
22C/55:181

1

Behavioral equations example

module* NAT-STREAM {
protecting (SIMPLE-NAT)
[Stream] -- hidden sort declaration
bop __ : Nat Stream -> Stream -- binary op with no name
bop hd : Nat Stream -> Nat
bop tl : Nat Stream -> Stream
op zeros: -> Stream
var N : Nat
var S : Stream
eq hd (N S) = N .
beq tl(N S) = S . -- tl(N S) and S are indistinguishable, not equal
eq hd zeros = 0 .
beq tl zeros = zeros . -- indistinguishable, not equal
}

From this tl(s(0) zeros) is not known to equal zeros, only behaviorally equal (I.e.,
indistinguishable). However, hd(tl(s(0) zeros)) is equal to hd(zeros).

Objects of a hidden sort are never “seen” by anyone. CafeOBJ rules require that
operations on a hidden sort be declared “behavioral” (bop) and their properties
be expressed as 'beq' (or bceq).

Matching under assoc/comm
CafeOBJ provides several “equational theory attributes”. Most useful are
commutativity and associativity since both properties are frequently desirable but
lead to non-terminating rewrite rules. When 'assoc' or 'comm' is declared for an
operation, the system considers all appropriate rearrangements when searching
for a substitution. For instance, in CafeOBJ '_and_' is associative.

op _and_ : Bool Bool -> Bool { assoc }
so that a term

true and false and true
is equal to

(true and false) and true
and to

true and (false and true).

So for example, the rewrite rule
eq true and X:Bool = X .

does not directly apply to the term
(true and false) and true,

but it none-the-less matches and yields
false and true.

22C/55:181

2

Proving options
The rewriting facilities can in fact be used to accomplish proofs of some (simple)
assertions. For instance, in the SIMPLE-NAT module, there are only the
equations
eq 0 + N = N .
eq s(N) + M = s(N + M) .

This only requires that 0 behave as we expect when used on the left (i.e., no
'comm' attribute). We can have the system perform the steps of an induction
proof that 0 also behaves as we expect when used on the right.

open SIMPLE-NAT

SIMPLE-NAT > op a : -> Nat . -- 'a' is a new unrestricted constant of sort Nat

SIMPLE-NAT > reduce 0 + 0 . -- basis case

0 : Zero -- 0 on right of 0 is OK

SIMPLE-NAT > eq a + 0 . -- induction hypothesis: assume 0 on right of 'a' is OK

SIMPLE-NAT > reduce s(a) + 0 .

s(a) : NzNat -- induction extended — OK on next, proof complete

close

