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Agenda

® Approach taken for this talk
® Types of behavior

e State Behavior

® Mealy-Moore State Models
@ Harel Statecharts

® Integrating FSMs with your
development process

® Producing code for state machines
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Approach taken for this talk

® This iIs meant to be a gentle introduction
to states and state machines

® This section will
machines and a

@ State models wil
simple forms

ne mostly on state
ittle on statecharts

first be introduced In

® Gradually concepts enhanced and

elaborated

® Ask questions If you don’t think your
neighbor Is understanding
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What kinds of things have
Behavior?

® Objects!

— ODbject have
¢ Internal data
+ Operations on that data (behavior)

— ODbjects can
¢ react to environmental events and information
¢ autonomously produce events and actions

— Not all Objects have state behavior!
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Types of Behavior

® Behavior can be simple

Simple behavior does not depend on the object’s
history

® Behavior can be continuous

Continuous behavior depends on the object’s history
but in a smooth, continuous fashion

® Behavior can be state-driven

State-driven behavior means that the object’s
behavior can be divided into disjoint sets
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Simple Behavior

® The behavior Is not affected by the
object’s history
—Ccos( X )
— getTemperature( )
— setVoltage( v )
— max(a,b)

b

— N\

Qe‘ < dx
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Continuous Behavior

® ODbject’s behavior depends on history In
a continuous way

— Control loops

xn
—>

— digital filter

:dj+dj-1+dj-2+dj-3

f.
| 4

—fuzzy logic
Uses partial set membership to compute a
smooth, continuous output
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State Behavior

® ODbject exhibit discontinuous modes of
behavior

—In “therapy mode” delivery anesthetic agent
based on knob position

— In “service mode” select service function
based on knob position

— In “startup mode” ignore the knob turns
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Why State Machines?

® Simplification
@ Predictabllity
@ Easy Development

® Easy Testing
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Why: Simplification
® Introduce simplifying assumptions

— Assumes system is only in a single state at a
time
— Assumes state transitions are instantaneous

® Limit interactions with other objects

— A finite set of transitions are permitted while
In any given state

— Other events are

¢ ignored
¢ cause error recovery states to be entered
¢ queued
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Why: Simplification

® Overall behavior Is decomposed Into

sets of non-overlapping behavior
defined by

— Input events accepted while in a state
— outputs initiated while in a state
— error recovery mechanisms

@ Easy Error Handling

— easy to specify valid and non-valid inputs
by In states
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Why: Predictability

® FSMs divide their complexity into
chunks called states

® Each state Is simpler than the overall
object

® Because each state Is simpler, 1t Is
more understandable and predictable
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Why: Easy Development

® FSMs simplify the system into smaller
pieces

® Smaller pieces are easier to code

ney are easy to write the code for

ney are easier to “get right”

ney are easy to explain in peer reviews
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Easy Testing

® Unit testing Is fundamentally at the level
of the object (or function)

® FSMs can be subdivided into states for
testing

— Each state has a smaller set of input and
output conditions

— The overall testing Is decreased because
of low coupling among states
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Finite State Machines

® A finite state model Is the description
from which any number of instances
can be made

® A finite state machine (FSM) is an
object which has state behavior defined

by
— A finite set of states
— A finite set of transitions

® SO,
— What's a state?
— What's a transition?
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What Is a state?

4 R
A state Is adistinguishable, digoint,

orthogonal ontological condition that
persists for a significant period of time

NS

J
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What Is a state?

® Distinguishable
It can be clearly distinguished from
other states
— Inputs accepted
— Actions performed

® Disjoint
An object can only be In one state In a
time and must be in exactly one state at
all times
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What Is a state?

e Orthogonal
States do not overlap other states

e Ontological
“fundamental condition of existence”

® Persists for a significant period of time

— ODbjects spend all their time In states
(“Significant” is problem-domain specific)
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Example States: Switch

©
@ State: Off
® State: On E
%,
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Example States:
Oregon Weather

@ State: Raining
@ State: Going to Rain
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Example States: Elevator

® State: Stopped | ¢

e State: Going Up
@ State: Going Down
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What constitutes a state?

® View 1: The value of all attributes of the
object uniquely define the state

® View 2: The value of some specific
attributes (state variables) uniquely
defines the state

® View 3: A unigue set of inputs accepted
and actions performed defines the state
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View 1: Values of All
Attributes Defines the State

enum tState {Off,
Sensor Calibrating,

float Value; Measuring,
enum tState s: NoValidMeasurement,
ValidMeasurement }

® Are Value = 0.0 and Value = 0.000001
different states? YES!

® How many states are there? Infinite.

® Are the behaviors or events accepted In
different states actually different? No.
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View 2: Values of Some Set of
Attributes Defines the State

enum tState {Off,

Sensor Calibrating,

float Value; Measuring,
enum tState s: NoValidMeasurement,

ValidMeasurement }

® Are Value = 0.0 and Value = 0.000001
different states? No.

