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Specifying Exceptional (or Error) Behavior

The philosophical orientation we adopt is that exceptional behavior is pervasive in software, and is a vital
component of a specification Furthermore, the behavior in exceptional cases has the least intuitive basis
and is the most in need of precise description. Adding the specification of exceptional behavior after the
“normal” cases have been specified is highly prone to oversight and  likely to lead to the introduction of
mistakes. Hence we should think through all the exceptional circumstances at the outset, and
systematically incorporate their points of presence and effect as integral to a specification.

As we will see, the orientation indicated above is only workable if all the pre-defined types have fully
specified exception behavior too, and if the strategy they chose is compatible with that desired for the TOI.
Hence we will outline a strategy for error specification that we assume is to be adopted at all levels. Even
though there may be no exceptional behavior inherent in a pre-defined type, Definitions dependent on the
type may later extend behavior in a way that leads to errors (e.g., extracting the top of an empty stack). It
is assumed that every ADT will provide a means to identify objects of the TOI that may be troublesome.

General Principles
• Exceptional (i.e., error) behavior is generally associated with unusual circumstances and one is ordinarily

least confident about what to expect. Since the purpose of an ADT specification is to let us know exactly
what to expect in all circumstances, exception behavior should be an integral part of the ADT.

• Describing “normal” behavior first, and then adding treatment for exceptions has a high probability of
introducing oversights and mistakes. Exceptions are best identified at the outset, and integrated into the
specification at every step by explicit tests in all sensitive equations.

• In order to treat exceptions in the TOI, we invariably require that exceptions be provided for in all the
pre-defined types. We assume that an exceptional element of each sort is provided in each pre-defined
type, and that its occurrence in that type creates no inconsistency. Operations must include a function
OK: TÆ Boolean for each sort T so that 'OK' determines if an element of the sort is an exceptional
element or not (several such categories can be handled by adding further tests) — these operations are
required to always yield a proper Boolean value.

• Whenever conditional equations are used, it must be assured that the test expression evaluates to either
True or False (i.e., not the error value in the Boolean pre-defined type) so that an equality is effectively
determined.

• We lose flexibility by making implicit assumptions about exceptional behavior (e.g., “errors propagate”).
It’s sometimes more laborious to provide explicit equations to describe all behavior, but doing so avoids
the possibility that exceptional behavior has been neglected, and moreover the default (implicit) error
behavior may inadvertently corrupt  the specification of normal behavior.

However, the “errors propagate” methodology is frequently the approach of choice, so we want to make
fully precise what is meant by this, and require that this assumption be explicitly written into a
specification when it is chosen. The “errors propagate” behavior means that whenever one or more
arguments is an error value then so is the result, and this is synonymous with the behavior obtained by
including an equation yielding the error value of the result sort for each ADT operation when each of its
arguments is the error value of the argument sort.
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Example — Queues of Integers
In this example we provide a consistent, sufficiently complete initial algebra specification that provides
fully for error behavior. The pre-defined types are Boolean and Int with the familiar operations, plus an
error element and 'OK' test functions for exceptional elements. We use the same 'OK' function name for all
types, so context must be used to distinguish them (i.e., OK is polymorphic). Of course, while OK is pre-
defined for Int and Boolean, we must provide its specification for the TOI.

• Signature
New: Æ Queue
ErrorQue: Æ Queue

Add: Queue ¥ Int Æ Queue
Del: Queue Æ Queue
Frt: Queue Æ Int
IsNew: Queue Æ Boolean
OK: Queue Æ Boolean

The constructors for this ADT are New, ErrorQue  and Add. The canonical representatives for the initial

algebra equivalence classes are New, ErrorQue, and Add(Add( … Add(New,i1), i2), … , in) for n ≥ 1, and

OK(ij) = True for 1 ≤ j≤ n.

• OK specification
OK(New) = True
OK(ErrorQue) = False

OK(Add(q,i)) = OK(q) Ÿ OK(i)

• Error-equations (this is “errors propagate” plus two additional equations)
Add(ErrorQue,i) = ErrorQue
Add(q,ErrorInt) = ErrorQue
Del(New) = ErrorQue
Del(ErrorQue) = ErrorQue
Frt(New) = ErrorInt
Frt(ErrorQue) = ErrorInt
IsNew(ErrorQue) = ErrorBool

• OK-equations
IsNew(New) = True
IsNew(Add(q,i)) = if OK(q) Ÿ OK(i) then False else ErrorBool
Del(Add(q,i)) = if OK(q) Ÿ OK(i)

then if IsNew(q) then New else Add(Del(q),i)
else ErrorQue

Frt(Add(q,i)) = if OK(q) Ÿ OK(i)
then if IsNew(q) then i else Frt(q)
else ErrorInt

Claim 1   : New, ErrorQue, and Add constitute generators for this ADT.

Claim 2   : This ADT is sufficiently complete.

Claim 3   : This ADT is consistent.


