Good luck!

1. [20 pts] Expand $(3 x-2 y)^{3}$.
2. [20 pts] Use the binomial theorem to show that: $\sum_{k=0}^{n}\binom{n}{k} 2^{k}=3^{n}$.
3. [20 pts] Find the coefficient of $x^{2} y^{3} z^{4}$ in the expansion of $(x+y+z)^{9}$.
4. [20 pts] Determine whether each relation defined on the set of positive integers is reflexive, symmetric, antisymmetric, transitive, and/or a partial order:
a) $(x, y) \in R$ if $x=y^{2}$
b) $(x, y) \in R$ if $x>y$
c) $(x, y) \in R$ if 3 divides $x-y$
d) $(x, y) \in R$ if $x=y$
5. [10 pts] Let $\mathrm{X}=\{1,2,3,4,5\}, \mathrm{Y}=\{3,4\}$, and $\mathrm{C}=\{1,3\}$. Define R on $\rho(X)$, the power set of X , as A R B if and only if $\mathrm{A} \mathrm{U} Y=\mathrm{B} \mathrm{U}$ Y. Show that R is an equivalence relation.
6. [10 pts] By drawing a digraph, give an example of an equivalence relation on $\{1,2,3,4,5$, $6\}$ having exactly 4 equivalence classes.
7. [20 pts] Draw the Hasse diagram for the partial ordering x divides y on the set $\{2,3,6,9$, 12, 18, 27 \}.
8. [15 pts] Give an example of a function that
a) is 1-1 but not onto
b) is onto but not $1-1$
c) is neither 1-1 nor onto
9. [20 pts] Let $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{T}$ and $\mathrm{g}: \mathrm{T} \rightarrow \mathrm{U}$ be functions. Find an example where g o f is $1-1$ but g is not $1-1$.
10. [20 pts] Find the composition of the following cycle representing a permutation on $\mathrm{A}=\{1$, $2,3,4,5,6,7,8\}$. Write your result as the composition of disjoint cycles.
