
Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 1

State Machines and State Charts

Bruce Powel Douglass, Ph.D.

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 2

How to contact the authorHow to contact the author
Bruce Powel Douglass, Ph.D.

Chief Evangelist
i-Logix, Inc.

1309 Tompkins Drive Apt F
Madison, WI 53716

(608) 222-1056
bpd@ilogix.com

see our web site
www.ilogix.com

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 3

About the Author
l Almost 20 years in safety-critical

hard-real time systems
l Mentor, trainer, consultant in real-

time and object-oriented systems
l Author of

– Real-Time UML: Efficient Objects
for Embedded Systems
(Addison-Wesley, Dec. 1997)

– Doing Hard Time: Using Object
Oriented Programming and
Software Patterns in Real Time

l Partner on the UML proposal
l Embedded Systems Conference

Advisory Board

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 4

Huh? Of Course!

One man’s “Of Course!” is
another man’s “Huh?”

Book of Douglass, Law 79
Feel free to ask questions!

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 5

Agenda
l Approach taken for this talk
l Types of behavior
l State Behavior
l Mealy-Moore State Models
l Harel Statecharts
l Integrating FSMs with your

development process
l Producing code for state machines

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 6

Approach taken for this talk
l This is meant to be a gentle introduction

to states and state machines
l This section will be mostly on state

machines and a little on statecharts
l State models will first be introduced in

simple forms
l Gradually concepts enhanced and

elaborated
l Ask questions if you don’t think your

neighbor is understanding

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 7

What kinds of things have
Behavior?

l Objects!
– Object have

u Internal data
u Operations on that data (behavior)

– Objects can
u react to environmental events and information
u autonomously produce events and actions

– Not all Objects have state behavior!

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 8

Types of Behavior

l Behavior can be simple
Simple behavior does not depend on the object’s
history

l Behavior can be continuous
Continuous behavior depends on the object’s history
but in a smooth, continuous fashion

l Behavior can be state-driven
State-driven behavior means that the object’s
behavior can be divided into disjoint sets

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 9

Simple Behavior

l The behavior is not affected by the
object’s history
– cos(x)
– getTemperature()
– setVoltage(v)
– max(a,b)
– ∫ −b

a

x dxe
2

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 10

Continuous Behavior
l Object’s behavior depends on history in

a continuous way
– Control loops

– digital filter

– fuzzy logic
Uses partial set membership to compute a
smooth, continuous output

f
d d d d

j
j j j j

=
+ + +− − −1 2 3

4

Ka

Xn Yn
-

+ Delay
Wn

Kb

+
+Vn

Zn

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 11

State Behavior

l Object exhibit discontinuous modes of
behavior
– in “therapy mode” delivery anesthetic agent

based on knob position
– in “service mode” select service function

based on knob position
– in “startup mode” ignore the knob turns

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 12

Why State Machines?

l Simplification

l Predictability

l Easy Development

l Easy Testing

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 13

Why: Simplification
l Introduce simplifying assumptions

– Assumes system is only in a single state at a
time

– Assumes state transitions are instantaneous

l Limit interactions with other objects
– A finite set of transitions are permitted while

in any given state
– Other events are

u ignored
u cause error recovery states to be entered
u queued

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 14

Why: Simplification
l Overall behavior is decomposed into

sets of non-overlapping behavior
defined by
– input events accepted while in a state
– outputs initiated while in a state
– error recovery mechanisms

l Easy Error Handling
– easy to specify valid and non-valid inputs

by in states

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 15

Why: Predictability

l FSMs divide their complexity into
chunks called states

l Each state is simpler than the overall
object

l Because each state is simpler, it is
more understandable and predictable

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 16

Why: Easy Development

l FSMs simplify the system into smaller
pieces

l Smaller pieces are easier to code
– They are easy to write the code for
– They are easier to “get right”
– They are easy to explain in peer reviews

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 17

Easy Testing

l Unit testing is fundamentally at the level
of the object (or function)

l FSMs can be subdivided into states for
testing
– Each state has a smaller set of input and

output conditions
– The overall testing is decreased because

of low coupling among states

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 18

Finite State Machines
l A finite state model is the description

from which any number of instances
can be made

l A finite state machine (FSM) is an
object which has state behavior defined
by
– A finite set of states
– A finite set of transitions

l So,
– What’s a state?
– What’s a transition?

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 19

What is a state?

Huh?

A state is a distinguishable, disjoint,
orthogonal ontological condition that
persists for a significant period of time

Well, duh!

