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The Internet has changed

« Explosive growth of P2P file-sharing systems
— now the dominant source of Internet traffic

— its workload consists of large multimedia (audio, video) files

« P2P file-sharing is very different than the Web
— in terms of both workload and infrastructure

— we understand the dynamics of the Web, but the dynamics
of P2P are largely unknown
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The current paper

Studies the KazaA peer-to-peer file-sharing system,
to understand two separate phenomena

* Multimedia workloads
— what files are being exchanged

— goal: to identify the forces driving the workload and
understand the potential impacts of future changes in
them

« P2P delivery infrastructure
— how the files are being exchanged

— goal: to understand the behavior of Kazaa peers, and
derive implications for P2P as a delivery infrastructure



KazaA: Quick Overview

» Peers are individually owned computers
— most connected by modems or broadband
— no centralized components
« Two-level structure: some peers are “super-nodes”

— super-nodes index content from peers underneath

— files transferred in segments from multiple peers
simultaneously

« The protocol is proprietary



Methodology

« Capture a 6-month long trace of Kazaa traffic at UW
— trace gathered from May 28t — December 17t, 2002

« passively observe all objects flowing into UW campus
« classify based on port numbers and HTTP headers
« anonymize sensitive data before writing to disk

 Limitations:
— only studied one population (UW)
— could see data transfers, but not encrypted control traffic
— cannot see internal Kazaa traffic



Trace Characteristics

start date

May 28th 2002

end date

December 17t 2002

trace length

203 days, 5 hours, 6 minutes

# of requests

1640912

# of transactions 08,997 622
# of unsuccessful transactions | 65,505,165 (66.2%)
# of clients 24 578

# of unique objects

633,106 (totaling 8.85TB)

bytes transferred

22.7/21B

content demanded

43.87TB
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Kazaa is really 2 workloads
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Kazaa users are very patient
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« audio file takes 1 hr to fetch over broadband, video takes 1 day
— but in either case, Kazaa users were willing to wait for weeks!



Kazaa objects are immutable

 The Web is driven by object change

(many visit cnn.com every hour. Why?)
— users revisit popular sites, as their content changes
— rate of change limits Web cache effectiveness [Wolman 99]

* In contrast, Kazaa objects never change

— as a result, users rarely re-download the same object
* 94% of the time, a user fetches an object at-most-once
* 99% of the time, a user fetches an object at-most-twice
— implications:
» # requests to popular objects bounded by user population size



Kazaa popularity has high turnover

« Popularity is short lived: rankings constantly change

— only 5% of the top-100 audio objects stayed in the top-100 over
our entire trace  [video: 44%]

* Newly popular objects tend to be recently born

— of audio objects that “broke into” the top-100, 79% were born a
month before becoming popular [video: 84%]



Zipf distribution

Zipf’s Law states that the popularity of an object
of rank k is 1/ k" of the popularity of the top-ranked

object (1 <r < 2).

popularity

1 2 3 rank



Kazaa does not obey Zipf’'s law

10,000,000

1,000,000 -

100,000 et N e s R LT O PSP PP PP PP PP PP PP PPPPPPPTPRTTTTTTTITD
WWW objects

10,000 -

1,000 -

# of requests

100 -

10

1 T T T T T T T
1 10 100 1000 10000 0000 1000000 1E+07 1E+08
object rank

Kazaa: the most popular objects are 100x less popular than
Zipf predicts




Factors driving P2P file-sharing
workloads

* The traces suggest two factors drive P2P workloads:

1. Fetch-at-most-once behavior
— resulting in a “flattened head” in popularity curve

2. The “dynamics” of objects and users over time

— new objects are born, old objects lose popularity, and new
users join the system

» Let’s build a model to gain insight into these factors



It's not just Kazaa
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« Video rental and movie box office sales data show similar
properties

— multimedia in general seems to be non-Zipf



It's not just Kazaa
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Model basics

1. Objects are chosen from an underlying Zipf curve

2. But we enforce “fetch-at-most-once” behavior

— when a user picks an object, it is removed from her
distribution

3. Fold in “user, object dynamics”

— new objects inserted with initial popularity drawn from Zipf
new popular objects displace the old popular objects

— new users begin with a fresh Zipf curve



Model parameters

C # of clients
O # of objects
AR client req. rate
r Zipf param driving obj.
popularity

P(x) prob. client req. object of pop
rank x

A(x) prob. of new object inserted at

pop rank x
M cache size (frac. of obj)
Ao object arrival rate

A client arrival rate

C

1,000
40,000
2 objs/day
1.0

Zipf (1.0) +
fetch-at-most-once
Zipf (1.0)

varies
varies
varies



Fetch-at-most-once flattens Zipf’s
head
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File sharing effectiveness

An organization is experiencing too much
demand for external bandwidth for P2P
applications. How will the demand change

If a
the

Oroxy cache is used? Let us examine
nit ratio of the proxy cache.




Caching implications

- In the absence of new objects and users
— fetch-many: cache hit rate is stable

— fetch-at-most-once: hit rate degrades over time

hit rate

Like Web objects
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New objects help (not hurt)

1
cache size = 8000 objects
@ 06 - =
©
1
£ 04 - /
L U .
_
0.2 - .
0
1 2 3 4 5 A . ) :
Nhiant arrival rata | auvn naraiear ramniact rata

 New objects do cause cold misses
— but they replenish the supply of popular objects that are the
source of file sharing hits
* Aslow, constant arrival rate stabilizes performance
— rate needed is proportional to avg. per-user request rate



New users cannot help

* They have potential...

— new users have a “fresh” Zipf curve to draw from

— therefore will have a high initial hit rate

« But the new users grow old too

— ultimately, they increase the size of the “elderly” population
— to offset, must add users at exponentially increasing rate

 not sustainable in the long run



Validating the model
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We parameterized our model using measured trace values
— its output closely matches the trace itself



Outline

Introduction

Some observations about Kazaa

A model for studying multimedia workloads
Locality-aware P2P request distribution

Conclusions



Kazaa has significant untapped
locality
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We simulated a proxy cache for UW P2P environment

— 86% of Kazaa bytes already exist within UW when
they are downloaded externally by a UW peer



Locality Aware Request Routing

- Idea: download content from local peers, if available
— local peers as a distributed cache instead of a proxy cache

« Can be implemented in several ways

— scheme 1: use a redirector instead of a cache

« redirector sits at organizational border, indexes content, reflects
download requests to peers that can serve them

— scheme 2: decentralized request distribution
* use location information in P2P protocols (e.g., a DHT)

- We simulated locality-awareness using our trace data
— note that both schemes are identical w.r.t the simulation



Locality-aware routing
performance
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“P2P-ness” introduces a new kind of miss: “unavailable” miss

— even with pessimistic peer availability, locality-awareness saves
significant bandwidth
— goal of P2P system: minimize the new miss types
 achieve upper bound imposed by workload (cold misses only)



Eliminating unavailable misses
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« Popularity drives a kind of “natural replication”

— descriptive, but also predictive
» popular objects take care of themselves, unpopular can’t help
 focus on “middle” popularity objects when designing systems



Conclusions

« P2P file-sharing driven by different forces than the Web

 Multimedia workloads:

— driven by two factors: fetch-at-most-once, object/user
dynamics

— constructed a model that explains non-zipf behavior and
validated it

« P2P infrastructure:
— current file-sharing architectures miss opportunity

— locality-aware architectures can save significant bandwidth
— a challenge for P2P: eliminating unavailable misses



