Measurement, Modeling and Analysis
of a Peer-to-Peer File-Sharing Workload

Krishna Gummadi, Richard Dunn, Stefan Saroiu
Steve Gribble, Hank Levy, John Zahorjan

Several slides were taken from the original presentation by Gummadi

The Internet has changed

« Explosive growth of P2P file-sharing systems
— now the dominant source of Internet traffic

— its workload consists of large multimedia (audio, video) files

« P2P file-sharing is very different than the Web
— in terms of both workload and infrastructure

— we understand the dynamics of the Web, but the dynamics
of P2P are largely unknown

Why measure?

Measure

\

e

Y

r

\.

Build model

~

J

\.

Validate

y

Predict

The current paper

Studies the KazaA peer-to-peer file-sharing system,
to understand two separate phenomena

* Multimedia workloads
— what files are being exchanged

— goal: to identify the forces driving the workload and
understand the potential impacts of future changes in
them

« P2P delivery infrastructure
— how the files are being exchanged

— goal: to understand the behavior of Kazaa peers, and
derive implications for P2P as a delivery infrastructure

KazaA: Quick Overview

» Peers are individually owned computers
— most connected by modems or broadband
— no centralized components
« Two-level structure: some peers are “super-nodes”

— super-nodes index content from peers underneath

— files transferred in segments from multiple peers
simultaneously

« The protocol is proprietary

Methodology

« Capture a 6-month long trace of Kazaa traffic at UW
— trace gathered from May 28t — December 17t, 2002

« passively observe all objects flowing into UW campus
« classify based on port numbers and HTTP headers
« anonymize sensitive data before writing to disk

 Limitations:
— only studied one population (UW)
— could see data transfers, but not encrypted control traffic
— cannot see internal Kazaa traffic

Trace Characteristics

start date

May 28th 2002

end date

December 17t 2002

trace length

203 days, 5 hours, 6 minutes

of requests

1640912

of transactions 08,997 622
of unsuccessful transactions | 65,505,165 (66.2%)
of clients 24 578

of unique objects

633,106 (totaling 8.85TB)

bytes transferred

22.7/21B

content demanded

43.87TB

Outline

Introduction

Some observations about Kazaa

A model for studying multimedia workloads
Locality-aware P2P request distribution

Conclusions

Kazaa is really 2 workloads

1

0.9 -
0.8 -

0.7
0.6

0.4
0.3

% of requests/bytes

0

— making users happy:
— making IT dept. happy:

0.5 -

0.2 -
0.1 -

<=10

@ requests
M bytes transferred

10-100 >100
object size (MB)

make sure audio/video arrives quickly
cache or rate limit video

Kazaa users are very patient

1 [——r =
i ol A ‘ T .
e . o
o fﬁf
[a) e
Qo -
2 /
- I
7] ra
- .
T 04 devroronreereonlemeeeeeeeeee e S NSO
g P
e 7 Video
R 02 b, e
H"r;/
.
0 Il
5 mins 1 hour 1 day 1 week 150 days
download latency

« audio file takes 1 hr to fetch over broadband, video takes 1 day
— but in either case, Kazaa users were willing to wait for weeks!

Kazaa objects are immutable

 The Web is driven by object change

(many visit cnn.com every hour. Why?)
— users revisit popular sites, as their content changes
— rate of change limits Web cache effectiveness [Wolman 99]

* In contrast, Kazaa objects never change

— as a result, users rarely re-download the same object
* 94% of the time, a user fetches an object at-most-once
* 99% of the time, a user fetches an object at-most-twice
— implications:
» # requests to popular objects bounded by user population size

Kazaa popularity has high turnover

« Popularity is short lived: rankings constantly change

— only 5% of the top-100 audio objects stayed in the top-100 over
our entire trace [video: 44%]

* Newly popular objects tend to be recently born

— of audio objects that “broke into” the top-100, 79% were born a
month before becoming popular [video: 84%]

Zipf distribution

Zipf’s Law states that the popularity of an object
of rank k is 1/ k" of the popularity of the top-ranked

object (1 <r < 2).

popularity

1 2 3 rank

Kazaa does not obey Zipf’'s law

10,000,000

1,000,000 -

100,000 et N e s R LT O PSP PP PP PP PP PP PP PPPPPPPTPRTTTTTTTITD
WWW objects

10,000 -

1,000 -

of requests

100 -

10

1 T T T T T T T
1 10 100 1000 10000 0000 1000000 1E+07 1E+08
object rank

Kazaa: the most popular objects are 100x less popular than
Zipf predicts

Factors driving P2P file-sharing
workloads

* The traces suggest two factors drive P2P workloads:

1. Fetch-at-most-once behavior
— resulting in a “flattened head” in popularity curve

2. The “dynamics” of objects and users over time

— new objects are born, old objects lose popularity, and new
users join the system

» Let’s build a model to gain insight into these factors

It's not just Kazaa

1000

—

o

o
»

rental frequency
=
|

1 10 100 1000

. m
mauvia indav

« Video rental and movie box office sales data show similar
properties

— multimedia in general seems to be non-Zipf

It's not just Kazaa

1000000
100000 PP DD P DI PP U PP PP PP PPDIPPPPPPY
10000 PP PP DD PP PP PPPPPPDIPPPPPPY
1OGO , ,,,,,,,,, e e, T

100 _l ’ L e e e e e e e e

box office sales
($miiiicns}

1 10 100 1000

Outline

Introduction

Some observations about Kazaa

A model for studying multimedia workloads
Locality-aware P2P request distribution