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 20

What is a state?
l Distinguishable

It can be clearly distinguished from
other states
– Inputs accepted
– Actions performed

l Disjoint
An object can only be in one state in a
time and must be in exactly one state at
all times

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 21

What is a state?
l Orthogonal

States do not overlap other states

l Ontological
“fundamental condition of existence”

l Persists for a significant period of time
– Objects spend all their time in states

(“Significant” is problem-domain specific)

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 22

Example States: Switch

l State: Off
l State: On

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 23

Example States:
Oregon Weather

l State: Raining
l State: Going to Rain

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 24

Example States: Elevator

l State: Stopped
l State: Going Up
l State: Going Down

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 25

What constitutes a state?
l View 1: The value of all attributes of the

object uniquely define the state

l View 2: The value of some specific
attributes (state variables) uniquely
defines the state

l View 3: A unique set of inputs accepted
and actions performed defines the state

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 26

View 1: Values of All
Attributes Defines the State

l Are Value = 0.0 and Value = 0.000001
different states? YES!

l How many states are there? Infinite.
l Are the behaviors or events accepted in

different states actually different? No.

enum tState {Off,
 Calibrating,
 Measuring,
 NoValidMeasurement,
 ValidMeasurement }

Sensor
float Value;

enum tState s;

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 27

View 2: Values of Some Set of
Attributes Defines the State

l Are Value = 0.0 and Value = 0.000001
different states? No.

l How many states are there? 5.
l Are the behaviors or events accepted in

different states actually different? Yes.

enum tState {Off,
 Calibrating,
 Measuring,
 NoValidMeasurement,
 ValidMeasurement }

Sensor
float Value;

enum tState s;

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 28

View 3: Unique Set of
Behaviors Defines the State

l Are Value = 0.0 and Value = 0.000001
different states? No.

l How many states are there? 5.
l Are the behaviors or events accepted in

different states actually different? Yes.

enum tState {Off,
 Calibrating,
 Measuring,
 NoValidMeasurement,
 ValidMeasurement }

Sensor
float Value;

enum tState s;

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 29

Transitions:
Getting there is half the fun

l A transition is the changing from one
state of an object to another

l Transitions are the FSM representation
of responses to events

l Events may be from internal or external
sources

l Transitions may have associated
actions

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 30

Sample Transition: Elevator

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 31

Actions

l Actions are functions that take an
insignificant amount of time to perform

l Actions are implemented via
– an object’s operations
– externally available functions

l They may occur when
– A transition is taken
– A state is entered
– A state is exited

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 32

Actions

l Assign to a state when they are always
executed on state entry or exit

l Assign to transition when they they are
not always executed on state entry or
exit

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 33

Simple FSM

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 34

A Slightly More Complex FSM

l You are implementing a reliable
transmission service for an OSI-
compliant protocol stack.

l A message is sent that requires the
receiver to return an ACK.

l If an ACK does not occur, retransmit the
message

l If the message is transmitted 5 times
without an ACK, then inform the sender.

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 35

What’s the Object?

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 36

Message Transaction FSM

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 37

Mealy-Moore State Models

l The set of states defines the state space

l State spaces are flat
– All states are at the same level of abstraction
– All state names are unique

l State models are single-threaded
– Only a single state can be valid at any time

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 38

Mealy-Moore State Models

l Mealy State Models
– All actions are in transitions

l Moore State Models
– All actions are upon state entry

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 39

Retriggerable One-shot Timer FSM
l How many states?
l Model 1

– Idle
– Count = 65,535
– Count = 65,534
– ...
– Count = 0

l Model 2
– Idle
– Counting down

ANS: Model 2
(Drawing model 1 is a
homework exercise)

ANS: Model 2
(Drawing model 1 is a
homework exercise)

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 40

Retriggerable One-shot Timer

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 41

Retriggerable One-Shot Timer

Stop Timer

Set Set_Time
Start Timer

Raise Interrupt
Reset Timer

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 42

Problems with M&M State Models

l Scalability due to lack of metaphor for
decomposition

l No Concurrency support

l No support for orthogonal components

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 43

Scalability

Parameter OK

Parameter
In Alarm:

Tone 1

Parameter
In Alarm:

Tone 2

Parameter
In Alarm:
Tone OFF

Parameter
In Alarm:

Tone 3

THIS....

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 44

Scalability

Parameter OK
OR THIS....

Parameter In Alarm

Sounding
Tone 1

Sounding
Tone 2

Tone OFF

Sounding
Tone 3

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 45

Concurrency

• Problem: A device can be in states
• Off
• Starting Up
• Operational
• Error

• And it can be running from
• mains
• battery

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 46

How to arrange these states?

