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Huh? Of Course!

One man’s “Of Course!” is 
another man’s “Huh?” 

Book of Douglass, Law 79
Feel free to ask questions!
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Agenda
l Approach taken for this talk
l Types of behavior
l State Behavior
l Mealy-Moore State Models
l Harel Statecharts
l Integrating FSMs with your

development process
l Producing code for state machines
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Approach taken for this talk
l This is meant to be a gentle introduction

to states and state machines
l This section will be mostly on state

machines and a little on statecharts
l State models will first be introduced in

simple forms
l Gradually concepts enhanced and

elaborated
l Ask questions if you don’t think your

neighbor is understanding
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What kinds of things have
Behavior?

l Objects!
– Object have

u Internal data
u Operations on that data (behavior)

– Objects can
u react to environmental events and information
u autonomously produce events and actions

– Not all Objects have state behavior!
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Types of Behavior

l Behavior can be simple
Simple behavior does not depend on the object’s
history

l Behavior can be continuous
Continuous behavior depends on the object’s history
but in a smooth, continuous fashion

l Behavior can be state-driven
State-driven behavior means that the object’s
behavior can be divided into disjoint sets
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Simple Behavior

l The behavior is not affected by the
object’s history
– cos( x )
– getTemperature( )
– setVoltage( v )
– max(a,b)
– ∫ −b

a

x dxe
2
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Continuous Behavior
l Object’s behavior depends on history in

a continuous way
– Control loops

– digital filter

– fuzzy logic
Uses partial set membership to compute a
smooth, continuous output
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State Behavior

l Object exhibit discontinuous modes of
behavior
– in “therapy mode” delivery anesthetic agent

based on knob position
– in “service mode” select service function

based on knob position
– in “startup mode” ignore the knob turns
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Why State Machines?

l Simplification

l Predictability

l Easy Development

l Easy Testing



Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 13

Why: Simplification
l Introduce simplifying assumptions

– Assumes system is only in a single state at a
time

– Assumes state transitions are instantaneous

l Limit interactions with other objects
– A finite set of transitions are permitted while

in any given state
– Other events are

u ignored
u cause error recovery states to be entered
u queued
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Why: Simplification
l Overall behavior is decomposed into

sets of non-overlapping behavior
defined by
– input events accepted while in a state
– outputs initiated while in a state
– error recovery mechanisms

l Easy Error Handling
– easy to specify valid and non-valid inputs

by in states
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Why: Predictability

l FSMs divide their complexity into
chunks called states

l Each state is simpler than the overall
object

l Because each state is simpler, it is
more understandable and predictable
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Why: Easy Development

l FSMs simplify the system into smaller
pieces

l Smaller pieces are easier to code
– They are easy to write the code for
– They are easier to “get right”
– They are easy to explain in peer reviews
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Easy Testing

l Unit testing is fundamentally at the level
of the object (or function)

l FSMs can be subdivided into states for
testing
– Each state has a smaller set of input and

output conditions
– The overall testing is decreased because

of low coupling among states
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Finite State Machines
l A finite state model is the description

from which any number of instances
can be made

l A finite state machine (FSM) is an
object which has state behavior defined
by
– A finite set of states
– A finite set of transitions

l So,
– What’s a state?
– What’s a transition?
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What is a state?

Huh?

A state is a distinguishable, disjoint, 
orthogonal ontological condition that 
persists for a significant period of time

Well, duh!
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What is a state?
l Distinguishable

It can be clearly distinguished from
other states
– Inputs accepted
– Actions performed

l Disjoint
An object can only be in one state in a
time and must be in exactly one state at
all times
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What is a state?
l Orthogonal

States do not overlap other states

l Ontological
“fundamental condition of existence”

l Persists for a significant period of time
– Objects spend all their time in states

(“Significant” is problem-domain specific)
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Example States: Switch

l State: Off
l State: On
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Example States:
Oregon Weather

l State: Raining
l State: Going to Rain
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Example States: Elevator

l State: Stopped
l State: Going Up
l State: Going Down
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What constitutes a state?
l View 1: The value of all attributes of the

object uniquely define the state

l View 2: The value of some specific
attributes (state variables) uniquely
defines the state

l View 3: A unique set of inputs accepted
and actions performed defines the state
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View 1: Values of All
Attributes Defines the State

l Are Value = 0.0 and Value = 0.000001
different states? YES!

