
22C/55:181

1

Algebraic Specification Constituents

Data Domains
An algebraic abstract data type may involve pre-defined types. These can be assumed to
be previously defined ADTs. Thus we are permitted to develop hierarchical definitions.
To a very limited extent we may involve primitive (or concrete) types — types whose
behavior is known a priori. Several distinct varieties of data may be involved (i.e., it
may be heterogeneous). For example, for sets of Integers we have both set values and
Integer values involved, as in the Pascal expression “2 in s1+s2”. These data domains
are called sorts. An ADT specification provides a name for each of the sorts it
introduces. However, no representation of the data values themselves is provided — only
the sort names. This is one of the characteristics that accounts for the word 'abstract' in
the name. One (and sometimes several) of the sorts of the ADT being defined is
distinguished as the object(s) of primary interest and is referred to as the type (or
types) of interest (TOI).

Operation signatures (syntax)
This component provides the names of the operations and their domain/range
characteristics. Also, we may provide notational conventions (i.e., in-fix, pre-fix, or
post-fix), and (rarely) precedence conventions. These properties are called the
signatures of the functions.

It is assumed that the operations are “pure functions” — that is, there are no side-
effects. Also, for the time being we will assume that the functions are total — they are
defined for all the values in their domain. The treatment of partial functions is a non-
trivial issue we will explore later. Note that constants are viewed as functions with no
arguments.

For example, for an ADT Stack of Integer describing push-down stacks of Integers we
have the pre-defined type Integer, the TOI sort Stack, and the operations and their
signatures:

PUSH: Stack × Integer → Stack
POP: Stack → Stack
NEW: → Stack
TOP: Stack → Integer.

We expect the arguments to functions to conform to the type requirements indicated in
the signatures. This would mean that PUSH(NEW, 2) is a valid expression while
PUSH(2, NEW) is not. Since this information determines exactly what the well-formed
expressions are, this may be referred to as 'syntax'. Legal expressions (or terms)
are defined inductively. We assume that there is an unlimited collection of variable
names associated with each sort. Then

• each variable and constant of sort S is a valid expression (or term) of sort S,
• if ei is a valid expression of sort Si (1≤i≤n) and the ADT operation f has the

signature f: S1 × S2 × … × Sn → S0, then f(e1, e2, … , en) is a valid expression (or
term) of sort S0.

 This collection of well-formed expressions is the “language” of the ADT.

If Σ is a signature, the set of well-formed expressions (or terms) over Σ which use
variables drawn from the set V is denoted by T(Σ,V). If the variables are not restricted
we write T(Σ). A term that includes no variable is called ground.

22C/55:181

2

Operation properties (semantics)
No algorithms are provided for the operations — we have no information about the values
of the TOI, so this is outside the realm of possibility. We seek to specify the results of
the operations while avoiding a bias toward any particular implementation. This is the
other characteristic that accounts for the word 'abstract' in the name.

Properties of the operations consist of equations between two expressions (of the same
sort), and are understood to assert that the two expressions evaluate to the same result
for all values of the variables involved. An algebraic ADT specification encompasses a
finite collection of equations.

For instance for the Stack example, we have for all s: Stack and i: Integer
POP(PUSH(s, i)) = s
TOP(PUSH(s,i)) = i.

The reason that this may be referred to as 'semantics' is that the behavior (i.e., results)
of the operations can be inferred from these constraints independent of the details of any
implementation. For example,

TOP(POP(PUSH(PUSH(NEW,1), 2)))
= TOP(PUSH(NEW, 1)) by the first axiom
= 1 by the second axiom.

The inference rules used for deducing “behavior” are those familiar for reasoning about
equalities, namely, for all x, y, and z

• x = x,
• if x = y, then y = x,
• if x = y and y = z, then x = z, and
• we may “substitute equals for equals”, e.g., if x = y, then f(x) = f(y), etc.