Operational
Mains

Startup

Error Battery

Off

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 47

Concurrency

l In M&M View, the following are different
states
– Operational with Battery
– Operation with Mains

l This is called state explosion
l Solution:

– Allow states to operate concurrently

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 48

Mealy-Moore Solution

Operational -
Battery

Operational -
Mains

Startup - Battery Startup - Mains

Error - Battery Error - Mains

Off - Battery Off - Mains
mains on line

mains off line

mains on line

mains off line

mains on line

mains off line

mains on line

mains off line

Switch to On Switch to On

POST Complete POST Complete

Error Detected Error Detected

Error
Detected

Error
Detected

Error
Detected

Error
Detected

Switch to Off

Switch to Off

Switch to Off

Switch to Off

Switch to Off

Switch to Off

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 49

Concurrent State Model Solution

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 50

Orthogonal Components

myInstance: myClass

tColor Color
boolean ErrorStatus
tMode Mode

enum tColor {eRed, eBlue,
 eGreen};

enum boolean {TRUE,
 FALSE}

enum tMode {eNormal,
 eStartup, eDemo}

How do you draw the state of this object?

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 51

Approach 1: Enumerate all

eRed, TRUE,
eDemo

eBlue, FALSE,
eDemo

eGreen, FALSE,
eDemo

eRed, FALSE,
eDemo

eBlue, TRUE,
eDemo

eGreen, TRUE,
eDemo

eRed, TRUE,
eNormal

eBlue, FALSE,
eNormal

eGreen, FALSE,
eNormal

eRed, FALSE,
eNormal

eBlue, TRUE,
eNormal

eGreen, TRUE,
eNormal

eRed, TRUE,
eStartup

eBlue, FALSE,
eStartup

eGreen, FALSE,
eStartup

eRed, FALSE,
eStartup

eBlue, TRUE,
eStartup

eGreen, TRUE,
eStartup

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 52

Approach 2

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 53

Harel State Charts
l Created by David Harel in late 1980s
l Supports

– Nested states
– Actions and Activities
– Guards
– History

l Advanced Features (Part II)
– Concurrency
– Broadcast Transitions
– Orthogonal Components

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 54

Basic Harel Syntax
S2

U1

U2

A B C
X2[G]

T3 /
C1
C2

S3

S1
entry A1()
exit A2()
throughout A1, A2

entry B1()
exit B2()
throughout B3()

X1

T1

T2Y2

Y1(int r)

X3

T4

T5

H

T5

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 55

Nested States

l Improves scalability
l Increases understandability
l Permits problem decomposition (divide-

and conquer)
l Methods

– Nested states on same diagram
– Nested states on separate diagram

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 56

Actions and Activities
l Actions

– are functions which take an insignificant
amount of time to execute

– they may have parameters
– they may occur on

u Transitions
u State Entry
u State Exit

l Activities
– are functions executed as long as a state is

active

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 57

Order of Nested Actions
l Execute from outermost - in on entry
l Execute from innermost - out on exit

U entry: f()
exit: g(a,b)

U1 entry: x(c)
exit: y()

A

first f() then x(c)

first y() then g(a,b)

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 58

Transitions

l Basic (UML) syntax:

name(params)[guards]^events/actions

– Name
– Parameters
– Guard
– Event List
– Action List

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 59

Transitions: Event List

l Comma separated list of transitions that
occur in other concurrent state
machines because of this transition

l A.k.a propagated transitions

l This will be discussed more in Part II

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 60

Transitions: Guards

l A guard is some condition that must be
met for the transition to be taken

l Guards can be
– Variable range specification
– Concurrent state machine is in some state

[IN(X)]
– Some other constraint (preconditional

invariant) must be met

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 61

Transitions

BA

T1(int r)[r < 0] / f(r)

T2 [IN(READY)] /
g()

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 62

History
l The history annotation means that the

state “remembers” the substate and returns
to it as the default

l Can also work with an initial state indicator

H

A

B

C

S

H

T1 X

Y

T2

T3

T4

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 63

Example: Jolt Cola Machine

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 64

Example: Coin Receptacle FSM

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 65

Substate: Issuing Can

Entry/ Rack.Dispense()

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 66

Class Button FSM

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 67

Summary
l Objects have behavior

– Simple
– Continuous
– State-driven

l Modeling objects as Finite State Machines
simplifies the behavior

l States apply to objects
l FSM Objects spend all their time in exactly 1

state (discounting orthogonal substates)

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 68

Summary

l States are disjoint ontological conditions
that persist for a significant period of time.

l States are defined by one of the following:
– The values of all attributes of the object
– The values of specific attributes of the object
– Disjoint behaviors

u Events accepted
u Actions performed

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 69

Summary
l Transitions are the representation of

responses to events within FSMs
l Transitions take an insignificant amount

of time
l Actions are functions which may be

associated with
– Transitions
– State Entry
– State Exit

l Activities are processing that continues
as long as a state is active

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 70

Summary

l Harel statecharts expand standard FSMs
– Nested states
– Concurrency
– Broadcast transitions
– Orthogonal Components
– Actions on states or transitions
– History
– Guards on transitions

Bruce Powel Douglass, Ph.D. i-Logix Inc. Page 71