® How many states are there? 5.

® Are the behaviors or events accepted In
different states actually different? Yes.
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View 3: Unigue Set of
Behaviors Defines the State

enum tState {Off,
Sensor Calibrating,

float Value; Measuring,
enum tState s: NoValidMeasurement,
ValidMeasurement }

® Are Value = 0.0 and Value = 0.000001
different states? No.

® How many states are there? 5.

® Are the behaviors or events accepted In
different states actually different? Yes.
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Transitions:
Getting there Is half the fun

® A transition iIs the changing from one
state of an object to another

® Transitions are the FSM representation
of responses to events

® Events may be from internal or external
sources

® Transitions may have associated
actions
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Sample Transition: Elevator
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Actions

® Actions are functions that take an
Insignificant amount of time to perform
® Actions are implemented via
— an object’s operations
— externally available functions
® They may occur when
— A transition Is taken
— A state Is entered
— A state Is exited
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Actions

® Assign to a state when they are always
executed on state entry or exit

® Assign to transition when they they are
not always executed on state entry or
exit
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Simple FSM
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A Slightly More Complex FSM

® You are implementing a reliable
transmission service for an OSI-
compliant protocol stack.

® A message Is sent that requires the
recelver to return an ACK.

@ If an ACK does not occur, retransmit the
message

e If the message Is transmitted 5 times
without an ACK, then inform the sender.
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What’s the Object?

{;_-?.%:Hhapsudy - fsmTalk - [Dbject Model Diagram: Modell]
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Message Transaction FSM
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Mealy-Moore State Models

® The set of states defines the state space

® State spaces are flat
— All states are at the same level of abstraction
— All state names are unigque

@ State models are single-threaded
— Only a single state can be valid at any time
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Mealy-Moore State Models

® Mealy State Models
— All actions are In transitions

® Moore State Models
— All actions are upon state entry
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Retriggerable One-shot Timer FSM
® How many states?

® Model 1
— Ildle
— Count = 65,535

— Count = 65,534

—Count=0

® Model 2
— Idle
— Counting down
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Retriggerable One-shot Timer
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Retriggerable One-Shot Timer
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E File Edit ‘“iew Code Lapout Launch ‘window Options  Help

Dlﬁlnl CHJ'IEII §|‘?|H’?| @|Q|IE||E| IﬁIEI X|_-'3"| IDBfauItEanig

-
\' Counting First Time
[ d W’ Set Set_Time

e .
Stop. Cmd Start Timer

[ Stop Timer J< 9

Stop_Cmd tmiSet_Time)
|
Retriggerable One-Shot

- A
Counting Subsequently Moore Model

N
o
A
N
)
&
i)
©
®
[
®
)

Raise Interrupt

Reset Timer
. A
tizet Time)

Bruce Powel Douglass, Ph.D. I-Logix Inc.




Problems with M&M State Models

@ Scalability due to lack of metaphor for
decomposition

e No Concurrency support

® No support for orthogonal components

Bruce Powel Douglass, Ph.D. I-Logix Inc.




Scalability

Y
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Scalability

OR THIS....

{Parameter OKJ
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Parameter In Alarm
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{ Sounding
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'
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concurrency

Problem: A device can be In states
o« Off

« Starting Up

e Operational

e Error

And it can be running from
e Mains
e pattery
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How to arrange these states?

Cor

{ Startup J

s

[Operati onal}

Ceror Ceary
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concurrency

e In M&M View, the following are different
States

— Operational with Battery
— Operation with Mains

® This Is called state explosion

® Solution:
— Allow states to operate concurrently
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Mealy-Moore Solution

Switch to Off

Switch to Off : ,
w mains on line

SwitcH 1o §ff Off - Battery J(mainsoff line ’( Off - Mains itch to Off
L
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4

s

mainson line

Startup - Batter%( mansoff e |02 (UP - Mains

.

J

lPOST Complete lPOST Complete

mains off line

(Operational _ w mainson line ,(Operational _ )
.

Battery WETS )
Error Detected i Error Detected

w mains on line W

>| Error - BatteryJ( mains off line ’( Error - MainsJi
N
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Concurrent State Model Solution
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Orthogonal Components

mylnstance: myClass enum tColor {eRed, eBlue,
eGreen};

tColor Color

boolean ErrorStatus enum boolean {TRUE,
tMode Mode FALSE}

enum tMode {eNormal,
eStartup, eDemo}

How do you draw the state of this object?
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Approach 1. Enumerate all

‘eRed, FALSE, |
eDemo

\ J

eRed, TRUE, |
eDemo

‘eRed, FALSE, |
eNormal

\ J

eRed, TRUE, |
eNormal

‘eRed, FALSE,
eStartup

‘eBlue, FALSE,)
eDemo

\ J

(eBlue, TRUE, |
eDemo

‘eBlue, FALSE,)
eNormal

\ J

(eBlue, TRUE, |
eNormal

‘eBlue, FALSE,)

eStartup

eGreen, FALSE
eDemo

\.

