Good luck!

1. [10 pts] Write the first five values in the sequence:

$$
\begin{aligned}
& D(1)=3 \\
& D(2)=5 \\
& D(n)=(n-1) D(n-1)+(n-3) D(n-2), n \geq 3
\end{aligned}
$$

2. [10 pts] A collection W of strings of symbols is defined recursively by:
3. a, b, and c belong to W
4. If X belongs to W , so does $a(b X c) a$

List 2 strings of length 7 and 2 strings of length 13; string length includes the parens.
3. [20 pts] A sequence is recursively defined by

$$
\begin{aligned}
& S(0)=1 \\
& S(1)=1 \\
& S(n)=2 S(n-1)+S(n-2), \text { for } n \geq 2
\end{aligned}
$$

Prove that $S(n)$ is an odd number for $n \geq 0$.
4. [20 pts] Solve the recurrence relation

$$
P(n)=2 P(n-1)+n 2^{n} \text { for } \mathrm{n} \geq 2
$$

subject to the basis step

$$
P(1)=2
$$

Recall the solution formula

$$
S(n)=c^{n-1} S(1)+\sum_{i=2}^{n} c^{n-i} g(i)
$$

for a first-order recurrence relation $S(n)=c S(n-1)+g(n)$ with constant coefficients.
5. [30 pts] A recurrence relation of the form

$$
S(n)=c S\left(\frac{n}{2}\right)+g(n) \text { for } \mathrm{n} \geq 2, n=2^{m}
$$

has a solution of

$$
S(n)=c^{\log n} S(1)+\sum_{i=1}^{\log n} c^{(\log \mathrm{n})-i} g\left(2^{i}\right)
$$

Solve

$$
\begin{aligned}
P(1) & =1 \\
P(n) & =2 P\left(\frac{n}{2}\right)+n^{2}
\end{aligned}
$$

6. [20 pts] Find $P(S)$, the power set of S, for $S=\{\varphi,\{\varphi\},\{\{\varphi\}\},\{\{\varphi,\{\varphi\}\}\}\}$.
7. [15 pts] A palindrome is a string of characters that reads the same forward and backward. How many five-letter English language palindromes are possible?
8. [20 pts] A group of students plan to order pizza. If 13 will eat mushroom topping, 10 will eat green pepper, 12 will eat extra cheese, 4 will eat both mushroom and green pepper, 5 will eat both green pepper and extra cheese, 7 will eat both mushroom and extra cheese, and 3 will eat all three toppings, how many students are in the group?
9. [15 pts] A soccer team carries 18 players on the roster; 11 players make a team. In how many ways can a team be chosen?
10. [15 pts] Explain why $\binom{n}{n-1}=\binom{n}{1}$.
