State Machines and State Charts

Part 1

g = & B
El I'?-u i

Introduction

' Embedded Systems and Software Design Automation

Bruce Powel Douglass, Ph.D.

Bruce Powel Douglass, Ph.D. I-Logix Inc.

How to contact the author

Bruce Powel Douglass, Ph.D.
Chief Evangelist
I-Logix, Inc.

1309 Tompkins Drive Apt F
Madison, WI 53716

(608) 222-1056
bpd@ilogix.com

See our web gite
www.1logix.com

Bruce Powel Douglass, Ph.D. I-Logix Inc.

About the Author

® Almost 20 years in safety-critical
hard-real time systems

® Mentor, trainer, consultant in real-
time and object-oriented systems

® Author of

— Real-Time UML.: Efficient Objects

for Embedded Systems
(Addison-Wesley, Dec. 1997)

— Doing Hard Time: Using Object
Oriented Programming and
Software Patterns in Real Time

@ Partner on the UML proposal

® Embedded Systems Conference
Advisory Board

Bruce Powel Douglass, Ph.D. I-Logix Inc.

REAL-TIME UML

DEVELOPING EFFICIENT OBIECTS
FOR EMBEDDED SYSTEMS

"Oneman’s“Of Coursel” is

another man’s “Huh?’
Book of Douglass, Law 79
_Feel freeto ask questions!)

N
] @ CourseD

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Agenda

® Approach taken for this talk
® Types of behavior

e State Behavior

® Mealy-Moore State Models
@ Harel Statecharts

® Integrating FSMs with your
development process

® Producing code for state machines

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Approach taken for this talk

® This iIs meant to be a gentle introduction
to states and state machines

® This section will
machines and a

@ State models wil
simple forms

ne mostly on state
ittle on statecharts

first be introduced In

® Gradually concepts enhanced and

elaborated

® Ask questions If you don’t think your
neighbor Is understanding

Bruce Powel Douglass, Ph.D.

I-Logix Inc.

What kinds of things have
Behavior?

® Objects!

— ODbject have
¢ Internal data
+ Operations on that data (behavior)

— ODbjects can
¢ react to environmental events and information
¢ autonomously produce events and actions

— Not all Objects have state behavior!

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Types of Behavior

® Behavior can be simple

Simple behavior does not depend on the object’s
history

® Behavior can be continuous

Continuous behavior depends on the object’s history
but in a smooth, continuous fashion

® Behavior can be state-driven

State-driven behavior means that the object’s
behavior can be divided into disjoint sets

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Simple Behavior

® The behavior Is not affected by the
object’s history
—Ccos(X)
— getTemperature()
— setVoltage(v)
— max(a,b)

b

— N\

Qe‘ < dx

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Continuous Behavior

® ODbject’s behavior depends on history In
a continuous way

— Control loops

xn
—>

— digital filter

:dj+dj-1+dj-2+dj-3

f.
| 4

—fuzzy logic
Uses partial set membership to compute a
smooth, continuous output

Bruce Powel Douglass, Ph.D. I-Logix Inc.

State Behavior

® ODbject exhibit discontinuous modes of
behavior

—In “therapy mode” delivery anesthetic agent
based on knob position

— In “service mode” select service function
based on knob position

— In “startup mode” ignore the knob turns

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Why State Machines?

® Simplification
@ Predictabllity
@ Easy Development

® Easy Testing

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Why: Simplification
® Introduce simplifying assumptions

— Assumes system is only in a single state at a
time
— Assumes state transitions are instantaneous

® Limit interactions with other objects

— A finite set of transitions are permitted while
In any given state

— Other events are

¢ ignored
¢ cause error recovery states to be entered
¢ queued

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Why: Simplification

® Overall behavior Is decomposed Into

sets of non-overlapping behavior
defined by

— Input events accepted while in a state
— outputs initiated while in a state
— error recovery mechanisms

@ Easy Error Handling

— easy to specify valid and non-valid inputs
by In states

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Why: Predictability

® FSMs divide their complexity into
chunks called states

® Each state Is simpler than the overall
object

® Because each state Is simpler, 1t Is
more understandable and predictable

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Why: Easy Development

® FSMs simplify the system into smaller
pieces

® Smaller pieces are easier to code

ney are easy to write the code for

ney are easier to “get right”

ney are easy to explain in peer reviews

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Easy Testing

® Unit testing Is fundamentally at the level
of the object (or function)

® FSMs can be subdivided into states for
testing

— Each state has a smaller set of input and
output conditions

— The overall testing Is decreased because
of low coupling among states

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Finite State Machines

® A finite state model Is the description
from which any number of instances
can be made

® A finite state machine (FSM) is an
object which has state behavior defined

by
— A finite set of states
— A finite set of transitions

® SO,
— What's a state?
— What's a transition?

