
The Chord P2P Network

Some slides have been borrowed from the original presentation by the
authors

Chord vs.Tapestry

•  The topology of the Chord network, as defined by
the successor pointers, must satisfy a well-defined
structure.

•  Tapestry (uses Plaxton routing) requires the root
of the object to be placed in a designated node, but
the object can be placed locally. In contrast, Chord
requires the object to be placed at a designated
node.

Main features of Chord

  Load balancing via Consistent Hashing

•  Small routing tables: log n

•  Small routing delay: log n hops

•  Fast join/leave protocol (polylog time)

Consistent Hashing

Assigns both nodes and objects from an m-bit key.

Order these nodes around an identifier circle (what does
a circle mean here?) according to the order of their keys
(0 .. 2m-1). This ring is known as the Chord Ring.

Object with key k is assigned to the first node whose
key is ≥ k (called the successor node of key k)

Consistent Hashing

N32"

N90"

N105"

D80"

D20"

D120"

Example: Node 90 is the “successor” of document 80.

(0)"

N=128
Circular 7-bit

ID space

Consistent Hashing [Karger 97]

Property 1
If there are N nodes and K keys, then with high probability,
each node is responsible for (1+epsilon)K/N keys.

Property 2
When a node joins or leaves the network, the responsibility
of at most O(K/N) keys changes hand (only to or from the node
that is joining or leaving.

When K is large, the impact on individual nodes is quite small.

Consistent hashing

N32"

N90"

N105"

K80"

K20"

K5"

Circular 7-bit
ID space

Object with Key 5

Node 105

An object with key k is stored at its successor (node with key ≥ k)

The log N Fingers

(0)"

Each node knows of only log N other nodes.

N80"

1/8!

1/16!
1/32!
1/64!
1/128!

Circular (log N)-bit
ID space

Distance of N80’s
neighbors from

N80

1/4! 1/2!

Finger i points to successor of n+2i

N80"

½"¼"

1/8!

1/16!
1/32!
1/64!
1/128!

112

N120"

Chord Finger Table

(0)"

N32"

N60"

N79"

N70"

N113"

N102"

N40"

N52"

33..33 N40
34..35 N40
36..39 N40
40..47 N40
48..63 N52
64..95 N70
96..31 N102

Node n’s i-th entry: first node ≥ n + 2i-1

N32’s
Finger Table

N80"

N85"
N=128

Finger table actually contains
ID and IP address

Lookup

33..33 N40
34..35 N40
36..39 N40
40..47 N40
48..63 N52
64..95 N70
96..31 N102

N32’s
Finger Table

Node 32, lookup(82): 32  70  80  85.

71..71 N79
72..73 N79
74..77 N79
78..85 N80
86..101 N102
102..5 N102
6..69 N32

N70’s
Finger Table

(0)"

N32"

N60"
N79"

N70"

N113"

N102"

N40"

N52"
N80"

N85" 81..81 N85
82..83 N85
84..87 N85
88..95 N102
96..111 N102
112..15 N113
16..79 N32

N80’s
Finger Table

Greedy routing

New Node Joins

(0)"

N32"

N60"

N80"

N70"

N113"

N102"

N40"

N52"

1 21..21
2 22..23
3 24..27
4 28..35
5 36..51
6 52..83
7 84..19

N20’s
Finger Table

N20"

Assume N20 knows one of the existing nodes.

New Node Joinsw (2)

(0)"

N32"

N60"

N80"

N70"

N113"

N102"

N40"

N52"

21..21 N32
22..23 N32
24..27 N32
28..35 N32
36..51 N40
52..83 N52
84..19 N102

N20’s
Finger Table

N20"

Node 20 asks that node for successor to 21, 22, …, 52, 84.

The Join procedure

The new node id asks a gateway node n

to find the successor of id

n.(find_successor(id)

if id = (n, successor]

 then return successor

 else forward the query around the circle

fi

Needs O(n) messages. This is slow.

Steps in join

id

n

Successor(n)

id

n

Finally

But the transition does not happen immediately

Linked list insert

A More Efficient Join
// ask n to find the successor of id
if id = (n, successor]

 then return successor
 else n’= closest_ preceding_node (id)
 return n’.find_successor(id)

fi
// search for the highest predecessor of id

 n. closest_preceding_node(id)
 for i = log N downto 1
 if (finger[i] is between (n,id)
 return finger[i]

Example

(0)"

N32"

N60"

N80"

N70"

N113"

N102"

N40"

N52"

N20"

K65

N20 wants to
find out the
successor of
key 65

After join move objects
(0)"

N32"

N60"

N80"

N70"

N113"

N102"

N40"

N52"

21..21 N32

22..23 N32
24..27 N32
28..35 N32
36..51 N40
52..83 N52
84..19 N102

N20’s
Finger Table

N20"

Node 20 moves documents from node 32.

D114..20"

Notify nodes that must include
N20 in their table. N113[1]=N20,
not N32.

Three steps in join

Step 1. Initialize predecessor and fingers of the new node.

Step 2. Update the predecessor and the fingers of the
existing nodes. (Thus notify nodes that must include
N20 in their table. N113[1] = N20, not N32.

Step 3. Transfer objects to the new node as appropriate.

(Knowledge of predecessor is useful in stabilization)

Concurrent Join

New node n

n1

n2

[Before]

New node n

n2

n1

[After]

New node n’ New node n’

Stabilization

New node n

n2

n1

Predecessor.successor(n1) ≠ n1, so n1 adopts
predecessor.successor(n1) = n as its new successor

New node n

n2

Periodic stabilization is needed to integrate the new
node into the network and restore the invariant.

n1

The complexity of join

With high probability, any node joining or leaving

an N-node Chord network will use O(log 2N) messages

to re-establish the Chord routing invariants and finger

tables.

Chord Summary

•  Log(n) lookup messages and table space.
•  Well-defined location for each ID.

•  No search required.

•  Natural load balance.
•  No name structure imposed.
•  Minimal join/leave disruption.

