Measurement, Modeling and Analysis of a Peer-to-Peer File-Sharing Workload

Krishna Gummadi, Richard Dunn, Stefan Saroiu Steve Gribble, Hank Levy, John Zahorjan

Several slides were taken from the original presentation by Gummadi

The Internet has changed

- Explosive growth of P2P file-sharing systems
 - now the dominant source of Internet traffic
 - its workload consists of large multimedia (audio, video) files
- P2P file-sharing is very different than the Web
 - in terms of both workload and infrastructure
 - we understand the dynamics of the Web, but the dynamics of P2P are largely unknown

Why measure?

The current paper

Studies the KazaA peer-to-peer file-sharing system, to understand two separate phenomena

- Multimedia workloads
 - what files are being exchanged
 - goal: to identify the forces driving the workload and understand the potential impacts of future changes in them
- P2P delivery infrastructure
 - how the files are being exchanged
 - goal: to understand the behavior of Kazaa peers, and derive implications for P2P as a delivery infrastructure

KazaA: Quick Overview

- Peers are individually owned computers
 - most connected by modems or broadband
 - no centralized components
- Two-level structure: some peers are "super-nodes"
 - super-nodes index content from peers underneath
 - files transferred in segments from multiple peers simultaneously
- The protocol is proprietary

Methodology

- Capture a 6-month long trace of Kazaa traffic at UW
 - trace gathered from May 28th December 17th, 2002
 - passively observe all objects flowing into UW campus
 - classify based on port numbers and HTTP headers
 - anonymize sensitive data before writing to disk

Limitations:

- only studied one population (UW)
- could see data transfers, but not encrypted control traffic
- cannot see internal Kazaa traffic

Trace Characteristics

start date	May 28 th , 2002	
end date	December 17 th , 2002	
trace length	203 days, 5 hours, 6 minutes	
# of requests	1,640,912	
# of transactions	98,997,622	
# of unsuccessful transactions	65,505,165 (66.2%)	
# of clients	24,578	
# of unique objects	633,106 (totaling 8.85TB)	
bytes transferred	22.72TB	
content demanded	43.87TB	

Outline

- Introduction
- Some observations about Kazaa
- A model for studying multimedia workloads
- Locality-aware P2P request distribution
- Conclusions

Kazaa is really 2 workloads

making users happy: mal

make sure audio/video arrives quickly

– making IT dept. happy:

cache or rate limit video

Kazaa users are very patient

- audio file takes 1 hr to fetch over broadband, video takes 1 day
 - but in either case, Kazaa users were willing to wait for weeks!

Kazaa objects are immutable

The Web is driven by object change

(many visit cnn.com every hour. Why?)

- users revisit popular sites, as their content changes
- rate of change limits Web cache effectiveness [Wolman 99]

In contrast, Kazaa objects never change

- as a result, users rarely re-download the same object
 - 94% of the time, a user fetches an object at-most-once
 - 99% of the time, a user fetches an object at-most-twice
- implications:
 - # requests to popular objects bounded by user population size

Kazaa popularity has high turnover

- Popularity is short lived: rankings constantly change
 - only 5% of the top-100 audio objects stayed in the top-100 over our entire trace [video: 44%]
- Newly popular objects tend to be recently born
 - of audio objects that "broke into" the top-100, 79% were born a month before becoming popular [video: 84%]

Zipf distribution

Zipf's Law states that the popularity of an object of rank k is $1/k^r$ of the popularity of the top-ranked object (1 < r < 2).