Bruce Powel Douglass, Ph.D. I-Logix Inc.

What Is a state?

4 R
A state Is adistinguishable, digoint,

orthogonal ontological condition that
persists for a significant period of time

NS

J

Bruce Powel Douglass, Ph.D. I-Logix Inc.

What Is a state?

® Distinguishable
It can be clearly distinguished from
other states
— Inputs accepted
— Actions performed

® Disjoint
An object can only be In one state In a
time and must be in exactly one state at
all times

Bruce Powel Douglass, Ph.D. I-Logix Inc.

What Is a state?

e Orthogonal
States do not overlap other states

e Ontological
“fundamental condition of existence”

® Persists for a significant period of time

— ODbjects spend all their time In states
(“Significant” is problem-domain specific)

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Example States: Switch

©
@ State: Off
® State: On E
%,

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Example States:
Oregon Weather

@ State: Raining
@ State: Going to Rain

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Example States: Elevator

® State: Stopped | ¢

e State: Going Up
@ State: Going Down

Bruce Powel Douglass, Ph.D. I-Logix Inc.

What constitutes a state?

® View 1: The value of all attributes of the
object uniquely define the state

® View 2: The value of some specific
attributes (state variables) uniquely
defines the state

® View 3: A unigue set of inputs accepted
and actions performed defines the state

Bruce Powel Douglass, Ph.D. I-Logix Inc.

View 1: Values of All
Attributes Defines the State

enum tState {Off,
Sensor Calibrating,

float Value; Measuring,
enum tState s: NoValidMeasurement,
ValidMeasurement }

® Are Value = 0.0 and Value = 0.000001
different states? YES!

® How many states are there? Infinite.

® Are the behaviors or events accepted In
different states actually different? No.

Bruce Powel Douglass, Ph.D. I-Logix Inc.

View 2: Values of Some Set of
Attributes Defines the State

enum tState {Off,

Sensor Calibrating,

float Value; Measuring,
enum tState s: NoValidMeasurement,

ValidMeasurement }

® Are Value = 0.0 and Value = 0.000001
different states? No.

® How many states are there? 5.

® Are the behaviors or events accepted In
different states actually different? Yes.

Bruce Powel Douglass, Ph.D. I-Logix Inc.

View 3: Unigue Set of
Behaviors Defines the State

enum tState {Off,
Sensor Calibrating,

float Value; Measuring,
enum tState s: NoValidMeasurement,
ValidMeasurement }

® Are Value = 0.0 and Value = 0.000001
different states? No.

® How many states are there? 5.

® Are the behaviors or events accepted In
different states actually different? Yes.

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Transitions:
Getting there Is half the fun

® A transition iIs the changing from one
state of an object to another

® Transitions are the FSM representation
of responses to events

® Events may be from internal or external
sources

® Transitions may have associated
actions

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Sample Transition: Elevator

4 Rhapsody - fsmT alk - [Statechart of : class_30]
EE"E Edit Wiew Code Lapout Launch Window Options Help

Dlﬁlnl Cl‘%llal §|?|N’?| @\|@\|lﬁl|E| |ﬁ||§|| X|_-f"’| IDEfauItEnnfig

Going_Up

N
of
B
N

i)
b9
o
©

@
L]

[2)
L J

Stopped_At_Floor Going_Down

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Actions

® Actions are functions that take an
Insignificant amount of time to perform
® Actions are implemented via
— an object’s operations
— externally available functions
® They may occur when
— A transition Is taken
— A state Is entered
— A state Is exited

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Actions

® Assign to a state when they are always
executed on state entry or exit

® Assign to transition when they they are
not always executed on state entry or
exit

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Simple FSM

,ﬁ'Hhapsud_l,l fsmTalk - [Statechart of : Simple_Class] i
E File Edit Wiew Code Lapout Launch Window |:||:ItII:Ir‘|S Help =] x|

Iirlnl cﬁﬁl‘lﬂll %l?lﬂl @llallﬁ“@l .lﬁl@l X|7§"’| IDefauItEDnﬁg

\' =

T Off 1 Fault Detected| Error

____f—h
Turn Off LED Flash LED

F 3

Push In /
in Electron Flow

Fault Detected

I Out /
Electron Flow

N
N
ol
a
N
8
kY
o
©
)
L
[©)
[]

On
Turn On LED

Bruce Powel Douglass, Ph.D. I-Logix Inc.