Conclusions

Model basics

1. Objects are chosen from an underlying Zipf curve

2. But we enforce “fetch-at-most-once” behavior

— when a user picks an object, it is removed from her
distribution

3. Fold in “user, object dynamics”

— new objects inserted with initial popularity drawn from Zipf
new popular objects displace the old popular objects

— new users begin with a fresh Zipf curve

Model parameters

C # of clients
O # of objects
AR client req. rate
r Zipf param driving obj.
popularity

P(x) prob. client req. object of pop
rank x

A(x) prob. of new object inserted at

pop rank x
M cache size (frac. of obj)
Ao object arrival rate

A client arrival rate

C

1,000
40,000
2 objs/day
1.0

Zipf (1.0) +
fetch-at-most-once
Zipf (1.0)

varies
varies
varies

Fetch-at-most-once flattens Zipf’s
head

100000
\ Zipf
10000 -
\NR
8 N
2 1000
)
2 N T
£ 4qo | fetch-at-most-once + Zipf
©
3
10 -
1 | | |
1 10 100 1000 10000 100000
obiject rank

File sharing effectiveness

An organization is experiencing too much
demand for external bandwidth for P2P
applications. How will the demand change

If a
the

Oroxy cache is used? Let us examine
nit ratio of the proxy cache.

Caching implications

- In the absence of new objects and users
— fetch-many: cache hit rate is stable

— fetch-at-most-once: hit rate degrades over time

hit rate

Like Web objects

(Fetch repeatedIyJ

cache size = 1000 objects

|

0.8 4 request rate per user = 2/day Zipf
06 7, SN A g N N FEATT S PN B g A TR L S, PRI U O AT N A N A e T m:\ﬂrﬂL«d\%mJ RV B N W W .
| -) “ ‘ Popular objects are
\ Q
0.4 -
x‘“\m fetch-at-most-once + Zipf Copsumed early. After this,
o It is pretty much random
0.2 - R
O T T T T T T T T T o
0 100 200 300 400 500 600 700 800 900 1000

days

New objects help (not hurt)

1
cache size = 8000 objects
@ 06 - =
©
1
£ 04 - /
L U .
_
0.2 - .
0
1 2 3 4 5 A .) :
Nhiant arrival rata | auvn naraiear ramniact rata

 New objects do cause cold misses
— but they replenish the supply of popular objects that are the
source of file sharing hits
* Aslow, constant arrival rate stabilizes performance
— rate needed is proportional to avg. per-user request rate

New users cannot help

* They have potential...

— new users have a “fresh” Zipf curve to draw from

— therefore will have a high initial hit rate

« But the new users grow old too

— ultimately, they increase the size of the “elderly” population
— to offset, must add users at exponentially increasing rate

 not sustainable in the long run

Validating the model

10000

static Zipf

1000 7 measured

P

our model

requests
)
o

—_
o
|

I
1 10 100 1000 10000 100000
object rank

We parameterized our model using measured trace values
— its output closely matches the trace itself

Outline

Introduction

Some observations about Kazaa

A model for studying multimedia workloads
Locality-aware P2P request distribution

Conclusions

Kazaa has significant untapped
locality

100% -
.
2 80% -
3
% 60% - B miss
‘3 40% oo 86.0% | ... 88.5% | © it
9 64.6%
5’ 20% evererers PR e R s
X

0% \ \
all objects Video objects Audio objects

We simulated a proxy cache for UW P2P environment

— 86% of Kazaa bytes already exist within UW when
they are downloaded externally by a UW peer

Locality Aware Request Routing

- Idea: download content from local peers, if available
— local peers as a distributed cache instead of a proxy cache

« Can be implemented in several ways

— scheme 1: use a redirector instead of a cache

« redirector sits at organizational border, indexes content, reflects
download requests to peers that can serve them

— scheme 2: decentralized request distribution
* use location information in P2P protocols (e.g., a DHT)

- We simulated locality-awareness using our trace data
— note that both schemes are identical w.r.t the simulation

Locality-aware routing
performance

100% -

o] 14.0% 11.5%
(]
= 80% - 20.8%

22.8% 8%
..3 M cold
C 60% -] b)
& ° & unavailable
wid
0 A0% Aol b L :
ﬂ;" ’ 63.2% 67.9% - hit
- 20% - 37.1%
o~

0%
all objects video objects audio objects

“P2P-ness” introduces a new kind of miss: “unavailable” miss

— even with pessimistic peer availability, locality-awareness saves
significant bandwidth
— goal of P2P system: minimize the new miss types
 achieve upper bound imposed by workload (cold misses only)

Eliminating unavailable misses

1 e
— s
=) /
o 0.8 - /
%’ Video objects /
2 06- N
n /
2 0.4 20 NN
§ / Audio objects
g (.2 —rrrrreee e
©
5

0 T

1 10 100 1000 10000 100000 1000000
ohiect # (sorted hv nantilaritv)

« Popularity drives a kind of “natural replication”

— descriptive, but also predictive
» popular objects take care of themselves, unpopular can’t help
 focus on “middle” popularity objects when designing systems

Conclusions

« P2P file-sharing driven by different forces than the Web

 Multimedia workloads:

— driven by two factors: fetch-at-most-once, object/user
dynamics

— constructed a model that explains non-zipf behavior and
validated it

« P2P infrastructure:
— current file-sharing architectures miss opportunity

— locality-aware architectures can save significant bandwidth
— a challenge for P2P: eliminating unavailable misses

