
22C/55:181

1

Statecharts preamble

The “finite state model” has been used in many
contexts, both conceptual and technical. In it’s
original conception, it arose in the mid-1950s to
model simple machines having “memory” — that
is, responding differently to the same stimulus
(or input) at different times, but in a consistent,
history sensitive manner. The intuitive idea is
that a stimulus may alter the internal
configuration of a machine so that if it is
presented with the same input again, it responds
differently. This is in contrast to “stateless”
devices (e.g., an or-gate) that provides a unique
result for each stimulus.

Statecharts are an ingenious and substantial
extension of this basic model. To establish a
common starting point, a few examples of
traditional “sequential machines” (as they are
usually called) are presented here.

22C/55:181

2

Example I.
This example illustrates a sequential machine
with input and output alphabet {a, b} and which
copies its input to the output while deleting the
second occurrence (if any) of the letter 'a'. As
with acceptors we may use either a tabular or a
diagrammatic presentation of specific sequential
machines. In the state diagram, we need each
edge label to indicate both the input and the
output — we write this with the notation λ/x,

where λ∈Σ is the input and x∈∆* is the output.
Usually intuition is fostered by the state diagram
presentation as illustrated in Figure IA, and this
is normally all we will subsequently provide.

Figure IA.

s s s
0 1 2

a/a

b/b b/b a/a
b/b

a/ε

22C/55:181

3

This machine copies 'b's in state s0 until the first
'a' occurs, then copies it and transfers to state
s1. Then in state s1, the machine continues to
copy 'b's until the second 'a' occurs. This 'a'
places nothing in the output sequence and
transfers to state s2. In s2 the machine simply
copies both 'a's and 'b's. So for instance, this
machine for the input 'abbab' would yield output
'abbb' via the run shown in Figure II.

state s0 s1 s1 s1 s2 s2
input a b b a b
output a b b ε b

Figure IB.

Note the need for permitting an output of length
0 in defining this sequential machine.

22C/55:181

4

Example II.
In this example we have Σ = ∆ = {0, 1, #} and we
provide a sequential machine that will “compute
odd parity” — that is, it will transform an input of
the form x# where x∈{0, 1}* into the output xπ#
where π∈{0, 1} and xπ has odd parity (i.e., an
odd number of '1's).

s s0 1

1/1

0/0
#/1#

0/01/1
#/0#

Figure II.

This machine is in state s0 whenever the input
has even parity, and state s1 whenever the input
has odd parity. The output when the “end
marker” '#' is encountered then adds '1' in state
s0 and adds '0' when in state s1 resulting in an
odd parity output for all inputs Note the need in
this machine for permitting an output of length
greater than one for some input letters.

22C/55:181

5

Example III.
We illustrate a sequential machine realization of
the unit delay function.

Figure III.
For this machine we see the following
input/output correspondence

state fε f1 f0 f0 f1 f0
input 1 0 0 1 0 1
output 1 0 0 1 0

f

ff
0 1

ε

1/0

0/1

1/10/0

0/ε 1/ε

22C/55:181

6

Example IV.
To more clearly illustrate the challenge of
understanding sequential machines, consider
the sequential machine depicted in Figure IV.

s

s

s

s

s

s

0 1

2

3

4 5

a/0

a/1
b/0

b/1

a/0
b/1

b/0

a/1

a/0a/0
b/1

b/1

Figure IV.

It can be seen by direct inspection that states s2
and s5 each provides an output of '1' for an 'a'
input and an output of '0' for a 'b' input. But state
s0 differs from s2 (and s5) since its output is '1'
for input 'b'. Since there are finitely many
combinations of outputs possible for the input
letters, it is a matter of simple inspection to
determine the equivalence behavior for any
input of length one. It is much more challenging
to determine equivalent behavior for all inputs.

It can be seen that s2 and s5 agree not only for
length one inputs, they are equivalent. However
this is not so easy to verify.

22C/55:181

7

Example V.
We observed in Example IV that certain states
are equivalent. In fact, there is a reduced
machine for this sequential machine obtained by
identifying classes of equivalent states, and
associating the input/output behavior of the
states in a class to the entire class object. If you
review the state diagram in Figure IV and in your
mind's eye coalesce the states as indicated, you
will see exactly the machine depicted in Figure
V.

a/0

b/1 a/1

b/0

a/0
b/1

s s

s s

s s

0 4

1 3

2 5

Figure V.

