
5

The Buffer class in Object-Z resembles the Z specification.

 Buffer[X]
 (size, INIT, BufferIn, BufferOut)

 buffer: seq X
 size: NNNNN

 size = #buffer

 INIT
 buffer = <>
 size = 0

 BufferIn
 ∆(buffer, size)
 x?: X

 buffer' = buffer^<x?>
 size' = size + 1

 BufferOut
 ∆(buffer, size)
 x!: X

 buffer ≠ <>
 buffer' = tail buffer
 x! = head buffer

Notice this this version of the buffer is not bounded
— items can be added without limit. As the object-
oriented approach suggests, we start with the most
general form of structure and specialize to obtain
classes of immediate interest. Now we can specialize
to the bounded buffer.

6

One class inherits another by importing it. The
variables, constants, state schema, initial schema, and
operations are inherited, but the visibility list is not.
We now describe the bounded buffer by inheriting the
buffer and making incremental changes.

 BoundedBuffer[X]
 (size, INIT, BufferIn, BufferOut)
 Buffer[X]
 max_size: N

 size ≤ max_size

 BufferIn
 size < max_size

7

Object History & History Invariants

Since an operation may change the state of an

object, re-applying the same operation to the same

object may not produce the same result. However, if

the entire history of prior operation applications (and

arguments) is considered, then the outcome is

uniquely determined.

If an object’s initial state is init and its history of
operation applications is (… ((init.op1).op2) …).opn,

then its state and consequent behavior is known at

every point.

Some history-sensitive properties can be more readily

expressed from this global perspective, without

making explicit the internal state at every point. The

is the role of (optional) history invariant.

8

The construction of useful history invariants is

facilitated by a more expressive logic — temporal

logic that expresses time dependencies. Object-Z

uses the following temporal logic operators:

¤¤¤¤ P — always P, P holds at every stage in the

history

◊ P — eventually P, eventually there is a stage at

which P holds

¡¡¡¡ P — next P, P holds at the next stage

For example, in our recent Buffer example, it might be

reasonable for the specification to require that any

item placed in a buffer should eventually be removed.

This could be handily expressed by

¤¤¤¤ (◊(#(op=BufferOut) = #(op=BufferIn)))