A Slightly More Complex FSM

® You are implementing a reliable
transmission service for an OSI-
compliant protocol stack.

® A message Is sent that requires the
recelver to return an ACK.

@ If an ACK does not occur, retransmit the
message

e If the message Is transmitted 5 times
without an ACK, then inform the sender.

Bruce Powel Douglass, Ph.D. I-Logix Inc.

What’s the Object?

{;_-?.%:Hhapsudy - fsmTalk - [Dbject Model Diagram: Modell]
: File Edit “iew Code Lawout Launch ‘window Option: Help

=E| &|=e 82 a@al@E Ble|8]| X| =] oo

Feceiver

=+

Comm_Controller

I

1
k:

Creates Mso_ Transaction Recejves

Communication 1
Class Diagram

Message

0}
R
=]
=
=]
£
T
X
2
=
&

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Message Transaction FSM

E File Edit ‘“iew Code Lapout Launch ‘window Options Help

Dlﬁlnl %llgl %I?lwl @l|Q|Iﬁ||E| |EIE|I X|_-'3"| IDEfauItEanig

Message Ready /
Start Timer

.\ /’[Sending

it_Count+

Valid ACK tm(Wait_Tim
[Transmit_Cqunt <= Limit]

K
(]
A
N
)
)
o
©
®
[6)
)

Waiting Invalid ACK

tm{Wait_T ransmit_Count > Limit]

]

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Mealy-Moore State Models

® The set of states defines the state space

® State spaces are flat
— All states are at the same level of abstraction
— All state names are unigque

@ State models are single-threaded
— Only a single state can be valid at any time

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Mealy-Moore State Models

® Mealy State Models
— All actions are In transitions

® Moore State Models
— All actions are upon state entry

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Retriggerable One-shot Timer FSM
® How many states?

® Model 1
— Ildle
— Count = 65,535

— Count = 65,534

—Count=0

® Model 2
— Idle
— Counting down

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Retriggerable One-shot Timer

{;_-;&}!Hhapsudy - lsmT alk - [Statechart of : Timer] G
EEiIe Edit “iew Code Lapout Launch ‘Window Opltions Help

Ei-"|ﬂ| cHJlIEl %|‘f?|¥?| &llallﬁl.ﬂl |ﬂ||§|| Xl“ﬂi"l IDefauItEanig

Start Cmd /
Set Set_Time Retriggerable One-Shot

Start Timer Mealy Model

=

Stop Cm Counting

Stop Timer tm(Set_Time) /
Raise Interrupt
Reset Timer

O
N
©
21
]
Al
el
|
&
@
.
@
L J

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Retriggerable One-Shot Timer

% Rhapsody by i-Logix Inc. - [Statechart of Moore Timeeg
E File Edit ‘“iew Code Lapout Launch ‘window Options Help

Dlﬁlnl CHJ'IEII §|‘?|H’?| @|Q|IE||E| IﬁIEI X|_-'3"| IDBfauItEanig

-
\' Counting First Time
[d W’ Set Set_Time

e .
Stop. Cmd Start Timer

[Stop Timer J< 9

Stop_Cmd tmiSet_Time)
|
Retriggerable One-Shot

- A
Counting Subsequently Moore Model

N
o
A
N
)
&
i)
©
®
[
®
)

Raise Interrupt

Reset Timer
. A
tizet Time)

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Problems with M&M State Models

@ Scalability due to lack of metaphor for
decomposition

e No Concurrency support

® No support for orthogonal components

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Scalability

Y

{Parameter OK

|

(" Parameter
L In Alarm:
Tonel

Y

\

Parameter
In Alarm:;
Tone?2

J

g Parameter

In Alarm:;
Tone 3

\

J

Y

Bruce Powel Douglass, Ph.D.

I-Logix Inc.

\

Parameter
In Alarm:;
Tone OFF

J

Scalability

OR THIS....

{Parameter OKJ

||

Parameter In Alarm

Sounding
Tonel

'

{ Sounding

Tone?2

N

|

Sounding
Tone3

'

Tone OFF J

/

Bruce Powel Douglass, Ph.D.

I-Logix Inc.

concurrency

Problem: A device can be In states
o« Off

« Starting Up

e Operational

e Error

And it can be running from
e Mains
e pattery

Bruce Powel Douglass, Ph.D. I-Logix Inc.

How to arrange these states?