Kazaa does not obey Zipf's law

 Kazaa: the most popular objects are 100x less popular than Zipf predicts

Factors driving P2P file-sharing workloads

- The traces suggest two factors drive P2P workloads:
 - Fetch-at-most-once behavior
 - resulting in a "flattened head" in popularity curve
 - 2. The "dynamics" of objects and users over time
 - new objects are born, old objects lose popularity, and new users join the system
- Let's build a model to gain insight into these factors

It's not just Kazaa

- Video rental and movie box office sales data show similar properties
 - multimedia in general seems to be non-Zipf

It's not just Kazaa

Outline

- Introduction
- Some observations about Kazaa
- A model for studying multimedia workloads
- Locality-aware P2P request distribution
- Conclusions

Model basics

- 1. Objects are chosen from an underlying Zipf curve
- 2. But we enforce "fetch-at-most-once" behavior
 - when a user picks an object, it is removed from her distribution
- 3. Fold in "user, object dynamics"
 - new objects inserted with initial popularity drawn from Zipf
 - new popular objects displace the old popular objects
 - new users begin with a fresh Zipf curve

Model parameters

С	# of clients	1,000
0	# of objects	40,000
λ_{R}	client req. rate	2 objs/day
r	Zipf param driving obj. popularity	1.0
P(x)	prob. client req. object of pop rank x	Zipf (1.0) + fetch-at-most-once
A(x)	prob. of new object inserted at pop rank x	Zipf (1.0)
M	cache size (frac. of obj)	varies
λ_{O}	object arrival rate	varies
λ_{c}	client arrival rate	varies

Fetch-at-most-once flattens Zipf's head

File sharing effectiveness

An organization is experiencing too much demand for external bandwidth for P2P applications. How will the demand change if a proxy cache is used? Let us examine the hit ratio of the proxy cache.

Caching implications

- In the absence of new objects and users
 - fetch-many: cache hit rate is stable
 - fetch-at-most-once: hit rate degrades over time

New objects help (not hurt)

- New objects do cause cold misses
 - but they replenish the supply of popular objects that are the source of file sharing hits
- A slow, constant arrival rate stabilizes performance
 - rate needed is proportional to avg. per-user request rate

New users cannot help

- They have potential...
 - new users have a "fresh" Zipf curve to draw from
 - therefore will have a high initial hit rate
- But the new users grow old too
 - ultimately, they increase the size of the "elderly" population
 - to offset, must add users at exponentially increasing rate
 - not sustainable in the long run

Validating the model

- We parameterized our model using measured trace values
 - its output closely matches the trace itself

Outline

- Introduction
- Some observations about Kazaa
- A model for studying multimedia workloads
- Locality-aware P2P request distribution
- Conclusions

Kazaa has significant untapped locality

- We simulated a proxy cache for UW P2P environment
 - 86% of Kazaa bytes already exist within UW when they are downloaded externally by a UW peer

Locality Aware Request Routing

- Idea: download content from local peers, if available
 - local peers as a distributed cache instead of a proxy cache
- Can be implemented in several ways
 - scheme 1: use a redirector instead of a cache
 - redirector sits at organizational border, indexes content, reflects download requests to peers that can serve them
 - scheme 2: decentralized request distribution
 - use location information in P2P protocols (e.g., a DHT)
- We simulated locality-awareness using our trace data
 - note that both schemes are identical w.r.t the simulation

Locality-aware routing performance

- "P2P-ness" introduces a new kind of miss: "unavailable" miss
 - even with pessimistic peer availability, locality-awareness saves significant bandwidth
 - goal of P2P system: minimize the new miss types
 - achieve upper bound imposed by workload (cold misses only)

Eliminating unavailable misses

- Popularity drives a kind of "natural replication"
 - descriptive, but also predictive
 - popular objects take care of themselves, unpopular can't help
 - focus on "middle" popularity objects when designing systems

Conclusions

- P2P file-sharing driven by different forces than the Web
- Multimedia workloads:
 - driven by two factors: fetch-at-most-once, object/user dynamics
 - constructed a model that explains non-zipf behavior and validated it
- P2P infrastructure:
 - current file-sharing architectures miss opportunity
 - locality-aware architectures can save significant bandwidth
 - a challenge for P2P: eliminating unavailable misses