
Measurement, Modeling and Analysis  
of a Peer-to-Peer File-Sharing Workload"

Krishna Gummadi, Richard Dunn, Stefan Saroiu"
Steve Gribble, Hank Levy, John Zahorjan"

Several slides were taken from the original presentation by Gummadi"

The Internet has changed"

•  Explosive growth of P2P file-sharing systems"
–  now the dominant source of Internet traffic"
–  its workload consists of large multimedia (audio, video) files"

•  P2P file-sharing is very different than the Web"
–  in terms of both workload and infrastructure"
–  we understand the dynamics of the Web, but the dynamics

of P2P are largely unknown"

Why	
 measure?	

Measure"

Build model "

 Validate "

Predict"

The current paper"

•  Multimedia workloads"
–  what files are being exchanged"
–  goal: to identify the forces driving the workload and

understand the potential impacts of future changes in
them"

•  P2P delivery infrastructure"
–  how the files are being exchanged"
–  goal: to understand the behavior of Kazaa peers, and

derive implications for P2P as a delivery infrastructure"

Studies the KazaA peer-to-peer file-sharing system,
to understand two separate phenomena"

KazaA: Quick Overview"

•  Peers are individually owned computers"
–  most connected by modems or broadband"
–  no centralized components"

•  Two-level structure: some peers are “super-nodes”"
–  super-nodes index content from peers underneath"
–  files transferred in segments from multiple peers

simultaneously"
•  The protocol is proprietary"

Methodology"

•  Capture a 6-month long trace of Kazaa traffic at UW"
–  trace gathered from May 28th – December 17th, 2002"

•  passively observe all objects flowing into UW campus"
•  classify based on port numbers and HTTP headers"
•  anonymize sensitive data before writing to disk"

•  Limitations:"
–  only studied one population (UW)"
–  could see data transfers, but not encrypted control traffic"
–  cannot see internal Kazaa traffic"

Trace Characteristics"

Outline"

•  Introduction"

•  Some observations about Kazaa"
•  A model for studying multimedia workloads"

•  Locality-aware P2P request distribution"

•  Conclusions"

Kazaa is really 2 workloads"

0

0.1
0.2
0.3
0.4

0.5
0.6
0.7

0.8
0.9

1

<= 10 10-100 >100

object size (MB)

%
 o

f r
eq

ue
st

s/
by

te
s

requests
bytes transferred

•  If you care about:"
–  making users happy: make sure audio/video arrives quickly"
–  making IT dept. happy: cache or rate limit video"

Kazaa users are very patient"

•  audio file takes 1 hr to fetch over broadband, video takes 1 day"
–  but in either case, Kazaa users were willing to wait for weeks!"

0

0.2

0.4

0.6

0.8

1

-3
download latency

%
 o

f
re

q
u

es
ts

 (
C

D
F

)

5 mins 1 hour 1 week1 day 150 days

Video

Audio

Kazaa objects are immutable"

•  The Web is driven by object change!
"(many visit cnn.com every hour. Why?)"
–  users revisit popular sites, as their content changes"
–  rate of change limits Web cache effectiveness [Wolman 99]"

•  In contrast, Kazaa objects never change!
–  as a result, users rarely re-download the same object"

•  94% of the time, a user fetches an object at-most-once"
•  99% of the time, a user fetches an object at-most-twice"

–  implications:"
•  # requests to popular objects bounded by user population size"

Kazaa popularity has high turnover"

•  Popularity is short lived: rankings constantly change!
–  only 5% of the top-100 audio objects stayed in the top-100 over

our entire trace [video: 44%]"

•  Newly popular objects tend to be recently born!
–  of audio objects that “broke into” the top-100, 79% were born a

month before becoming popular [video: 84%]"

Zipf	
 distribu3on	

Zipfʼs Law states that the popularity of an object"
of rank k is 1/ kr of the popularity of the top-ranked
object (1 < r < 2)."

rank"1" 2" 3"

po
pu

la
rit

y" Log-log plot will be a straight line"
with a negative slope"

rank"

Kazaa does not obey Zipfʼs law"

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1 10 100 1000 10000 100000 1000000 1E+07 1E+08

object rank

of

 re
qu

es
ts

Video

WWW objects

•  Kazaa: the most popular objects are 100x less popular than
Zipf predicts"

1

10

100

1,000

10,000

100,000

1,000,000

10,000,000

1 10 100 1000 10000 100000 1000000 1E+07 1E+08

object rank

of

 r
eq

ue
st

s

Video

WWW objects

Factors driving P2P file-sharing
workloads"

•  The traces suggest two factors drive P2P workloads:"
1.  Fetch-at-most-once behavior"

–  resulting in a “flattened head” in popularity curve"

2.  The “dynamics” of objects and users over time"
–  new objects are born, old objects lose popularity, and new

users join the system"

•  Letʼs build a model to gain insight into these factors"

Itʼs not just Kazaa"

1

10

100

1000

1 10 100 1000
movie index

re
n

ta
l f

re
q

u
en

cy

•  Video rental and movie box office sales data show similar
properties"

–  multimedia in general seems to be non-Zipf"

video store rentals"

box office sales"

Itʼs not just Kazaa"

0.001
0.01
0.1

1
10
100
1000

10000
100000
1000000

1 10 100 1000
movie index

bo
x

of
fic

e
sa

le
s

($
m

ill
io

ns
)•  Video rental and movie box

office sales data show similar
properties"
–  multimedia in general seems

to be non-Zipf"

video store rentals"

box office sales"

Outline"

•  Introduction"

•  Some observations about Kazaa"
•  A model for studying multimedia workloads"