Cor

{ Startup J

s

[Operati onal}

Ceror Ceary

Bruce Powel Douglass, Ph.D.

concurrency

e In M&M View, the following are different
States

— Operational with Battery
— Operation with Mains

® This Is called state explosion

® Solution:
— Allow states to operate concurrently

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Mealy-Moore Solution

Switch to Off

Switch to Off : ,
w mains on line

SwitcH 1o §ff Off - Battery J(mainsoff line ’(Off - Mains itch to Off
L

—>

Yvitchto Off | Switch to On Switchto On
Switch to
4

s

mainson line

Startup - Batter%(mansoff e |02 (UP - Mains

.

J

lPOST Complete lPOST Complete

mains off line

(Operational _ w mainson line ,(Operational _)
.

Battery WETS)
Error Detected i Error Detected

w mains on line W

>| Error - BatteryJ(mains off line ’(Error - MainsJi
N

Bruce Powel Douglass, Ph.D. I-Logix Inc.

.

Concurrent State Model Solution

f_.:_-:i'-"-;ffﬂhapsudy - fsmT alk - [Statechart of : Concurrent F5M]
E File Edit “iew Code Lawout Launch ‘Window Option: Help

Dlﬁlnl ':I‘%Ilgl §|?|N’?| @l|a|lﬁ|lﬂ| |ﬂ||§|| ><|_-'3"| IDEfauItEnnfig

System
/' Application_Subsystem

4 Running
POST|Complete

J‘;witch to OFF
v

[Error]._Error Detected operétignm

N
ol
a
i
Al
by
ol
©

[
L]

[
L]

Power_Subsystem

Mains Off-Line

[Battery |__Mains On-Line

.

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Orthogonal Components

mylnstance: myClass enum tColor {eRed, eBlue,
eGreen};

tColor Color

boolean ErrorStatus enum boolean {TRUE,
tMode Mode FALSE}

enum tMode {eNormal,
eStartup, eDemo}

How do you draw the state of this object?

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Approach 1. Enumerate all

‘eRed, FALSE, |
eDemo

\ J

eRed, TRUE, |
eDemo

‘eRed, FALSE, |
eNormal

\ J

eRed, TRUE, |
eNormal

‘eRed, FALSE,
eStartup

‘eBlue, FALSE,)
eDemo

\ J

(eBlue, TRUE, |
eDemo

‘eBlue, FALSE,)
eNormal

\ J

(eBlue, TRUE, |
eNormal

‘eBlue, FALSE,)

eStartup

eGreen, FALSE
eDemo

\.

1

eDemo

\.

eGreen, TRUE, |

eNormal

\.

‘eGreen, FALSE,]

J

eNormal

eGreen, TRUE, |

eStartup

‘eGreen, FALSE,]

eRed, TRUE, eBlue, TRUE, eGreen, TRUE,
. eotartur eStartup | eStartup pege 51

Approach 2

¥ Rhapsody - fsmTalk - [Statechart of : myClass]
E File Edit ‘iew Code Lapout Launch ‘window Options Help

Dlﬁlnl '}Ellgl %I?Iﬂl @l|Gl|lﬁ||E| |F||§|| XIE"I IDEfauItEnnfig

myClass

/' Color

eRed

eStartup

eGreen

K
o
A
N

)
&
o
©
®
[

[G)
L]

ErrorStatus

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Harel State Charts

® Created by David Harel in late 1980s

® Supports
— Nested states
— Actions and Activities

— Guards
— History

® Advanced Features (Part Il)
— Concurrency

— Broadcast Transitions
— Orthogonal Components

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Basic Harel Syntax

N

. entry B1()
exit B2()

~

throughout B3()

Y{1(intr) P

@

- ®
T T5
4 S1

Bruce Powel Douglass, Ph.D.

exit A2()

throughout Al, A2
N J

A
T3/

C1l

C2

\

B

-

X3 /

28 _[c
] Y

|

I-Logix [nc.

Nested States

® Improves scalabllity
® Increases understandability

® Permits problem decomposition (divide-
and conquer)

® Methods
— Nested states on same diagram
— Nested states on separate diagram

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Actions and Activities

® Actions

— are functions which take an insignificant
amount of time to execute

— they may have parameters

— they may occur on
¢ Transitions
¢ State Entry
¢ State Exit

® Activities

— are functions executed as long as a state Is
active

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Order of Nested Actions

® Execute from outermost - in on entry
® Execute from innermost - out on exit

entry: f() | fi SHORUCIPN(Y

/
/
y

exit: g(a,b)

entry: X(c)[*
exity() | Ny

r o

_ o
first y() then g(ab)

Bruce Powel Douglass, Ph.D. I-Logix Inc. Page 57

Transitions

@ Basic (UML) syntax:

name(params)[guards]*events/actions

— Name

— Parameters
— Guard

— Event List
— Action List

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Transitions: Event List

® Comma separated list of transitions that
occur In other concurrent state
machines because of this transition

® A.k.a propagated transitions

® This will be discussed more in Part Il

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Transitions: Guards

® A guard Is some condition that must be
met for the transition to be taken

® Guards can be

— Variable range specification

— Concurrent state machine is in some state
[INCX)]

— Some other constraint (preconditional
Invariant) must be met

Bruce Powel Douglass, Ph.D. I-Logix Inc.

