
page 1

Homework IV Sample Solution

We endeavor to organize this change to the telephone database so that changes to
Diller's scheme definitions are minimal. Schemes whose definitions are unchanged from
Diller are not included here.

We start with the state space which must be enhanced to keep track of the two types of
phones, and this is done so as to both ensure no overlap of the types of phones and to
retain the same variable as the collection of all phones. The added components of the
state space lead to additional appropriate invariants.

PhoneDB
 members: PP Person
 cell, land, telephones: Person ´ Phone

 dom telephones Õ members
 telephones = cell » land
 cell « land = ∅

Of course, this change requires that a corresponding change be made in the initial state
scheme, namely:

InitPhoneDB
 DPhoneDB

members = ∅
cell = ∅
land = ∅

The new operations for adding a cell or land line are very similar to the AddEntry
scheme of Diller, but with post-conditions for the relevant variables.

AddCell
 DPhoneDB
 name?: Person
 newnumber?: Phone

 name?Œmembers
 name? a newnumber? œtelephones
 cell' = cell » {name? a newnumber?}
 land' = land
 members' = members

page 2

Then, as in Diller, a scheme expression is provided for the complete operation.
DoAddCell =̂ AddCell Ÿ Success

⁄ NotMember
⁄ EntryAlreadyExists

AddLand
 DPhoneDB
 name?: Person
 newnumber?: Phone

 name?Œmembers
 name? a newnumber? œtelephones
 land' = land » {name? a newnumber?}
 cell' = cell
 members' = members

And again, the scheme expression.
DoAddLand =̂ AddLand Ÿ Success

⁄ NotMember
⁄ EntryAlreadyExists

The FindPhones operation must be revised to return two sets of phones but this requires
only a simple change.

FindPhones
 XPhoneDB
 name?: Person
 cellnumbers!, landnumbers!: PP Phone

 name?Œ dom telephones
 cellnumbers! = cell(({name?}))
 landnumbers! = land(({name?}))

It would be possible to describe the RemoveEntry with greater specificity for this new
state space, but since the invariant of the new state space guarantees that an entry will
appear for only one of the two types of phones, the RemoveEntry scheme requires no
change -- from the telephones relation changes as stated in Diller, it can be deduced
that either the cell or land relation must change according to the kind of phone.

page 3

Lastly, the one remaining thing is to specify the CountPhones operation. Since the
CountPhones operation has no pre-conditions, there are no exceptional cases to
consider and we write the DoCountPhones scheme directly.

DoCountPhones
 XPhoneDB
 cellCount!, landCount!: Z
 rpt!: Report

 cellCount! = #(ran cell)
 landCount! = #(ran land)
 rpt! = "Okay"

This completes the revision of Diller's specification as required. Justification is provided
by the behavior of the Miranda animation.

The Miranda prototype for problem 2 is in the class directory.