1

eDemo

\.

eGreen, TRUE, |
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\.

‘eGreen, FALSE,]

J

eNormal

eGreen, TRUE, |

eStartup

‘eGreen, FALSE,]

eRed, TRUE, eBlue, TRUE, eGreen, TRUE,
. eotartur eStartup | eStartup pege 51




Approach 2

¥ Rhapsody - fsmTalk - [Statechart of : myClass]
E File Edit ‘iew Code Lapout Launch ‘window Options Help

Dlﬁlnl '}Ellgl %I?Iﬂl @l|Gl|lﬁ||E| |F||§|| XIE"I IDEfauItEnnfig

myClass

/' Color

eRed

eStartup

eGreen

K
o
A
N

)
&
o
©
®
[

[G)
L ]

ErrorStatus

Bruce Powel Douglass, Ph.D. I-Logix Inc.




Harel State Charts

® Created by David Harel in late 1980s

® Supports
— Nested states
— Actions and Activities

— Guards
— History

® Advanced Features (Part Il)
— Concurrency

— Broadcast Transitions
— Orthogonal Components
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Basic Harel Syntax

N

. entry B1()
exit B2( )

~

throughout B3( )

Y{1(intr) P

@

- ®
T T5
4 S1

Bruce Powel Douglass, Ph.D.

exit A2( )

throughout Al, A2
N J

A
T3/
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] Y
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Nested States

® Improves scalabllity
® Increases understandability

® Permits problem decomposition (divide-
and conquer)

® Methods
— Nested states on same diagram
— Nested states on separate diagram

Bruce Powel Douglass, Ph.D. I-Logix Inc.




Actions and Activities

® Actions

— are functions which take an insignificant
amount of time to execute

— they may have parameters

— they may occur on
¢ Transitions
¢ State Entry
¢ State Exit

® Activities

— are functions executed as long as a state Is
active
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Order of Nested Actions

® Execute from outermost - in on entry
® Execute from innermost - out on exit

entry: f() | fi SHORUCIPN(Y

/
/
y

exit: g(a,b)

entry: X(c)[*
exity() | Ny

r o

\_ o
first y() then g(ab)

Bruce Powel Douglass, Ph.D. I-Logix Inc. Page 57




Transitions

@ Basic (UML) syntax:

name(params)[guards]*events/actions

— Name

— Parameters
— Guard

— Event List
— Action List
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Transitions: Event List

® Comma separated list of transitions that
occur In other concurrent state
machines because of this transition

® A.k.a propagated transitions

® This will be discussed more in Part Il
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Transitions: Guards

® A guard Is some condition that must be
met for the transition to be taken

® Guards can be

— Variable range specification

— Concurrent state machine is in some state
[INCX)]

— Some other constraint (preconditional
Invariant) must be met
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<

Transitions

T1(intr)[r < Q] / f(r)
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T2 [IN(READY)] /
a()
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History

® The history annotation @ means that the
state “remembers” the substate and returns
to It as the default

® Can also work with an initial state indicator

\T1@

T2

i ) T3
N
(1)

T4
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Example: Jolt Cola Machine
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Example: Coin Receptacle FSM

ZF Rhapsody - fsmtalk - [Statechart of - Coin_Receptacle]
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Substate: Issuing Can

£ Rhapsody - fsmtalk - [Statechart of : State Issuing Can]
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Class Button FSM

7 Rhapsody - Fsmtalk - [Statechart of - Button]
E File Edit “iew Code Lapout Launch ‘window Options  Help
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summary

® ODbjects have behavior
— Simple
— Continuous
— State-driven

® Modeling objects as Finite State Machines
simplifies the behavior

@ States apply to objects

® FSM Objects spend all their time In exactly 1
state (discounting orthogonal substates)
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summary

@ States are disjoint ontological conditions
that persist for a significant period of time.

@ States are defined by one of the following:
— The values of all attributes of the object
— The values of specific attributes of the object

— Disjoint behaviors
+ Events accepted
¢ Actions performed
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summary

® Transitions are the representation of
responses to events within FSMs

® Transitions take an insignificant amount
of time

® Actions are functions which may be

assoclated with
— Transitions

— State Entry

— State Exit

® Activities are processing that continues
as long as a state Is active
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summary

@ Harel statecharts expand standard FSMs
— Nested states
— Concurrency
— Broadcast transitions
— Orthogonal Components
— Actions on states or transitions
— History
— Guards on transitions
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