain by using SR ?

Zipf-like query rates q; °< i_w
1000 F————
- w=0.5
L w=1
- w=15 -
— \o'~'=2
5 100 |
©
LL
-
™
O
(C 10 ¢
)
-

1 10 100 1000 100001000001e+06
Number of items

e SR is best for soluble queries
e Uniform minimizes cost of insoluble queries

What is the optimal strategy?

OPT is a hybrid of Uniform and SR

Tuned to balance cost of soluble and insoluble
qgueries.

Gain Factor

1074 items, Zipf-like w=1.5

100 ﬁ
® All Soluble
10 | E2= -
) \\ '
85% Soluble
3 0%
| All Insoluble ..o

0.1 :
T Strateqy Range (min alloc)

SR

3605 4605 5805 6605 7605 &e05 S205 0.0001

I

Uniform

Replication Algorithms

e Uniform and Proportional are “easy”

— Uniform: When item is created, replicate its key in a fixed
number of hosts.

— Proportional: for each query, replicate the key in a fixed
number of hosts

Desired properties of algorithm:

e Fully distributed where peers communicate through
random probes; minimal bookkeeping; and no more
communication than what is needed for search.

e Converge to/obtain SR allocation when query rates
remain steady.

Model for Copy Creation/Deletion

e Creation: after a successful search of s, Cs new
copies are created at random hosts.

e Deletion: is independent of the identity of the

item; copy survival chances are non-decreasing
with age. (i.e., FIFO at each node, per a TTL)

Property of the process:

<Ci> average value of C used to replicate ith item.
Claim: If <Ci>/<Cj> remains fixed over time, then
pi/pi =2 qi<Ci>/qj <Cj>

Creation/Deletion Process

Corollary:

£ <Ci>°c/\/qf then pl-/pj%\/%/qj

Algorithm for square-root allocation needs to have
<Ci> equal to or converge to a value inversely

proportional to /qi

SR Replication Algorithms

e Path replication: number of new copies C(s) is proportional
to the size of the search (Freenet)
— Converges to SR allocation (+reasonable conditions)
— Convergence unstable with delayed creations

e Sibling memory: each copy remembers the number of
sibling copies,
— Quickly “on target”
— For “good estimates” need to find several copies.

Algorithm 1: Path Replication

Number of new copies produced per query, <Ci>, is
proportional to search size 1/pi

Creation rate is proportional to gi <Ci>

Steady state: creation rate proportional to allocation pi,
thus

q,(C;) o< g,/ p; o

) P, o< 4/],

Simulation

Delay = 0.25 * copy lifetime; 10000 hosts

Path replication
Sibling number

Hosts with copy

200 400 200 00

time

In this simulation there is delay of 25 time units in copy creation;
the copy lifetime is 100 time units; and the inter-request time is 2.

Summary

Random Search/replication Model: probes to “random”
hosts

Proportional allocation — current practice
Uniform allocation — best for insoluble queries
Soluble queries:

e Proportional and Uniform allocations are two extremes
with same average performance

e Square-Root allocation minimizes Average Search Size
OPT (all queries) lies between SR and Uniform
SR/OPT allocation can be realized by simple algorithms.