l How many states are there? Infinite.
l Are the behaviors or events accepted in

different states actually different? No.

enum tState {Off, 
    Calibrating, 
    Measuring, 
    NoValidMeasurement, 
    ValidMeasurement }

Sensor
float Value;

enum tState s;
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View 2: Values of Some Set of
Attributes Defines the State

l Are Value = 0.0 and Value = 0.000001
different states? No.

l How many states are there? 5.
l Are the behaviors or events accepted in

different states actually different? Yes.

enum tState {Off, 
    Calibrating, 
    Measuring, 
    NoValidMeasurement, 
    ValidMeasurement }

Sensor
float Value;

enum tState s;
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View 3: Unique Set of
Behaviors Defines the State

l Are Value = 0.0 and Value = 0.000001
different states? No.

l How many states are there? 5.
l Are the behaviors or events accepted in

different states actually different? Yes.

enum tState {Off, 
    Calibrating, 
    Measuring, 
    NoValidMeasurement, 
    ValidMeasurement }

Sensor
float Value;

enum tState s;
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Transitions:
Getting there is half the fun

l A transition is the changing from one
state of an object to another

l Transitions are the FSM representation
of responses to events

l Events may be from internal or external
sources

l Transitions may have associated
actions
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Sample Transition: Elevator
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Actions

l Actions are functions that take an
insignificant amount of time to perform

l Actions are implemented via
– an object’s operations
– externally available functions

l They may occur when
– A transition is taken
– A state is entered
– A state is exited
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Actions

l Assign to a state when they are always
executed on state entry or exit

l Assign to transition when they they are
not always executed on state entry or
exit



Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 33

Simple FSM
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A Slightly More Complex FSM

l You are implementing a reliable
transmission service for an OSI-
compliant protocol stack.

l A message is sent that requires the
receiver to return an ACK.

l If an ACK does not occur, retransmit the
message

l If the message is transmitted 5 times
without an ACK, then inform the sender.
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What’s the Object?
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Message Transaction FSM
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Mealy-Moore State Models

l The set of states defines the state space

l State spaces are flat
– All states are at the same level of abstraction
– All state names are unique

l State models are single-threaded
– Only a single state can be valid at any time
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Mealy-Moore State Models

l Mealy State Models
– All actions are in transitions

l Moore State Models
– All actions are upon state entry
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Retriggerable One-shot Timer FSM
l How many states?
l Model 1

– Idle
– Count = 65,535
– Count = 65,534
– ...
– Count = 0

l Model 2
– Idle
– Counting down

ANS: Model 2
(Drawing model 1 is a
homework exercise)

ANS: Model 2
(Drawing model 1 is a
homework exercise)
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Retriggerable One-shot Timer
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Retriggerable One-Shot Timer

Stop Timer

Set Set_Time
Start Timer

Raise Interrupt
Reset Timer
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Problems with M&M State Models

l Scalability due to lack of metaphor for
decomposition

l No Concurrency support

l No support for orthogonal components
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Scalability

Parameter OK

Parameter 
In Alarm:

Tone 1

Parameter 
In Alarm:

Tone 2

Parameter 
In Alarm:
Tone OFF

Parameter 
In Alarm:

Tone 3

THIS....
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Scalability

Parameter OK
OR THIS....

Parameter In Alarm

Sounding
Tone 1

Sounding
Tone 2

Tone OFF

Sounding
Tone 3
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Concurrency

•  Problem: A device can be in states 
• Off 
• Starting Up
• Operational
• Error

• And it can be running from 
• mains 
• battery
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How to arrange these states?

Operational
Mains

Startup

Error Battery

Off
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Concurrency

l In M&M View, the following are different
states
– Operational with Battery
– Operation with Mains

l This is called state explosion
l Solution:

– Allow states to operate concurrently
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Mealy-Moore Solution