<

Transitions

T1(intr)[r < Q] / f(r)

Bruce Powel Douglass, Ph.D.

T2 [IN(READY)] /
a()

I-Logix Inc.

History

® The history annotation @ means that the
state “remembers” the substate and returns
to It as the default

® Can also work with an initial state indicator

\T1@

T2

i) T3
N
(1)

T4

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Example: Jolt Cola Machine

j'_.:_-::"r"-}fthapsudy - fzmT alk - [Object Model Diagram: Model3]
I File Edit “iew Code Layout Launch Window Option: Help

0|2|E] &= 32| &la|mE] Ble|8] %] =] Do

* 1 *

L Rack —8oda Can
1

o

1

Sef of Racks
1

Buitton

1

Display |=-.‘
1 Jolt Cola Machine

ﬁ
=
=
=
|2
|
| &
3
z
g

1
_1|cO;n_Receptac;e|& Inserted Currency

; \

Change Due Monetary_

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Example: Coin Receptacle FSM

ZF Rhapsody - fsmtalk - [Statechart of - Coin_Receptacle]
E File Edit ‘“iew Code Lapout Launch ‘wWindow Options Help

O||E] &R 82 @lalmE] Blel] %] =] besuconrs

)

Waiting_for_Coins

Coin_Purse_Not_Fuh]‘— fssufng_Chang]E
[Amt > Neede

EValid(Coin)] / Amt = Needed]

frit += Coin]
Done _[Evafuaﬁng fssuing_Can

[Evafuaﬁng_Coh]

Coin Receptacle FSM

4 Pmcessing_Requea

\.

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Substate: Issuing Can

£ Rhapsody - fsmtalk - [Statechart of : State Issuing Can]
E File Edit ‘“iew Code Lapout Launch ‘window Options Help

DR &[=@ 228 @aREE Ble|a]| X =] et

/ Issuing Can

Dispensing -\\ ™

'] Rack_Sefected Waiting_for_dispensatio

Entry/ Rack.Dispense()

[Walting for_Selection

Dispepsing Done

[Reselting]

i

Bruce Powel Douglass, Ph.D. I-Logix Inc.

Class Button FSM

7 Rhapsody - Fsmtalk - [Statechart of - Button]
E File Edit “iew Code Lapout Launch ‘window Options Help

D|S(=] & 2e 22 @lalm|E] Ble|8] %] =] et
| Current Configuration[2]

Push

Rack[Bufton].Push()

Bruce Powel Douglass, Ph.D. I-Logix Inc.

summary

® ODbjects have behavior
— Simple
— Continuous
— State-driven

® Modeling objects as Finite State Machines
simplifies the behavior

@ States apply to objects

® FSM Objects spend all their time In exactly 1
state (discounting orthogonal substates)

Bruce Powel Douglass, Ph.D. I-Logix Inc.

summary

@ States are disjoint ontological conditions
that persist for a significant period of time.

@ States are defined by one of the following:
— The values of all attributes of the object
— The values of specific attributes of the object

— Disjoint behaviors
+ Events accepted
¢ Actions performed

Bruce Powel Douglass, Ph.D. I-Logix Inc.

summary

® Transitions are the representation of
responses to events within FSMs

® Transitions take an insignificant amount
of time

® Actions are functions which may be

assoclated with
— Transitions

— State Entry

— State Exit

® Activities are processing that continues
as long as a state Is active

Bruce Powel Douglass, Ph.D. I-Logix Inc.

summary

@ Harel statecharts expand standard FSMs
— Nested states
— Concurrency
— Broadcast transitions
— Orthogonal Components
— Actions on states or transitions
— History
— Guards on transitions

Bruce Powel Douglass, Ph.D. I-Logix Inc.

- L | l

T,

Ut AL {
= 1-Logix

Embedded Systems and Software Design Automation

Bruce Powel Douglass, Ph.D. I-Logix Inc.

