Good luck!

1. $[10 \mathrm{pts}]$ Construct a truth table for $(A \rightarrow B) \leftrightarrow A^{\prime} \vee B$
2. [10 pts] Use propositional logic to prove: $(\mathrm{P} \vee \mathrm{Q}) \wedge \mathrm{P}^{\prime} \rightarrow \mathrm{Q}$.
3. [10 pts] Identify the scope of each of the quantifiers and free variables in $(\exists x)(\exists y)[\mathrm{A}(\mathrm{x}, \mathrm{y})$ $\wedge \mathrm{B}(\mathrm{y}, \mathrm{z}) \rightarrow \mathrm{A}(\mathrm{a}, \mathrm{z})]$.
4. $[10 \mathrm{pts}]$ Give an interpretation to prove that $(\exists x) \mathrm{A}(\mathrm{x}) \wedge(\exists x) \mathrm{B}(\mathrm{x}) \rightarrow(\exists x)[\mathrm{A}(\mathrm{x}) \wedge \mathrm{B}(\mathrm{x})]$ is not valid.
5. [10 pts] Prove that $(\exists x)[\mathrm{A}(\mathrm{x}) \wedge \mathrm{B}(\mathrm{x})] \rightarrow(\exists x) \mathrm{A}(\mathrm{x}) \wedge(\exists x) \mathrm{B}(\mathrm{x})$ is a valid argument.
6. [10 pts] Prove: the square of an odd integer equals $8 k+1$ for some integer k.
7. [20 pts] Prove that for any positive integer $n, 2^{2 n}-1$ is divisible by 3 .
8. [20 pts] Prove: $a+a r+a r^{2}+\ldots+a r^{n-1}=\frac{a-a r^{n}}{1-r}, r \neq 1, n \geq 1$.
