
22C/55:181

1

Well-formed Formulas for Program Proving

To discuss program proving, we must first establish a language in which
programs are written. We will pursue this in the context of what is usually referred
to as imperative programming — the traditional paradigm whose primary focus is
on the familiar assignment operation. In fact, the basic proving techniques can be
applied in a variety of imperative languages (e.g., Pascal, C, C++), and we
explore the ideas for a generic version of the facilities common to imperative
languages rather than for one specific language.

The “formulas” we write will make claims about the properties of programs
(program fragments actually). Therefore, they must include both the claim and
the program to which it pertains. Our program assertions (wffs) have the form

{a} P {b}
whose three components consist of:

• P is a program fragment — a (possibly compound) “statement”, and
• a and b are predicate logic formulas constructed using the variable and

function/operation names of the program under consideration; the symbols {,
} are meta-symbols used to denote the beginning and end of predicate logic
formulas, and should not be interpreted as symbols in the programming
language. The logic formula a is called the pre-condition, and b is called the
post-condition.

As with traditional logic systems, program assertions have dual interpretations —
a truth-theory interpretation, and a proof-theory interpretation. While the truth-
theory interpretation is what we seek to establish, it is intractable to do this.
However, we find we can establish much of what we seek using proof-theory
methods.

22C/55:181

2

Interpretation of Program Assertions
The truth-oriented interpretation of a program assertion {a} P {b} is:
if the pre-condition a is true for the values of the program variables when the
execution of program fragment P is initiated, and P eventually halts, then the
post-condition b will be true for the values of the program variables when P halts.
This is referred to as the partial correctness of P (it is vacuously true when P
does not halt) since it offers no conclusion one way or the other about P halting.

The essence of a program assertion {a} P {b} is a “contract” that expresses the
results of the computation performed by the fragment P. If P is partially correct
with respect to pre-condition a and post-condition b, then we are assured that
whenever P in initiated with values that satisfy a, upon termination the values will
satisfy b. Pre/post-conditions provide a specification that is independent of
program structure and algorithm.

For instance, if P is partially correct with respect to pre-condition X ≥ 0, and post-
condition Y2 = X, then P is assured to be a program that correctly computes Y =

X (provided it halts and doesn’t change X).

The caveat requiring program termination as a premise is undesirable, but
unavoidable. A program fragment that is partially correct and is assured to halt
when started in any state that satisfies the pre-condition is said to be totally
correct. We shall see a little later that entirely different techniques are required
to establish termination than those that permit proving partial correctness.

Since program variables can generally take on an unlimited collection of values,
partial correctness satisfaction cannot be exhaustively determined. This makes it
impossible to establish partial correctness by truth analysis. Our objective will be
to develop proof techniques that are based on “pattern matching” manipulation of
program assertions, that can be mechanically performed and allow us to
conclude the truth of partial correctness assertions.