Operational - 
Battery

Operational - 
Mains

Startup - Battery Startup - Mains

Error - Battery Error - Mains

Off - Battery Off - Mains
mains on line

mains off line

mains on line

mains off line

mains on line

mains off line

mains on line

mains off line

Switch to On Switch to On

POST Complete POST Complete

Error Detected Error Detected

Error 
Detected

Error 
Detected

Error 
Detected

Error 
Detected

Switch to Off

Switch to Off

Switch to Off

Switch to Off

Switch to Off

Switch to Off
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Concurrent State Model Solution
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Orthogonal Components

myInstance: myClass

tColor Color
boolean ErrorStatus
tMode Mode

enum tColor {eRed, eBlue,
    eGreen};

enum boolean {TRUE,
    FALSE}

enum tMode {eNormal,
    eStartup, eDemo}

How do you draw the state of this object?
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Approach 1: Enumerate all

eRed, TRUE,
eDemo

eBlue, FALSE,
eDemo

eGreen, FALSE,
eDemo

eRed, FALSE,
eDemo

eBlue, TRUE,
eDemo

eGreen, TRUE,
eDemo

eRed, TRUE,
eNormal

eBlue, FALSE,
eNormal

eGreen, FALSE,
eNormal

eRed, FALSE,
eNormal

eBlue, TRUE,
eNormal

eGreen, TRUE,
eNormal

eRed, TRUE,
eStartup

eBlue, FALSE,
eStartup

eGreen, FALSE,
eStartup

eRed, FALSE,
eStartup

eBlue, TRUE,
eStartup

eGreen, TRUE,
eStartup
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Approach 2
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Harel State Charts
l Created by David Harel in late 1980s
l Supports

– Nested states
– Actions and Activities
– Guards
– History

l Advanced Features (Part II)
– Concurrency
– Broadcast Transitions
– Orthogonal Components
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Basic Harel Syntax
S2

U1

U2

A B C
X2[G]

T3 /
C1
C2

S3

S1
entry A1( )
exit A2( )
throughout A1, A2

entry B1( )
exit B2( )
throughout B3( )

X1

T1

T2Y2

Y1(int r)

X3

T4

T5

H

T5
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Nested States

l Improves scalability
l Increases understandability
l Permits problem decomposition (divide-

and conquer)
l Methods

– Nested states on same diagram
– Nested states on separate diagram
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Actions and Activities
l Actions

– are functions which take an insignificant
amount of time to execute

– they may have parameters
– they may occur on

u Transitions
u State Entry
u State Exit

l Activities
– are functions executed as long as a state is

active
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Order of Nested Actions
l Execute from outermost - in on entry
l Execute from innermost - out on exit

U entry: f( )
exit: g(a,b)

U1 entry: x(c )
exit: y()

A

first f( ) then x(c)

first y( ) then g(a,b )
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Transitions

l Basic (UML) syntax:

name(params)[guards]^events/actions

– Name
– Parameters
– Guard
– Event List
– Action List
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Transitions: Event List

l Comma separated list of transitions that
occur in other concurrent state
machines because of this transition

l A.k.a propagated transitions

l This will be discussed more in Part II
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Transitions: Guards

l A guard is some condition that must be
met for the transition to be taken

l Guards can be
– Variable range specification
– Concurrent state machine is in some state

[IN(X)]
– Some other constraint (preconditional

invariant) must be met
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Transitions

BA

T1(int r)[r < 0] / f(r)

T2 [IN(READY)] /
g( )



Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 62

History
l The history annotation         means that the

state “remembers” the substate and returns
to it as the default

l Can also work with an initial state indicator

H

A

B

C

S

H

T1 X

Y

T2

T3

T4
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Example: Jolt Cola Machine
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Example: Coin Receptacle FSM
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Substate: Issuing Can

Entry/ Rack.Dispense( )
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Class Button FSM
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Summary
l Objects have behavior

– Simple
– Continuous
– State-driven

l Modeling objects as Finite State Machines
simplifies the behavior

l States apply to objects
l FSM Objects spend all their time in exactly 1

state (discounting orthogonal substates)
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Summary

l States are disjoint ontological conditions
that persist for a significant period of time.

l States are defined by one of the following:
– The values of all attributes of the object
– The values of specific attributes of the object
– Disjoint behaviors

u Events accepted
u Actions performed
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Summary
l Transitions are the representation of

responses to events within FSMs
l Transitions take an insignificant amount

of time
l Actions are functions which may be

associated with
– Transitions
– State Entry
– State Exit

l Activities are processing that continues
as long as a state is active
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Summary

l Harel statecharts expand standard FSMs
– Nested states
– Concurrency
– Broadcast transitions
– Orthogonal Components
– Actions on states or transitions
– History
– Guards on transitions



Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 71