•  Locality-aware P2P request distribution"

•  Conclusions"

Model basics "

1.  Objects are chosen from an underlying Zipf curve"

2.  But we enforce “fetch-at-most-once” behavior"
–  when a user picks an object, it is removed from her

distribution"

3.  Fold in “user, object dynamics”"
–  new objects inserted with initial popularity drawn from Zipf"

•  new popular objects displace the old popular objects"

–  new users begin with a fresh Zipf curve"

Model parameters"

C" # of clients" 1,000"
O" # of objects" 40,000"
λR" client req. rate" 2 objs/day"
r" Zipf param driving obj.

popularity"
1.0"

P(x)" prob. client req. object of pop
rank x"

Zipf (1.0) + "
fetch-at-most-once"

A(x)" prob. of new object inserted at
pop rank x"

Zipf (1.0)"

M" cache size (frac. of obj)" varies"
λO" object arrival rate" varies"
λc" client arrival rate" varies"

Fetch-at-most-once flattens Zipfʼs
head"

1

10

100

1000

10000

100000

1 10 100 1000 10000 100000

object rank

o

f
re

q
u

es
ts

fetch-at-most-once + Zipf

Zipf

File	
 sharing	
 effec3veness	

An organization is experiencing too much "
demand for external bandwidth for P2P "
applications. How will the demand change "
if a proxy cache is used? Let us examine"
the hit ratio of the proxy cache. "

Caching implications"

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000
days

hi
t r

at
e

Zipf

fetch-at-most-once + Zipf

cache size = 1000 objects
request rate per user = 2/day

•  In the absence of new objects and users"
–  fetch-many: cache hit rate is stable"
–  fetch-at-most-once: hit rate degrades over time"

Fetch repeatedly
Like Web objects"

Popular objects are
Consumed early. After this,

It is pretty much random"

0

0.2

0.4

0.6

0.8

1

0 100 200 300 400 500 600 700 800 900 1000
days

hi
t r

at
e

Zipf

fetch-at-most-once + Zipf

cache size = 1000 objects
request rate per user = 2/day

New objects help (not hurt)"

•  New objects do cause cold misses"
–  but they replenish the supply of popular objects that are the"
"source of file sharing hits"

•  A slow, constant arrival rate stabilizes performance"
–  rate needed is proportional to avg. per-user request rate"

0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7 8 9
Object arrival rate / avg. per-user request rate

hi
t r

at
e

cache size = 8000 objects

New users cannot help	
 	
 	

•  They have potential…"
–  new users have a “fresh” Zipf curve to draw from"
–  therefore will have a high initial hit rate"

•  But the new users grow old too"
–  ultimately, they increase the size of the “elderly” population"
–  to offset, must add users at exponentially increasing rate"

•  not sustainable in the long run"

Validating the model"

•  We parameterized our model using measured trace values"
–  its output closely matches the trace itself"

1

10

100

1000

10000

1 10 100 1000 10000 100000
object rank

re

qu
es

ts

measured

our model

static Zipf

Outline"

•  Introduction"

•  Some observations about Kazaa"
•  A model for studying multimedia workloads"

•  Locality-aware P2P request distribution"

•  Conclusions"

Kazaa has significant untapped
locality"

•  We simulated a proxy cache for UW P2P environment"
–  86% of Kazaa bytes already exist within UW when

they are downloaded externally by a UW peer"

88.5%
64.6%

14.0% 11.5%
35.4%

86.0%

0%

20%

40%

60%

80%

100%

all objects Video objects Audio objects

%
 b

yt
es

 tr
an

sf
er

re
d

miss

hit

Locality Aware Request Routing"

•  Idea: download content from local peers, if available"
–  local peers as a distributed cache instead of a proxy cache "

•  Can be implemented in several ways"
–  scheme 1: use a redirector instead of a cache"

•  redirector sits at organizational border, indexes content, reflects
download requests to peers that can serve them"

–  scheme 2: decentralized request distribution"
•  use location information in P2P protocols (e.g., a DHT)"

•  We simulated locality-awareness using our trace data"
–  note that both schemes are identical w.r.t the simulation"

Locality-aware routing
performance"

•  “P2P-ness” introduces a new kind of miss: “unavailable” miss"
–  even with pessimistic peer availability, locality-awareness saves

significant bandwidth"
–  goal of P2P system: minimize the new miss types"

•  achieve upper bound imposed by workload (cold misses only)"

0%

20%

40%

60%

80%

100%

all objects video objects audio objects

%
 b

yt
es

 tr
an

sf
er

re
d

cold

unavailable

hit67.9%

11.5%

20.8%

37.1%

35.4%

27.5%

63.2%

14.0%

22.8%

Eliminating unavailable misses"

•  Popularity drives a kind of “natural replication”"
–  descriptive, but also predictive"

•  popular objects take care of themselves, unpopular canʼt help"
•  focus on “middle” popularity objects when designing systems"

0

0.2

0.4

0.6

0.8

1

1 10 100 1000 10000 100000 1000000
object # (sorted by popularity)

un
av

ai
la

bi
lit

y
m

is
s

by
te

s
(C

D
F)

Video objects

Audio objects

Conclusions "

•  P2P file-sharing driven by different forces than the Web "
•  Multimedia workloads:"

–  driven by two factors: fetch-at-most-once, object/user
dynamics"

–  constructed a model that explains non-zipf behavior and
validated it "

•  P2P infrastructure:"
–  current file-sharing architectures miss opportunity"
–  locality-aware architectures can save significant bandwidth"
–  a challenge for P2P: eliminating unavailable misses"

